導航:首頁 > 源碼編譯 > 演算法導論桶排序

演算法導論桶排序

發布時間:2022-08-23 06:17:45

1. 〔演算法〕排序的最低時間復雜度為什麼是O(nlogn)

這個首先要明確一點,只用到比較的排序演算法最低時間復雜度是O(nlogn),而像桶排這樣的只需要O(R)(R為桶的大小)
為了證明只用到比較的排序演算法最低時間復雜度是O(nlogn),首先要引入決策樹。
首先決策樹是一顆二叉樹,每個節點表示元素之間一組可能的排序,它予以京進行的比較相一致,比較的結果是樹的邊。
先來說明一些二叉樹的性質,令T是深度為d的二叉樹,則T最多有2^片樹葉。
具有L片樹葉的二叉樹的深度至少是logL。
所以,對n個元素排序的決策樹必然有n!片樹葉(因為n個數有n!種不同的大小關系),所以決策樹的深度至少是log(n!),即至少需要log(n!)次比較。

log(n!)=logn+log(n-1)+log(n-2)+...+log2+log1
>=logn+log(n-1)+log(n-2)+...+log(n/2)
>=(n/2)log(n/2)
>=(n/2)logn-n/2
=O(nlogn)
所以只用到比較的排序演算法最低時間復雜度是O(nlogn)。

2. 有哪些用 python 語言講演算法和數據結構的書

Python數據結構篇

數據結構篇主要是閱讀[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [該網址鏈接可能會比較慢]時寫下的閱讀記錄,當然,也結合了部分[演算法導論](Introction to Algorithms)
中的內容,此外還有不少wikipedia上的內容,所以內容比較多,可能有點雜亂。這部分主要是介紹了如何使用Python實現常用的一些數據結構,例
如堆棧、隊列、二叉樹等等,也有Python內置的數據結構性能的分析,同時還包括了搜索和排序(在演算法設計篇中會有更加詳細的介紹)的簡單總結。每篇文
章都有實現代碼,內容比較多,簡單演算法一般是大致介紹下思想及演算法流程,復雜的演算法會給出各種圖示和代碼實現詳細介紹。

**這一部分是下
面演算法設計篇的前篇,如果數據結構還不錯的可以直接看演算法設計篇,遇到問題可以回來看數據結構篇中的某個具體內容充電一下,我個人認為直接讀演算法設計篇比
較好,因為大家時間也都比較寶貴,如果你會來讀這些文章說明你肯定有一定基礎了,後面的演算法設計篇中更多的是思想,這里更多的是代碼而已,嘿嘿。**

(1)[搜索](Python Data Structures)

簡述順序查找和二分查找,詳述Hash查找(hash函數的設計以及如何避免沖突)

(2)[排序](Python Data Structures)

簡述各種排序演算法的思想以及它的圖示和實現

(3)[數據結構](Python Data Structures)

簡述Python內置數據結構的性能分析和實現常用的數據結構:棧、隊列和二叉堆

(4)[樹總結](Python Data Structures)

簡述二叉樹,詳述二叉搜索樹和AVL樹的思想和實現

2.Python演算法設計篇

演算法設計篇主要是閱讀[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**點擊鏈接可進入Springer免費下載原書電子版**]之後寫下的讀書總結,原書大部分內容結合了經典書籍[演算法導論](Introction to Algorithms),
內容更加細致深入,主要是介紹了各種常用的演算法設計思想,以及如何使用Python高效巧妙地實現這些演算法,這里有別於前面的數據結構篇,部分演算法例如排
序就不會詳細介紹它的實現細節,而是側重於它內在的演算法思想。這部分使用了一些與數據結構有關的第三方模塊,因為這篇的重點是演算法的思想以及實現,所以並
沒有去重新實現每個數據結構,但是在介紹演算法的同時會分析Python內置數據結構以及第三方數據結構模塊的優缺點,也就意味著該篇比前面都要難不少,但
是我想我的介紹應該還算簡單明了,因為我用的都是比較朴實的語言,並沒有像演算法導論一樣列出一堆性質和定理,主要是對著某個問題一步步思考然後演算法就出來
了,嘿嘿,除此之外,裡面還有很多關於python開發的內容,精彩真的不容錯過!

這里每篇文章都有實現代碼,但是代碼我一般都不會分
析,更多地是分析演算法思想,所以內容都比較多,即便如此也沒有包括原書對應章節的所有內容,因為內容實在太豐富了,所以我只是選擇經典的演算法實例來介紹算
法核心思想,除此之外,還有不少內容是原書沒有的,部分是來自演算法導論,部分是來自我自己的感悟,嘻嘻。該篇對於大神們來說是小菜,請一笑而過,對於菜鳥
們來說可能有點難啃,所以最適合的是和我水平差不多的,對各個演算法都有所了解但是理解還不算深刻的半桶水的程序猿,嘿嘿。

本篇的順序按照原書[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章節來安排的(章節標題部分相同部分不同喲),為了節省時間以及保持原著的原滋原味,部分內容(一般是比較難以翻譯和理解的內容)直接摘自原著英文內容。

**1.
你也許覺得很多內容你都知道嘛,沒有看的必要,其實如果是我的話我也會這么想,但是如果只是歸納一個演算法有哪些步驟,那這個總結也就沒有意義了,我覺得這
個總結的亮點在於想辦法說清楚一個演算法是怎麼想出來的,有哪些需要注意的,如何進行優化的等等,採用問答式的方式讓讀者和我一起來想出某個問題的解,每篇
文章之後都還有一兩道小題練手喲**

**2.你也許還會說演算法導論不是既權威又全面么,基本上每個演算法都還有詳細的證明呢,讀演算法導論豈
不更好些,當然,你如果想讀演算法導論的話我不攔著你,讀完了感覺自己整個人都不好了別怪小弟沒有提醒你喲,嘻嘻嘻,左一個性質右一個定理實在不適合演算法科
普的啦,沒有多少人能夠堅持讀完的。但是碼農與蛇的故事內容不多喲,呵呵呵**

**3.如果你細讀本系列的話我保證你會有不少收獲的,需要看演算法導論哪個部分的地方我會給出提示的,嘿嘿。溫馨提示,前面三節內容都是介紹基礎知識,所以精彩內容從第4節開始喲,么么噠 O(∩_∩)O~**

(1)[Python Algorithms - C1 Introction](Python Algorithms)

本節主要是對原書中的內容做些簡單介紹,說明演算法的重要性以及各章節的內容概要。

(2)[Python Algorithms - C2 The basics](Python Algorithms)

**本節主要介紹了三個內容:演算法漸近運行時間的表示方法、六條演算法性能評估的經驗以及Python中樹和圖的實現方式。**

(3)[Python Algorithms - C3 Counting 101](Python Algorithms)

原書主要介紹了一些基礎數學,例如排列組合以及遞歸循環等,但是本節只重點介紹計算演算法的運行時間的三種方法

(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)

**本節主要介紹演算法設計的三個核心知識:Inction(推導)、Recursion(遞歸)和Rection(規約),這是原書的重點和難點部分**

(5)[Python Algorithms - C5 Traversal](Python Algorithms)

**本節主要介紹圖的遍歷演算法BFS和DFS,以及對拓撲排序的另一種解法和尋找圖的(強)連通分量的演算法**

(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)

**本節主要介紹分治法策略,提到了樹形問題的平衡性以及基於分治策略的排序演算法**

(7)[Python Algorithms - C7 Greedy](Python Algorithms)

**本節主要通過幾個例子來介紹貪心策略,主要包括背包問題、哈夫曼編碼和最小生成樹等等**

(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)

**本節主要結合一些經典的動規問題介紹動態規劃的備忘錄法和迭代法這兩種實現方式,並對這兩種方式進行對比**

(9)[Python Algorithms - C9 Graphs](Python Algorithms)

https://www.hu.com/question/19889750/answer/27901020

3. NOIP 如果想得全國一等獎的話需要學習那些知識

必備:【模擬】高精度加、減、乘

【圖論】圖的表示:鄰接矩陣,鄰接表,邊表
傳遞閉包和floyd
最小生成樹演算法(至少會一種)
單源最短路dijkstra(O(n2))或者bellman(spfa優化,O(km))
拓撲排序

【樹】 樹的先序、中序、後序遍歷
樹中的最長路(兩遍bfs或者dfs)
並查集
【搜索】深搜、寬搜
【排序】冒泡排序、快速排序 選擇排序 記數排序(又稱「桶排」)
【動態規劃】
01背包,無限背包
【數論】
最大公約數和最小公倍數,進制轉換

需要:【模擬】
表達式求值(中綴轉後綴,棧的操作)、前綴表達式、中綴表達式、後綴表達式之間的相互轉化
【樹】線段樹 字母樹
【搜索】迭代深搜
【動態規劃】
樹形動態規劃、最長不下降子序列、最長公共子序列和最長公共子串
【排序】歸並排序、堆排序

【串】 KMP(字串匹配)
【數論】 判斷質數(sqrt式與篩法求素數)
【有序表】順序表、鏈表、線段樹及其基本操作
【圖論】
Dijkstra演算法的堆優化、求割點、求割邊、強連通分量、歐拉路(邊一次)、漢密爾頓迴路(點一次)、差分約束系統
【動態規劃】
狀態壓縮的動態規劃
【分治】二分查找、二分答案、最近點對
【樹】 歸並樹(逆序對)
【其他】
Hash、矩形切割(與線段樹的比較)
【數論】歐拉函數
【幾何】線段相交
【有序表】樹狀數組
【樹】 Lca(最近公共祖先)與rmq(區間最值)

【圖論】匹配演算法(最大匹配,最小點覆蓋,最小路徑覆蓋,最大獨立集)
網路流演算法(最大流dinic,最小費用流spfa)
【動態規劃】動態規劃的優化(快速冪,改變狀態,優化轉移,單調性,四邊形不等式)
【串】 Kmp擴展、AC自動機
【數論】 中國剩餘定理、概率與期望
【幾何】 最遠點對(旋轉卡殼) 、凸包(水平序和極角序)
、半平面交
【有序表】平衡樹(sbt、treap、splay)後綴數組
【其他】隨機化演算法、高斯消元

書:演算法導論
《Free Pascal語言與基礎演算法》(第三版)
《全國青少年信息學奧林匹克競賽輔導叢書(中學高級本)》
《青少年信息學奧林匹克競賽實戰輔導叢書》系列(《數學與程序設計》和《數據結構與應用》)

4. 各種排序演算法

有插入排序,堆排序,快速排序,基排序,計數排序,桶排序,我說不完的,,詳情參看《演算法導論》

5. 常見的計算機英語專業詞彙

常見的計算機英語專業詞彙

作為計算機相關專業學生,面試或者筆試時不可避免地會遇到與專業相關的'問題,而考核專業問題的時候,又不可避免地涉及到很多專業詞彙,這就需要求職者掌握好常見的專業詞彙,才能在闡述問題時得心應手,避免出現表達錯誤引起誤解。以下是計算機專業常見相關詞彙。

計算機導論 Introction to Computer Science

高等數學 Advanced Mathematics

應用創造學 Creativity Methodology

工程圖學與計算機繪圖 Engineering Graphics and Computer Graphics Drawings

面向對象程序設計 Object-oriented Programming

概率論與數理統計 Probability Theory and Statistics

離散數學 Discrete Mathematics

軟體工程概論 Introction to Software Engineering

數據結構 Data Structures

計算機組成與結構 Computer Organization and Architecture

操作系統 Operating System

計算機網路 Computer Network

演算法設計與分析 Algorithm Design and Analysis

軟體工程經濟學 Software Engineering Economics

Java技術 Java Technology

UML建模 UML Modeling (Unified Modeling Language Modeling)

資料庫系統概論 Introction to Database Systems

編譯原理 Principle of Compiler

軟體體系結構 Software Architecture

程序分析 Program Analysis

軟體過程與項目管理 Software Process and Project Management

系統分析與設計 System Analysis and Design

程序測試 Program Testing

模式識別 Pattern Recognition

嵌入式程序設計 Embedded Programming

人機交互技術 Human-computer Interaction Technology

雲計算 Cloud Computing

計算機與網路安全 Computer and Network Security

計算機圖形學 Computer Graphics

數據挖掘技術 Data Mining Technology

分布對象技術 Distributed Object Technology

網路多媒體 Internet Multimedia

網路程序設計 Network Programming

.NET程序設計 . NET Programming Design

協議工程 Protocol Engineering

5.4.2 操作系統相關術語

虛擬機 Virtual Machine

訪問控制列表 Access Control List

線程 Thread

多線程 Multithreading

進程 Process

守護進程 Daemon

進程間通信 IPC (Interprocess Communication)

死鎖 Deadlock

銀行家演算法 Banker’s algorithm

內存管理 Memory management

虛擬地址 Virtual address

物理地址 Physical address

引導盤 Boot Disk

頁面失效 Page Fault

後台進程/前台進程 Background Process /Foreground Process

文件傳送協議 FTP (File Transfer Protocol)

圖形用戶界面 GUI (Graphical User Interface)

許可權 Permission

移植 Port/Ported/Porting

可移植系統介面 Portable Operating System Interface

分時 Time-sharing

工作區 Workspace

工作目錄 Working Directory

窗口管理器 Window Manager

封裝器 Wrapper

5.4.3 演算法相關術語

字典 Dictionaries

堆 Heap

優先順序隊列 Priority queue

矩陣乘法 Matrix multiplication

貪心演算法 Greedy algorithm

上界/下界 Upper bound / Lower bound

最好情況/最壞情況/平均情況 Best case /Worst Case/ Average case

插入排序 Insertion sort

合並排序 Merge sort

堆排序 Heap sort

快速排序 Quick sort

動態規劃 DP (Dynamic Programming)

背包問題 Knapsack problem

霍夫曼編碼 Huffman Coding

迪傑斯特拉演算法 Dijkstra’s algorithm

貝爾曼-福德演算法 Bellman-Ford algorithm

弗洛伊德演算法 Floyd-Warshall algorithm

回溯 Back-Tracking

N皇後問題 N-Queen problem

漸進增長 Asymptotic growth(包含O-notationΩ-notation Θ-notation)

線性規劃 Linear programming

隨機數生成 Random number generation

圖的生成 Generating graphs

圖論-多項式演算法 Graph Problems – polynomial algorithm

連通分支 Connected components

最小生成樹 Minimum Spanning Tree

最短路徑 Shortest path

NP問題 Non-Deterministic Polynomial problem

旅行商問題 Traveling salesman problem

同構 Graph isomorphism

壓縮 Text compression

最長公共子串 Longest Common Substring

最短公共父串 Shortest Common Superstring

收斂速度 Rate of convergence

5.4.4 數據結構相關術語

集合 Set Data Structures

線性方程組 Linear Equations

數據抽象 Data abstraction

數據元素 Data element

數據對象 Data object

數據類型 Data type

邏輯結構 Logical structure

物理結構 Physical structure

線性結構/非線性結構 Linear structure / Nonlinear structure

線性表 Linear list

棧 Stack

隊列 Queue

串 String

圖 Graph

插入 Insertion

刪除 Deletion

前趨 Predecessor

後繼 Successor

直接前趨 Immediate predecessor

直接後繼 Immediate successor

雙端列表 Double-ended queue

循環隊列 Circular queue

指針 Pointer

先進先出表(隊列) First-in first-out list

後進先出表(隊列) Last-in first-out list

棧底/棧頂 Bottom /Top

壓入/彈出 Push/ Pop

隊頭/隊尾 Front/ Rear

上溢/下溢 Overflow/ Underflow

數組 Array

矩陣 Matrix

多維數組 Multi-dimensional array

以行為主/以列為主的順序分配 Row major order / Column major order

三角矩陣 Triangular matrix

對稱矩陣 Symmetric matrix

稀疏矩陣 Sparse matrix

轉置矩陣 Transposed matrix

鏈表 Linked list

線性鏈表 Linear linked list

單鏈表 Single linked list

多重鏈表 Multilinked list

循環鏈表 Circular linked list

雙向鏈表 Doubly linked list

十字鏈表 Orthogonal list

廣義表 Generalized list

指針域 Pointer field

頭結點 Head node

頭指針/尾指針 Head pointer/ Tail pointer

空白串 Blank string

空串(零串)Null string

子串 Substring

樹 Tree

子樹 Subtree

森林 Forest

根 Root

葉子 Leaf

深度 Depth

雙親/孩子/兄弟/祖先/子孫 Parents/ Children/ Brother/ Ancestor/ Descendant

二叉樹 Binary tree

平衡二叉樹 Balanced binary tree

滿二叉樹 Full binary tree

完全二叉樹 Complete binary tree

遍歷二叉樹 Traversing binary tree

二叉排序樹 Binary sort tree

二叉查找樹 Binary search tree

線索二叉樹 Threaded binary tree

哈夫曼樹 Huffman tree

有序樹/無序樹 Ordered tree / Unordered tree

判定樹 Decision tree

數字查找樹 Digital search tree

樹的遍歷 Traversal of tree

先序遍歷 Preorder traversal

中序遍歷 Inorder traversal

後序遍歷 Postorder traversal

子圖 Subgraph

有向圖/無向圖 Digraph(directed graph)/Undigraph(undirected graph)

完全圖 Complete graph

連通圖 Connected graph

非連通圖 Unconnected graph

強連通圖 Strongly connected graph

弱連通圖 Weakly connected graph

有向無環圖 Directed acyclic graph

重連通圖 Biconnected graph

二部圖 Bipartite graph

邊 Edge

頂點 Vertex

連接點 Articulation point

初始結點 Initial node

終端結點 Terminal node

相鄰邊 Adjacent edge

相鄰頂點 Adjacent vertex

關聯邊 Incident edge

入度/出度 In-degree/ Out-degree

有序對/無序對 Ordered pair/ Unordered pair

簡單路徑 Simple path

簡單迴路 Simple cycle

連通分量 Connected component

鄰接矩陣 Adjacency matrix

鄰接表 Adjacency list

鄰接多重表 Adjacency multi-list

遍歷圖 Traversing graph

生成樹 Spanning tree

拓撲排序 Topological sort

偏序 Partial order

AOV網 Activity On Vertex network

AOE網 Activity On Edge network

關鍵路徑 Critical path

線性查找(順序查找) Linear search (Sequential search)

二分查找 Binary search

分塊查找 Block search

散列查找 Hash search

平均查找長度 Average search length

散列表 Hash table

散列函數 Hash function

直接定址法 Immediately allocating method

數字分析法 Digital analysis method

平方取中法 Mid-square method

隨機數法 Random number method

內部排序 Internal sort

外部排序 External sort

選擇排序 Selection sort

基數排序 Radix sort

平衡歸並排序 Balance merging sort

二路平衡歸並排序 Balance two-way merging sort

多步歸並排序 Ploy phase merging sort

置換選擇排序 Replacement selection sort

索引文件 Indexed file

索引順序文件 Indexed sequential file

索引非順序文件 Indexed non-sequential file

多重鏈表文件 Multi-list file

倒排文件 Inverted file

5.4.5 計算機網路相關術語

埠 Port

伺服器 Server

客戶端 Client

服務訪問點 SAP (Service Access Point)

開放系統互聯 OSI (Open System Interconnection)

物理層 Physical layer

數據鏈路層 Data link layer

網路層 Network layer

運輸層 Transport layer

會話層 Session layer

表示層 Presentation layer

應用層 Application layer

TCP/IP協議 TCP / IP protocol

信道容量 Channel capacity

香農 Shannon

奈奎斯特 Nyquist

雙絞線 UTP (Unshielded Twisted Paired)

同軸電纜 Coaxial cable

光纖 Optical fiber

不歸零碼 NRZ (Non Return to Zero)

曼徹斯特編碼 Manchester coding

調制 Molation

脈碼調制 PCM (Pulse Code Molation)

增量調制 DM (Delta Molation)

同步傳輸/非同步傳輸 Synchronous transmission / ATM (Asynchronous transmission)

循環冗餘校驗 CRC (Cyclic Rendancy Check)

流量控制 Flow control

滑動窗口 Sliding window

差錯控制 Error control

幀結構 Frame structure

復用 Reuse

非對稱數字用戶線路 ADSL (Asymmetric digital subscriber line)

電路交換和分組交換 Circuit switching and packet switching

頻分多路復用 Frequency division multiplexing

信令 Signaling

數據報 Datagram

虛電路 Virtual circuit

幀中繼 Frame relay

信元 Ceil

擁塞 Congestion

反壓 Back pressure

令牌桶 Token bucket

環形/匯流排形/樹形和星形結構 Ring/ bus/ tree and star structure

區域網 LAN (local area network)

集線器 Hub

交換機 Switch

路由器 Router

網橋 Network bridge

乙太網監聽演算法 Ethernet listener algorithm

子網掩碼 Subnet mask

三次握手 Three-way handshake

地址解析協議 APP (Address resolution protocol)

瘦客戶機 Thin client

網際控制報文協議 ICMP (Internet Control Message Protocol)

網際網路群組管理協議 IGMP (Internet Group Management Protocol)

拒絕服務 Denial of service

邊界網關 Border gateway

域名系統 DNS (Domain Name System)

數據鏈路控制 DLC (Data Link Control)

互聯網電子郵件協議標准 POP (Post Office Protocol)

遠程式控制制 Remote control

簡單郵件傳送協議 SMTP (Simple Mail Transport Protocol)

;

6. 有哪些用 Python 語言講演算法和數據結構的書

Python數據結構篇數據結構篇主要是閱讀[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [該網址鏈接可能會比較慢]時寫下的閱讀記錄,當然,也結合了部分[演算法導論](Introction to Algorithms)中的內容,此外還有不少wikipedia上的內容,所以內容比較多,可能有點雜亂。這部分主要是介紹了如何使用Python實現常用的一些數據結構,例如堆棧、隊列、二叉樹等等,也有Python內置的數據結構性能的分析,同時還包括了搜索和排序(在演算法設計篇中會有更加詳細的介紹)的簡單總結。每篇文章都有實現代碼,內容比較多,簡單演算法一般是大致介紹下思想及演算法流程,復雜的演算法會給出各種圖示和代碼實現詳細介紹。**這一部分是下面演算法設計篇的前篇,如果數據結構還不錯的可以直接看演算法設計篇,遇到問題可以回來看數據結構篇中的某個具體內容充電一下,我個人認為直接讀演算法設計篇比較好,因為大家時間也都比較寶貴,如果你會來讀這些文章說明你肯定有一定基礎了,後面的演算法設計篇中更多的是思想,這里更多的是代碼而已,嘿嘿。**(1)[搜索](Python Data Structures) 簡述順序查找和二分查找,詳述Hash查找(hash函數的設計以及如何避免沖突)(2)[排序](Python Data Structures) 簡述各種排序演算法的思想以及它的圖示和實現(3)[數據結構](Python Data Structures) 簡述Python內置數據結構的性能分析和實現常用的數據結構:棧、隊列和二叉堆(4)[樹總結](Python Data Structures) 簡述二叉樹,詳述二叉搜索樹和AVL樹的思想和實現2.Python演算法設計篇演算法設計篇主要是閱讀[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**點擊鏈接可進入Springer免費下載原書電子版**]之後寫下的讀書總結,原書大部分內容結合了經典書籍[演算法導論](Introction to Algorithms),內容更加細致深入,主要是介紹了各種常用的演算法設計思想,以及如何使用Python高效巧妙地實現這些演算法,這里有別於前面的數據結構篇,部分演算法例如排序就不會詳細介紹它的實現細節,而是側重於它內在的演算法思想。這部分使用了一些與數據結構有關的第三方模塊,因為這篇的重點是演算法的思想以及實現,所以並沒有去重新實現每個數據結構,但是在介紹演算法的同時會分析Python內置數據結構以及第三方數據結構模塊的優缺點,也就意味著該篇比前面都要難不少,但是我想我的介紹應該還算簡單明了,因為我用的都是比較朴實的語言,並沒有像演算法導論一樣列出一堆性質和定理,主要是對著某個問題一步步思考然後演算法就出來了,嘿嘿,除此之外,裡面還有很多關於python開發的內容,精彩真的不容錯過!這里每篇文章都有實現代碼,但是代碼我一般都不會分析,更多地是分析演算法思想,所以內容都比較多,即便如此也沒有包括原書對應章節的所有內容,因為內容實在太豐富了,所以我只是選擇經典的演算法實例來介紹演算法核心思想,除此之外,還有不少內容是原書沒有的,部分是來自演算法導論,部分是來自我自己的感悟,嘻嘻。該篇對於大神們來說是小菜,請一笑而過,對於菜鳥們來說可能有點難啃,所以最適合的是和我水平差不多的,對各個演算法都有所了解但是理解還不算深刻的半桶水的程序猿,嘿嘿。本篇的順序按照原書[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章節來安排的(章節標題部分相同部分不同喲),為了節省時間以及保持原著的原滋原味,部分內容(一般是比較難以翻譯和理解的內容)直接摘自原著英文內容。 **1.你也許覺得很多內容你都知道嘛,沒有看的必要,其實如果是我的話我也會這么想,但是如果只是歸納一個演算法有哪些步驟,那這個總結也就沒有意義了,我覺得這個總結的亮點在於想辦法說清楚一個演算法是怎麼想出來的,有哪些需要注意的,如何進行優化的等等,採用問答式的方式讓讀者和我一起來想出某個問題的解,每篇文章之後都還有一兩道小題練手喲****2.你也許還會說演算法導論不是既權威又全面么,基本上每個演算法都還有詳細的證明呢,讀演算法導論豈不更好些,當然,你如果想讀演算法導論的話我不攔著你,讀完了感覺自己整個人都不好了別怪小弟沒有提醒你喲,嘻嘻嘻,左一個性質右一個定理實在不適合演算法科普的啦,沒有多少人能夠堅持讀完的。但是碼農與蛇的故事內容不多喲,呵呵呵****3.如果你細讀本系列的話我保證你會有不少收獲的,需要看演算法導論哪個部分的地方我會給出提示的,嘿嘿。溫馨提示,前面三節內容都是介紹基礎知識,所以精彩內容從第4節開始喲,么么噠 O(∩_∩)O~**(1)[Python Algorithms - C1 Introction](Python Algorithms) 本節主要是對原書中的內容做些簡單介紹,說明演算法的重要性以及各章節的內容概要。(2)[Python Algorithms - C2 The basics](Python Algorithms) **本節主要介紹了三個內容:演算法漸近運行時間的表示方法、六條演算法性能評估的經驗以及Python中樹和圖的實現方式。**(3)[Python Algorithms - C3 Counting 101](Python Algorithms) 原書主要介紹了一些基礎數學,例如排列組合以及遞歸循環等,但是本節只重點介紹計算演算法的運行時間的三種方法(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms) **本節主要介紹演算法設計的三個核心知識:Inction(推導)、Recursion(遞歸)和Rection(規約),這是原書的重點和難點部分**(5)[Python Algorithms - C5 Traversal](Python Algorithms) **本節主要介紹圖的遍歷演算法BFS和DFS,以及對拓撲排序的另一種解法和尋找圖的(強)連通分量的演算法**(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms) **本節主要介紹分治法策略,提到了樹形問題的平衡性以及基於分治策略的排序演算法**(7)[Python Algorithms - C7 Greedy](Python Algorithms) **本節主要通過幾個例子來介紹貪心策略,主要包括背包問題、哈夫曼編碼和最小生成樹等等**(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms) **本節主要結合一些經典的動規問題介紹動態規劃的備忘錄法和迭代法這兩種實現方式,並對這兩種方式進行對比**(9)[Python Algorithms - C9 Graphs](Python Algorithms) /question/19889750/answer/27901020有哪些用 Python 語言講演算法和數據結構的書

7. 有哪些用 Python 語言講演算法和數據結構的書

1.Python數據結構篇
數據結構篇主要是閱讀[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [該網址鏈接可能會比較慢]時寫下的閱讀記錄,當然,也結合了部分[演算法導論](Introction to Algorithms)中的內容,此外還有不少wikipedia上的內容,所以內容比較多,可能有點雜亂。這部分主要是介紹了如何使用Python實現常用的一些數據結構,例如堆棧、隊列、二叉樹等等,也有Python內置的數據結構性能的分析,同時還包括了搜索和排序(在演算法設計篇中會有更加詳細的介紹)的簡單總結。每篇文章都有實現代碼,內容比較多,簡單演算法一般是大致介紹下思想及演算法流程,復雜的演算法會給出各種圖示和代碼實現詳細介紹。
**這一部分是下面演算法設計篇的前篇,如果數據結構還不錯的可以直接看演算法設計篇,遇到問題可以回來看數據結構篇中的某個具體內容充電一下,我個人認為直接讀演算法設計篇比較好,因為大家時間也都比較寶貴,如果你會來讀這些文章說明你肯定有一定基礎了,後面的演算法設計篇中更多的是思想,這里更多的是代碼而已,嘿嘿。**
(1)[搜索](Python Data Structures)
簡述順序查找和二分查找,詳述Hash查找(hash函數的設計以及如何避免沖突)
(2)[排序](Python Data Structures)
簡述各種排序演算法的思想以及它的圖示和實現
(3)[數據結構](Python Data Structures)
簡述Python內置數據結構的性能分析和實現常用的數據結構:棧、隊列和二叉堆
(4)[樹總結](Python Data Structures)
簡述二叉樹,詳述二叉搜索樹和AVL樹的思想和實現
2.Python演算法設計篇
演算法設計篇主要是閱讀[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**點擊鏈接可進入Springer免費下載原書電子版**]之後寫下的讀書總結,原書大部分內容結合了經典書籍[演算法導論](Introction to Algorithms),內容更加細致深入,主要是介紹了各種常用的演算法設計思想,以及如何使用Python高效巧妙地實現這些演算法,這里有別於前面的數據結構篇,部分演算法例如排序就不會詳細介紹它的實現細節,而是側重於它內在的演算法思想。這部分使用了一些與數據結構有關的第三方模塊,因為這篇的重點是演算法的思想以及實現,所以並沒有去重新實現每個數據結構,但是在介紹演算法的同時會分析Python內置數據結構以及第三方數據結構模塊的優缺點,也就意味著該篇比前面都要難不少,但是我想我的介紹應該還算簡單明了,因為我用的都是比較朴實的語言,並沒有像演算法導論一樣列出一堆性質和定理,主要是對著某個問題一步步思考然後演算法就出來了,嘿嘿,除此之外,裡面還有很多關於python開發的內容,精彩真的不容錯過!
這里每篇文章都有實現代碼,但是代碼我一般都不會分析,更多地是分析演算法思想,所以內容都比較多,即便如此也沒有包括原書對應章節的所有內容,因為內容實在太豐富了,所以我只是選擇經典的演算法實例來介紹演算法核心思想,除此之外,還有不少內容是原書沒有的,部分是來自演算法導論,部分是來自我自己的感悟,嘻嘻。該篇對於大神們來說是小菜,請一笑而過,對於菜鳥們來說可能有點難啃,所以最適合的是和我水平差不多的,對各個演算法都有所了解但是理解還不算深刻的半桶水的程序猿,嘿嘿。
本篇的順序按照原書[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章節來安排的(章節標題部分相同部分不同喲),為了節省時間以及保持原著的原滋原味,部分內容(一般是比較難以翻譯和理解的內容)直接摘自原著英文內容。
**1.你也許覺得很多內容你都知道嘛,沒有看的必要,其實如果是我的話我也會這么想,但是如果只是歸納一個演算法有哪些步驟,那這個總結也就沒有意義了,我覺得這個總結的亮點在於想辦法說清楚一個演算法是怎麼想出來的,有哪些需要注意的,如何進行優化的等等,採用問答式的方式讓讀者和我一起來想出某個問題的解,每篇文章之後都還有一兩道小題練手喲**
**2.你也許還會說演算法導論不是既權威又全面么,基本上每個演算法都還有詳細的證明呢,讀演算法導論豈不更好些,當然,你如果想讀演算法導論的話我不攔著你,讀完了感覺自己整個人都不好了別怪小弟沒有提醒你喲,嘻嘻嘻,左一個性質右一個定理實在不適合演算法科普的啦,沒有多少人能夠堅持讀完的。但是碼農與蛇的故事內容不多喲,呵呵呵**
**3.如果你細讀本系列的話我保證你會有不少收獲的,需要看演算法導論哪個部分的地方我會給出提示的,嘿嘿。溫馨提示,前面三節內容都是介紹基礎知識,所以精彩內容從第4節開始喲,么么噠 O(∩_∩)O~**
(1)[Python Algorithms - C1 Introction](Python Algorithms)
本節主要是對原書中的內容做些簡單介紹,說明演算法的重要性以及各章節的內容概要。
(2)[Python Algorithms - C2 The basics](Python Algorithms)
**本節主要介紹了三個內容:演算法漸近運行時間的表示方法、六條演算法性能評估的經驗以及Python中樹和圖的實現方式。**
(3)[Python Algorithms - C3 Counting 101](Python Algorithms)
原書主要介紹了一些基礎數學,例如排列組合以及遞歸循環等,但是本節只重點介紹計算演算法的運行時間的三種方法
(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)
**本節主要介紹演算法設計的三個核心知識:Inction(推導)、Recursion(遞歸)和Rection(規約),這是原書的重點和難點部分**
(5)[Python Algorithms - C5 Traversal](Python Algorithms)
**本節主要介紹圖的遍歷演算法BFS和DFS,以及對拓撲排序的另一種解法和尋找圖的(強)連通分量的演算法**
(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)
**本節主要介紹分治法策略,提到了樹形問題的平衡性以及基於分治策略的排序演算法**
(7)[Python Algorithms - C7 Greedy](Python Algorithms)
**本節主要通過幾個例子來介紹貪心策略,主要包括背包問題、哈夫曼編碼和最小生成樹等等**
(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)
**本節主要結合一些經典的動規問題介紹動態規劃的備忘錄法和迭代法這兩種實現方式,並對這兩種方式進行對比**
(9)[Python Algorithms - C9 Graphs](Python Algorithms)

8. 演算法與程序的問題

去看下演算法導論,桶排序,有詳細的介紹和代碼

9. 關於時間依賴的最短路徑演算法

Dijkstra 最短路徑演算法的一種高效率實現*

隨著計算機的普及以及地理信息科學的發展,GIS因其強大的功能得到日益廣泛和深入的應用。網路分析作為GIS最主要的功能之一,在電子導航、交通旅遊、城市規劃以及電力、通訊等各種管網、管線的布局設計中發揮了重要的作用,而網路分析中最基本最關鍵的問題是最短路徑問題。最短路徑不僅僅指一般地理意義上的距離最短,還可以引申到其他的度量,如時間、費用、線路容量等。相應地,最短路徑問題就成為最快路徑問題、最低費用問題等。由於最短路徑問題在實際中常用於汽車導航系統以及各種應急系統等(如110報警、119火警以及醫療救護系統),這些系統一般要求計算出到出事地點的最佳路線的時間應該在1 s~3 s內,在行車過程中還需要實時計算出車輛前方的行駛路線,這就決定了最短路徑問題的實現應該是高效率的。其實,無論是距離最短、時間最快還是費用最低,它們的核心演算法都是最短路徑演算法。經典的最短路徑演算法——Dijkstra演算法是目前多數系統解決最短路徑問題採用的理論基礎,只是不同系統對Dijkstra演算法採用了不同的實現方法。
據統計,目前提出的此類最短路徑的演算法大約有17種。F.Benjamin Zhan等人對其中的15種進行了測試,結果顯示有3種效果比較好,它們分別是:TQQ(graph growth with two queues)、DKA (the Dijkstra's algorithm implemented with approximate buckets) 以及 DKD (the Dijkstra�s algorithm implemented with double buckets ),這些演算法的具體內容可以參見文獻〔1〕。其中TQQ演算法的基礎是圖增長理論,較適合於計算單源點到其他所有點間的最短距離;後兩種演算法則是基於Dijkstra的演算法,更適合於計算兩點間的最短路徑問題〔1〕。總體來說,這些演算法採用的數據結構及其實現方法由於受到當時計算機硬體發展水平的限制,將空間存儲問題放到了一個很重要的位置,以犧牲適當的時間效率來換取空間節省。目前,空間存儲問題已不是要考慮的主要問題,因此有必要對已有的演算法重新進行考慮並進行改進,可以用空間換時間來提高最短路徑演算法的效率。
1 經典Dijkstra演算法的主要思想
Dijkstra演算法的基本思路是:假設每個點都有一對標號 (dj, pj),其中dj是從起源點s到點j的最短路徑的長度 (從頂點到其本身的最短路徑是零路(沒有弧的路),其長度等於零);pj則是從s到j的最短路徑中j點的前一點。求解從起源點s到點j的最短路徑演算法的基本過程如下:
1) 初始化。起源點設置為:① ds=0, ps為空;② 所有其他點: di=∞, pi= ;③ 標記起源點s,記k=s,其他所有點設為未標記的。
2) 檢驗從所有已標記的點k到其直接連接的未標記的點j的距離,並設置:
dj=min〔dj, dk+lkj〕
式中,lkj是從點k到j的直接連接距離。
3) 選取下一個點。從所有未標記的結點中,選取dj 中最小的一個i:
di=min〔dj, 所有未標記的點j〕
點i就被選為最短路徑中的一點,並設為已標記的。
4) 找到點i的前一點。從已標記的點中找到直接連接到點i的點j*,作為前一點,設置:
i=j*
5) 標記點i。如果所有點已標記,則演算法完全推出,否則,記k=i,轉到2) 再繼續。
2 已有的Dijkstra演算法的實現
從上面可以看出,在按標記法實現Dijkstra演算法的過程中,核心步驟就是從未標記的點中選擇一個權值最小的弧段,即上面所述演算法的2)~5)步。這是一個循環比較的過程,如果不採用任何技巧,未標記點將以無序的形式存放在一個鏈表或數組中。那麼要選擇一個權值最小的弧段就必須把所有的點都掃描一遍,在大數據量的情況下,這無疑是一個制約計算速度的瓶頸。要解決這個問題,最有效的做法就是將這些要掃描的點按其所在邊的權值進行順序排列,這樣每循環一次即可取到符合條件的點,可大大提高演算法的執行效率。另外,GIS中的數據 (如道路、管網、線路等)要進行最短路徑的計算,就必須首先將其按結點和邊的關系抽象為圖的結構,這在GIS中稱為構建網路的拓撲關系 (由於這里的計算與面無關,所以拓撲關系中只記錄了線與結點的關系而無線與面的關系,是不完備的拓撲關系)。如果用一個矩陣來表示這個網路,不但所需空間巨大,而且效率會很低。下面主要就如何用一個簡潔高效的結構表示網的拓撲關系以及快速搜索技術的實現進行討論。
網路在數學和計算機領域中被抽象為圖,所以其基礎是圖的存儲表示。一般而言,無向圖可以用鄰接矩陣和鄰接多重表來表示,而有向圖則可以用鄰接表和十字鏈表〔4〕 表示,其優缺點的比較見表 1。
表 1 幾種圖的存儲結構的比較
Tab. 1 The Comparsion of Several Graph for Storing Structures
名 稱 實現方法 優 點 缺 點 時間復雜度
鄰接矩陣 二維數組 1. 易判斷兩點間的關系 佔用空間大 O(n2+m*n)
2. 容易求得頂點的度
鄰接表 鏈表 1. 節省空間 1. 不易判斷兩點間的關系 O(n+m)或O(n*m)
2. 易得到頂點的出度 2. 不易得到頂點的入度
十字鏈表 鏈表 1. 空間要求較小 結構較復雜 同鄰接表
2.易求得頂點的出度和入度
鄰接多重表 鏈表 1. 節省空間 結構較復雜 同鄰接表
2. 易判斷兩點間的關系

目前,對於演算法中快速搜索技術的實現,主要有桶結構法、隊列法以及堆棧實現法。TQQ、DKA 以及 DKD 在這方面是比較典型的代表。TQQ雖然是基於圖增長理論的,但是快速搜索技術同樣是其演算法實現的關鍵,它用兩個FIFO的隊列實現了一個雙端隊列結構來支持搜索過程〔1〕。
DKA和DKD是採用如圖 1 所示的桶結構來支持這個運算,其演算法的命名也來源於此。在DKA演算法中,第i個桶內裝有權值落在 〔b*i, (i+1)*b) 范圍內的可供掃描的點,其中b是視網路中邊的權值分布情況而定的一個常數。每一個桶用隊列來維護,這樣每個點有可能被多次掃描,但最多次數不會超過b次。最壞情況下,DKA的時間復雜度將會是O(m*b+n(b+C/b)),其中,C為圖中邊的最大權值。DKD將點按權值的范圍大小分裝在兩個級別的桶內,高級別的桶保存權值較大的點,相應的權值較小的點都放在低級別的桶內,每次掃描都只針對低級別桶中的點。當然隨著點的插入和刪除,兩個桶內的點是需要動態調整的。在DKA演算法中,給每個桶一定的范圍以及DKD中使用雙桶,在一定程度上都是以空間換時間的做法,需要改進。

圖 1 一個桶結構的示例
Fig. 1 An Example of the Bucket Data Structure
3 本文提出的Dijkstra演算法實現
3.1 網路拓撲關系的建立
上面介紹的各種圖的存儲結構考慮了圖在理論上的各種特徵,如有向、無向、帶權、出度、入度等。而GIS中的網路一般為各種道路、管網、管線等,這些網路在具有圖理論中的基本特徵的同時,更具有自己在實際中的一些特點。首先,在GIS中大多數網路都是有向帶權圖,如道路有單雙向問題,電流、水流都有方向(如果是無向圖也可歸為有向圖的特例),且不同的方向可能有不同的權值。更重要的一點是,根據最短路徑演算法的特性可以知道,頂點的出度是個重要指標,但是其入度在演算法里則不必考慮。綜合以上4種存儲結構的優缺點, 筆者採用了兩個數組來存儲網路圖,一個用來存儲和弧段相關的數據(Net-Arc List),另一個則存儲和頂點相關的數據(Net-Node Index)。Net-Arc List用一個數組維護並且以以弧段起點的點號來順序排列,同一起點的弧段可以任意排序。這個數組類似於鄰接矩陣的壓縮存儲方式,其內容則具有鄰接多重表的特點,即一條邊以兩頂點表示。Net-Node Index則相當於一個記錄了頂點出度的索引表,通過它可以很容易地得到此頂點的出度以及與它相連的第一條弧段在弧段數組中的位置。此外,屬性數據作為GIS不可少的一部分也是必須記錄的。這樣,計算最佳路徑所需的網路信息已經完備了。在頂點已編號的情況下,建立Net-Arc List和Net-Node Index兩個表以及對Net-Arc List的排序,其時間復雜度共為O(2n+lgn),否則為O(m+2n+lgn)。這個結構所需的空間也是必要條件下最小的,記錄了m個頂點以及n條邊的相關信息,與鄰接多重表是相同的。圖 2 是採用這個結構的示意圖。
3.2 快速搜索技術的實現
無論何種演算法,一個基本思想都是將點按權值的大小順序排列,以節省操作時間。前面已經提到過,這兩個演算法都是以時間換空間的演算法,所以在這里有必要討論存儲空間問題 (這部分空間的大小依賴於點的個數及其出度)。根據圖中頂點和邊的個數可以求出頂點的平均出度e=m/n(m為邊數,n為頂點數),這個數值代表了圖的連通程度,一般在GIS的網路圖中,e∈〔2,5〕。這樣,如果當前永久標記的點為t個,那麼,下一步需掃描點的個數就約為t~4t個。如果採用鏈表結構,按實際應用中的網路規模大小,所需的總存儲空間一般不會超過100 K。所以完全沒有必要採用以時間換空間的做法,相反以空間換時間的做法是完全可行的。在實現這部分時,筆者採用了一個FIFO隊列,相應的操作主要是插入、排序和刪除,插入和刪除的時間復雜度都是O(1),所以關鍵問題在於選擇一個合適的排序演算法。一般可供選擇的排序演算法有快速排序、堆排序以及歸並排序等,其實現的平均時間都為O(nlgn)。經過比較實驗,筆者選擇了快速排序法。另外,Visual C++提供的run-time庫也提供了現成的快速排序的函數qsort( )可供使用。

圖 2 基於最佳路徑計算的網路拓撲表示
Fig. 2 The Presentation of the Network Topology
Used for Computing the Shortest Path
按照以上思路,筆者用Visual C++實現了吉奧之星(GeoStar)中的最佳路徑模塊。以北京的街道為數據(共6 313個結點,9 214條弧段(雙向)),在主頻為133、硬碟為1 G、內存為32 M的機器上,計算一條貫穿全城、長為155.06 km的線路,約需1 s~2 s。如圖 3所示。

圖 3 GeoStar中最佳路徑實現示意圖

ps:圖片沒有辦法貼上去.
你可以參考《演算法導論》第二版

10. python中的數據結構分析

1.Python數據結構篇

數據結構篇主要是閱讀[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [該網址鏈接可能會比較慢]時寫下的閱讀記錄,當然,也結合了部分[演算法導論](Introction to Algorithms)
中的內容,此外還有不少wikipedia上的內容,所以內容比較多,可能有點雜亂。這部分主要是介紹了如何使用Python實現常用的一些數據結構,例
如堆棧、隊列、二叉樹等等,也有Python內置的數據結構性能的分析,同時還包括了搜索和排序(在演算法設計篇中會有更加詳細的介紹)的簡單總結。每篇文
章都有實現代碼,內容比較多,簡單演算法一般是大致介紹下思想及演算法流程,復雜的演算法會給出各種圖示和代碼實現詳細介紹。

**這一部分是下
面演算法設計篇的前篇,如果數據結構還不錯的可以直接看演算法設計篇,遇到問題可以回來看數據結構篇中的某個具體內容充電一下,我個人認為直接讀演算法設計篇比
較好,因為大家時間也都比較寶貴,如果你會來讀這些文章說明你肯定有一定基礎了,後面的演算法設計篇中更多的是思想,這里更多的是代碼而已,嘿嘿。**

(1)[搜索](Python Data Structures)

簡述順序查找和二分查找,詳述Hash查找(hash函數的設計以及如何避免沖突)

(2)[排序](Python Data Structures)

簡述各種排序演算法的思想以及它的圖示和實現

(3)[數據結構](Python Data Structures)

簡述Python內置數據結構的性能分析和實現常用的數據結構:棧、隊列和二叉堆

(4)[樹總結](Python Data Structures)

簡述二叉樹,詳述二叉搜索樹和AVL樹的思想和實現

2.Python演算法設計篇

演算法設計篇主要是閱讀[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**點擊鏈接可進入Springer免費下載原書電子版**]之後寫下的讀書總結,原書大部分內容結合了經典書籍[演算法導論](Introction to Algorithms),
內容更加細致深入,主要是介紹了各種常用的演算法設計思想,以及如何使用Python高效巧妙地實現這些演算法,這里有別於前面的數據結構篇,部分演算法例如排
序就不會詳細介紹它的實現細節,而是側重於它內在的演算法思想。這部分使用了一些與數據結構有關的第三方模塊,因為這篇的重點是演算法的思想以及實現,所以並
沒有去重新實現每個數據結構,但是在介紹演算法的同時會分析Python內置數據結構以及第三方數據結構模塊的優缺點,也就意味著該篇比前面都要難不少,但
是我想我的介紹應該還算簡單明了,因為我用的都是比較朴實的語言,並沒有像演算法導論一樣列出一堆性質和定理,主要是對著某個問題一步步思考然後演算法就出來
了,嘿嘿,除此之外,裡面還有很多關於python開發的內容,精彩真的不容錯過!

這里每篇文章都有實現代碼,但是代碼我一般都不會分
析,更多地是分析演算法思想,所以內容都比較多,即便如此也沒有包括原書對應章節的所有內容,因為內容實在太豐富了,所以我只是選擇經典的演算法實例來介紹算
法核心思想,除此之外,還有不少內容是原書沒有的,部分是來自演算法導論,部分是來自我自己的感悟,嘻嘻。該篇對於大神們來說是小菜,請一笑而過,對於菜鳥
們來說可能有點難啃,所以最適合的是和我水平差不多的,對各個演算法都有所了解但是理解還不算深刻的半桶水的程序猿,嘿嘿。

本篇的順序按照原書[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章節來安排的(章節標題部分相同部分不同喲),為了節省時間以及保持原著的原滋原味,部分內容(一般是比較難以翻譯和理解的內容)直接摘自原著英文內容。

**1.
你也許覺得很多內容你都知道嘛,沒有看的必要,其實如果是我的話我也會這么想,但是如果只是歸納一個演算法有哪些步驟,那這個總結也就沒有意義了,我覺得這
個總結的亮點在於想辦法說清楚一個演算法是怎麼想出來的,有哪些需要注意的,如何進行優化的等等,採用問答式的方式讓讀者和我一起來想出某個問題的解,每篇
文章之後都還有一兩道小題練手喲**

**2.你也許還會說演算法導論不是既權威又全面么,基本上每個演算法都還有詳細的證明呢,讀演算法導論豈
不更好些,當然,你如果想讀演算法導論的話我不攔著你,讀完了感覺自己整個人都不好了別怪小弟沒有提醒你喲,嘻嘻嘻,左一個性質右一個定理實在不適合演算法科
普的啦,沒有多少人能夠堅持讀完的。但是碼農與蛇的故事內容不多喲,呵呵呵**

**3.如果你細讀本系列的話我保證你會有不少收獲的,需要看演算法導論哪個部分的地方我會給出提示的,嘿嘿。溫馨提示,前面三節內容都是介紹基礎知識,所以精彩內容從第4節開始喲,么么噠 O(∩_∩)O~**

(1)[Python Algorithms - C1 Introction](Python Algorithms)

本節主要是對原書中的內容做些簡單介紹,說明演算法的重要性以及各章節的內容概要。

(2)[Python Algorithms - C2 The basics](Python Algorithms)

**本節主要介紹了三個內容:演算法漸近運行時間的表示方法、六條演算法性能評估的經驗以及Python中樹和圖的實現方式。**

(3)[Python Algorithms - C3 Counting 101](Python Algorithms)

原書主要介紹了一些基礎數學,例如排列組合以及遞歸循環等,但是本節只重點介紹計算演算法的運行時間的三種方法

(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)

**本節主要介紹演算法設計的三個核心知識:Inction(推導)、Recursion(遞歸)和Rection(規約),這是原書的重點和難點部分**

(5)[Python Algorithms - C5 Traversal](Python Algorithms)

**本節主要介紹圖的遍歷演算法BFS和DFS,以及對拓撲排序的另一種解法和尋找圖的(強)連通分量的演算法**

(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)

**本節主要介紹分治法策略,提到了樹形問題的平衡性以及基於分治策略的排序演算法**

(7)[Python Algorithms - C7 Greedy](Python Algorithms)

**本節主要通過幾個例子來介紹貪心策略,主要包括背包問題、哈夫曼編碼和最小生成樹等等**

(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)

**本節主要結合一些經典的動規問題介紹動態規劃的備忘錄法和迭代法這兩種實現方式,並對這兩種方式進行對比**

(9)[Python Algorithms - C9 Graphs](Python Algorithms)

**本節主要介紹圖演算法中的各種最短路徑演算法,從不同的角度揭示它們的內核以及它們的異同**

閱讀全文

與演算法導論桶排序相關的資料

熱點內容
諸子集成pdf 瀏覽:336
php注冊框代碼 瀏覽:714
手機加密好還是不加好好 瀏覽:814
別克凱越壓縮機泵頭多錢 瀏覽:239
組管理命令 瀏覽:979
海南高德司機端是什麼app 瀏覽:861
pid命令 瀏覽:888
一天一圖學會python可視化 瀏覽:309
魔獸編輯文本命令串 瀏覽:497
android中view繪制 瀏覽:798
安卓機內存刪除怎麼恢復 瀏覽:331
Qt環境的編譯軟體放到linux 瀏覽:214
聯創列印系統怎麼連接伺服器 瀏覽:937
杭州行政命令 瀏覽:160
如何查找伺服器日誌 瀏覽:801
加密的鑰匙扣怎麼寫 瀏覽:579
文件夾更新不了怎麼辦 瀏覽:475
壓縮機指示燈亮是什麼原因 瀏覽:956
什麼app訂酒店半價 瀏覽:767
中老年解壓神器 瀏覽:243