導航:首頁 > 源碼編譯 > 一位數乘以多個九的速演算法

一位數乘以多個九的速演算法

發布時間:2022-09-25 10:24:19

❶ 誰有多位數相乘的心算口訣或方法

由速算大師史豐收經過10年鑽研發明的快速計演算法,是直接憑大腦進行運算的方法,又稱為快速心算、快速腦算。這套方法打破人類幾千年從低位算起的傳統方法,運用進位規律,總結26句口訣,由高位算起,再配合指算,加快計算速度,能瞬間運算出正確結果,協助人類開發腦力,加強思維、分析、判斷和解決問題的能力,是當代應用數學的一大創舉。

這一套計演算法,1990年由國家正式命名為「史豐收速演算法」,現已編入中國九年制義務教育《現代小學數學》課本。聯合國教科文組織譽之為教育科學史上的奇跡,應向全世界推廣。
史豐收速演算法的主要特點如下:

⊙從高位算起,由左至右
⊙不用計算工具
⊙不列計算程序
⊙看見算式直接報出正確答案
⊙可以運用在多位數據的加減乘除以及乘方、開方、三角函數、對數等數學運算上

演練實例一

速 算 法 演 練 實 例
Example of Rapid Calculation in Practice
○史豐收速演算法易學易用,演算法是從高位數算起,記著史教授總結了的26句口訣(這些口訣不需死背,而是合乎科學規律,相互連系),用來表示一位數乘多位數的進位規律,掌握了這些口訣和一些具體法則,就能快速進行加、減、乘、除、乘方、開方、分數、函數、對數…等運算。

□本文針對乘法舉例說明
○速演算法和傳統乘法一樣,均需逐位地處理乘數的每位數字,我們把被乘數中正在處理的那個數位稱為「本位」,而從本位右側第一位到最末位所表示的數稱「後位數」。本位被乘以後,只取乘積的個位數,此即「本個」,而本位的後位數與乘數相乘後要進位的數就是「後進」。
○乘積的每位數是由「本個加後進」和的個位數即--

□本位積=(本個十後進)之和的個位數
○那麼我們演算時要由左而右地逐位求本個與後進,然後相加再取其個位數。現在,就以右例具體說明演算時的思維活動。
(例題) 被乘數首位前補0,列出算式:
0847536×2=1695072
乘數為2的進位規律是「2滿5進1」
0×2本個0,後位8,後進1,得1
8×2本個6,後位4,不進,得6
4×2本個8,後位7,滿5進1,
8十1得9
7×2本個4,後位5,滿5進1,
4十1得5
5×2本個0,後位3不進,得0
3×2本個6,後位6,滿5進1,
6十1得7
6×2本個2,無後位,得2

在此我們只舉最簡單的例子供讀者參考,至於乘3、4……至乘9也均有一定的進位規律,限於篇幅,在此未能一一羅列。
「史豐收速演算法」即以這些進位規律為基礎,逐步發展而成,只要運用熟練,舉凡加減乘除四則多位數運算,均可達到快速准確的目的。
>>演練實例二
□掌握訣竅 人腦勝電腦

史豐收速演算法並不復雜,比傳統計演算法更易學、更快速、更准確,史豐收教授說一般人只要用心學習一個月,即可掌握竅門。
對於會計師、經貿人員、科學家們而言,可以提高計算速度,增加工作效益;對學童而言、可以開發智力、活用頭腦、幫助數理能力的增強。

參考資料:http://shifengshou.com/gb/htm/what_shifengshou.htm

❷ 一位數乘任何數的速算方法拜託各位了 3Q

一位數乘任何數的速算方法分幾種,分5以下,5,5以上。 5最典型,好像235×5看成0.5那麼就是235的一半117.5乘以10就是1175 小於5的,223×1不用說=223,乘以2就是2個223,以上223+223=446,乘以4就是2個446,乘以3就是446+223=669 大於5的,乘以6就是5個223+1個223=1175+223 乘以7就是5個223+446=1175+446 乘以8就是10個223-2個223=2230-446 乘以9,就是10個223減去1個223=2230-223 乘以5可以結合心算。

❸ 口算80×9可以先算幾個幾乘九得幾個幾是幾

豎式乘法80×9計算
參考思路:先將兩乘數末位對齊,然後分別使用第二個乘數,由末位起對每一位數依次乘上一個乘數,最後將所計算結果累加即為乘積,如果乘數為小數可先將其擴大相應的倍數,最後乘積在縮小相應的倍數;
解題過程:

步驟一:9×80=720

根據以上步驟結果相加積為720

存疑請追問,滿意請採納

❹ 多位數乘一位數速算方法

乘數為2時,滿5進1;乘數為3時,超3進1,超6進2;乘數為4時,滿25進1,滿50進2,滿75進3;乘數為5時,滿2進1,滿4進2,滿6進3,滿8進4;乘數為6時,超16進1,超3進2,滿5進3,超6進4,超83進5;乘數為7時,超142857進1;

超285714進2,超428571進3,超571428進4,超714285進5,超857142進6;乘數為8時,滿125進1,滿25進2,滿375進3,滿5進4,滿625進5,滿75進6,滿875進7;乘數為9時,超1進1,超2進2……超幾進幾。

(4)一位數乘以多個九的速演算法擴展閱讀:

比如:931684乘以2這道題,在做的時候,先給被乘數前面加個0,然後依次從最高位算起。另外,要注意一點,當被乘數的首位大於或等於5時,積的首位是1,如果小於5,積的首位是0(忽略不寫)。像這道題被乘數是9,因此積的首位就是1。

接下來的每一位積,都是由被乘數的這一位數乘以2所得出的個位數,再加上後一位所進的數。

再舉個例子,因為可以更加詳細地說明,這種多位數乘法的速算方法是如何運用的。以5839042乘以8為例吧,8的速演算法是乘數為8時,滿125進1,滿25進2,滿375進3,滿5進4,滿625進5,滿75進6,滿875進7。

❺ 多位數乘法的快速計算方法有哪些

多位數乘法的快速計算方法如下:

1、 十幾乘十幾:口訣:頭乘頭,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168註:個位相乘,不夠兩位數要用0佔位。

2、 頭相同,尾互補(尾相加等於10):口訣:一個頭加1後,頭乘頭,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621註:個位相乘,不夠兩位數要用0佔位。

3、 第一個乘數互補,另一個乘數數字相同:口訣:一個頭加1後,頭乘頭,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628註:個位相乘,不夠兩位數要用0佔位。

4、 幾十一乘幾十一:口訣:頭乘頭,頭加頭,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861

5、 11乘任意數:口訣:首尾不動下落,中間之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分別在首尾11×23125=254375註:和滿十要進一。

(5)一位數乘以多個九的速演算法擴展閱讀

乘法原理:

如果因變數f與自變數x1,x2,x3,….xn之間存在直接正比關系並且每個自變數存在質的不同,缺少任何一個自變數因變數f就失去其意義,則為乘法。

在概率論中,一個事件,出現結果需要分n個步驟,第1個步驟包括M1個不同的結果,第2個步驟包括M2個不同的結果,……,第n個步驟包括Mn個不同的結果。那麼這個事件可能出現N=M1×M2×M3×……×Mn個不同的結果。

設 A是 m×n 的矩陣。

可以通過證明 Ax=0 和A'Ax=0 兩個n元齊次方程同解證得 r(A'A)=r(A)

1、Ax=0 肯定是 A'Ax=0 的解,好理解。

2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0

故兩個方程是同解的。

同理可得 r(AA')=r(A')

另外 有 r(A)=r(A')

所以綜上 r(A)=r(A')=r(AA')=r(A'A)

❻ 乘法巧算速算方法

1、一位數乘法法則整數乘法低位起,一位數乘法一次積。

個位數乘得若干一,積的末位對個位。

計算準確對好位,乘法口訣是根據。

2、兩位數乘法法則整數乘法低位起,兩位數乘法兩次積。

個位數乘得若干一,積的末位對個位。

十位數乘得若干十,積的末位對十位。

計算準確對好位,兩次乘積加一起。


1、多位數乘法法則整數乘法低位起,幾位數乘法幾次積。

個位數乘得若干一,積的末位對個位。

十位數乘得若干十,積的末位對十位。

百位數乘得若干百,積的末位對百位計算準確對好位,幾次乘積加一起。

2、因數末尾有0的乘法法則因數末尾若有0,寫在後面先不乘,乘完積補上0,有幾個0寫幾個0。

(6)一位數乘以多個九的速演算法擴展閱讀

乘法的計演算法則:

(1)數位對齊,從右邊起,依次用第二個因數每位上的數去乘第一個因數,乘到哪一位,得數的末尾就和第二個因數的哪一位對齊;

(2)然後把幾次乘得的數加起來。

(整數末尾有0的乘法:可以先把0前面的數相乘,然後看各因數的末尾一共有幾個0,就在乘得的數的末尾添寫幾個0)

❼ 多位數乘一位數的計算方法

多位數乘一位數的計算方法是從個位算起,用一位數依次乘多位數的每一位,哪一位上乘得的積滿幾十,就要向前一位進幾。當遇到中間或末尾有0的多位數乘一位數時,我們可以利用0的特殊性質進行計算。

下面我們來學習多位數乘一位數中間或末尾有0的計算方法。

0的特殊性質:0乘任何數都得0。

1.在中間有0的多位數乘一位數的計算中忽略0的特殊性質。



2.在中間有0的多位數乘一位數的計算中遇到滿十或滿幾十需要進位時,忘記進位或加進位數。

末尾有0的多位數乘一位數通常有兩種計算方法。


(一位數對齊多位數的0) (一位數對齊多位數的0前面的數)

由上我們可以看出,末尾有0的多位數乘一位數的簡便計算方法是一位數對齊多位數的0前面的數,先用一位數去乘多位數的0前面的數,再看多位數的末尾有幾個0就在結果後面添幾個0。

在計算中間或末尾有0的多位數乘一位數時,我們要注意觀察數字的特點,利用0的特殊性質找到簡便的計算方法。中間有0的多位數乘一位數要注意0乘任何數都得0的特殊性,不能忘記進位或加進位數;末尾有0的多位數乘一位數要注意不能忘記在積的末尾添0。

不管多位數乘以一位數,還是多位數乘以多位數,只要在計算的過程中,你能夠認真仔細的算好每一步相信一定都會100%的准確。

❽ 一位數乘多位數乘法法則

依據多位數乘一位數計算方法可得:
從個位乘起,用一位數依次乘多位數的每一位,哪一位上乘得的積滿幾十,就要向前一位進幾,
故答案為:個,依次,每一,前一位.

❾ 數學速算方法及分析方法

小學數學速算 方法 有哪些?小學數學是一些簡單的數學知識方法,孩子在學習的時候只要掌握好知識點就可以了。下面我給大家整理了關於數學速算方法及分析方法,希望對你有幫助!

數學速算方法

1數學速算的方法

小學數學是一些簡單的數學知識方法,孩子在學習的時候只要掌握好知識點就可以了。對於新的知識接受,一定要讓孩子在學校認真聽講,跟著老師的思路走,做好筆記,即使有不懂的地方也要及時的請教老師或者同學。

數學成績決定孩子的理科綜合能力,影響到理化生等多學科的成績,小學階段適時進行奧數訓練,更有助於孩子初中理科成績的提升。不要讓我們的孩子進入初中後因為數學影響總排名,進而影響到中考成績!掌握良好的速算技巧,是讓孩子們在最短的時間內,學好速算的關鍵之處,所以,家長要善於引導孩子們發現和使用速算技巧,並且多多將這些技巧進行驗證,讓這些技巧好好為孩子服務。

2方法一:指演算法

個位數比十位數大1乘以9的運算方法:前面因數的個位數是幾,就把第幾個手指彎回來,彎指左邊有幾個手指,則表示乘積的百位數是幾。彎指讀0,則表示乘積的十位數是0,彎指右邊有幾個手指,則表示乘積的個位數是幾。口訣:個位是幾彎回幾,彎指左邊是百位,彎指讀0為十位,彎指右邊是個位。例:34×9=306;

個位數比十位數大任意數乘以9的運算方法:凡是個位數比十位數大任意數乘以9時,仍是前面因數的個位數是幾,將第幾個手指彎回來,彎回來的手指不讀數,作為乘積的十位數與個位數的分界線。前面因數的十位數是幾,從左邊起數過幾個手指,則表示乘積的百位數就是幾,彎指左邊減去百位數,還剩幾個手指,則表示乘積的十位數是幾,彎指的右邊有幾個手指,則表示乘積的個位數是幾。口訣:個位是幾彎回幾,原十位數為百位。左邊減去百位數,剩餘手指為十位。彎指作為分界線,彎指右邊是個位。

3方法二:兩位數加兩位數的進位加法

口訣:加9要減1,加8要減2,加7要減3,加6要減4,加5要減5,加4要減6,加3要減7,加2要減8,加1要減9。(註:口決中的加幾都是說個位上的數)例:26+38=64 解 :加8要減2,誰減2?26上的6減2。38里十位上的3要進4。(註:後一個兩位數上的十位怎麼進位,是1我進2,是2我進3,是3我進4,依次類推。那朝什麼地方進位呢,進在第二個兩位數上十位上。如本次是3我進4,就是這兩個兩位數里的2+4=6。)這里的26+38=64就是6-2=4寫在個位上,是3進4加2就等於6寫在十位上。再如42+29=71。就用加9要減1這句

口決,2-1=1,把1寫在個位上,是2我進3,4+3=7,把7寫在十位上即得71。兩位數加兩位數不進位的加法,就直接寫得數就行,如25+34=59,個位加個位寫在等號後的個位上5+4=9,十位加十位寫在十位上即可2+3=5,即59。不必列豎式計算。本辦法學會了百試百靈,比計算器還快。

4方法三:乘法速算方法

個位前的數字加1乘自己的積的末尾添上個位上的數字的積。如:56×54 5+1=6,6×5=30,在30的末尾添上個位上的數4與6的積24,得到3024,這樣56×54=3024。再如:61×69 (6+1)×6=42,1×9=9,當個位上的數相乘的積是一位數時,仍要佔兩位,故在9的前面還應添一個0。故61×69=4209。練習:98×92 75×75 29×21;

十位相同,個位數字和不為10的兩位數乘兩位數的速算方法。用一個數加上另一個數的個位上的數,乘以由十位上的數字組成的整十數,再加上個位上兩個數的積。例如:53×54=(53+4)×50+3×4=57×50+12=2850+12=2862練習:85×84 67×68 31×38

數學分析方法

1數學分析方法

對於考數學與應用數學專業研究生的學生來說,數學分析是必考科目,由於這門專業課內容多、難點也多,怎麼在有限的時間內復習好這門課程、做好充分的准備取得好成績呢?

2數學分析方法

首先要想一想自己到底對數學有沒有興趣,無論你是不是數學專業的,興趣是最好的老師。此外要對自己要有信心,數學的本質就很抽象,但那也是人類的智慧。數學是崇高的。

首先學習數學分析。推薦看數學分析卓里奇寫的書,可以去買一本看看。想輕松點的可以先看微積分學教程,菲赫金哥爾茨的書。書里題目多,證明嚴謹。不可急著看後面的,後面與前面可是有很多的聯系。

在學數學分析同時可以附帶看代數。先看張禾端的高等代數,基本沒有難度。抽象代數看高等近世代數Rotman。還有本書代數學引論,俄羅斯柯斯特利金的,可以當作參考,這本書後面可能有點難度,裡面涉及內容也比較多。

最重要的是堅持與思考,不可以一會看書的前面,一會兒看書的後面,該休息時還是要休息的,書里的題目都很好,大師寫得能不好嗎?一定要好好思考,也做點題目。建議一年半學習,然後有了這些基礎,可以向數學的王國更高層出發了。

3數學分析方法

知識掌握過程中的三種不良習慣:忽略理解,死記硬背:認為只要記住公式、定理就萬事大吉,而忽略了知識導出過程的理解,既造成提取應用知識的困難,更一次又一次地失去了對知識推導過程中孕含的思想方法的吸取。如三角公式「常記常忘,屢記不會」的根本原因就在於此,進而也談不上用三角變換解題的自覺性了。

注重結論,輕視過程:數學命題的特點是條件和結論之間緊密相聯的因果關系,不注意條件的掌握,常會導致錯誤的結果,甚至是正確的結果、錯誤的過程。如學習中看不出何時需討論、如何討論。原因之一在於數學知識的前提條件模糊(如指對數函數的單調性,不等式的性質,等比數列求和公式,最值定理等知識)

忽略及時復習和強化理解:「溫故而知新」這一淺顯的道理誰都懂,但在學習過程中持之以恆地應用者不多。由於在老師的精心誘導教誨下,每節課的內容好像都「懂」,因此也就捨不得花八至十分鍾的「寶貴」時間回顧當天的舊知。殊不知課上的「懂」是師生共同參與努力的結果,要想自己「會」,必須有一個「內化」的過程,而這個過程必須從課內延伸到課外。切記從「懂」到「會」必須有一個自身「領悟」的過程,這是誰也無法取締的過程。

忽視解題過程的規范化,只追求答案:數學解題的過程是一個化歸與轉化的過程,當然離不開規范嚴謹的推理與判斷。解題中跳躍太大、亂寫字母、徒手作圖,如此態度對待稍難的問題,是難以產生正確答案的。我們說解題過程的規范不只是規范書寫,更主要是規范「思考方法」,同學們應該學會不斷調控自己的思維過程,力爭使解題盡善盡美。

解決問題過程中的四種不良心態

缺乏對已學習過的典型題目及典型方法的積累:部分同學做了大量的習題,但收效甚微,效果不佳。究其原因,是迫於壓力為完成任務而被動做題,缺乏必要的 總結 和積累。在積累的基礎上增強「題性」、「題感」,逐步形成「模塊」,不斷吸取其中的智育營養,方可感悟出隱藏於模式中的數學思想方法。這就是從量的積累到質的變化的過程,只有靠「積累—消化—吸收」才能「升華」。

4數學分析方法

整理每章知識點:把書上每章、每節的內容先過一遍,然後根據自己的實際情況,標記下不懂的地方、老師上課強調過的重點和自己覺得重要的內容(包括一些重要的不等式、縮放技巧等等),整理成筆記。

整理課本習題:整理完知識點過後,就得回歸到題上,每節的課後題以及每章最後的總復習題,花時間逐個做一遍(這個也看所考學校的難度和對自己的要求),同樣,把不會的和容易出錯的標記、並整理成筆記。

整理 考研 真題:整理知識點和課本題目都是為了考上報考院校的研究生,所以第三部分就是整理你想要考學校的這一章節的歷年真題,這個至關重要,因為一切都是為了最後的考卷做准備。

當系統的復習各個章節後,把所有筆記整合到一起,接下來就是查漏補缺,不懂的可以向老師或同學請教,兩本教材時刻得拿出來翻閱。



數學速算方法及分析方法相關 文章 :

★ 數學速算技巧數學解題技巧

★ 數學二年級教學方法與措施與學重點簡便運算歸類方法

★ 小學數學快速提高計算能力學習技巧

★ 公考資料分析十大速算技巧

★ 小學六年級學生提高數學成績的八個方法

★ 小學二年級數學學習方法指導

★ 做小學數學作業實用的簡便運算方法

★ 小升初數學8種簡便計算方法歸類與復習方法

★ 高中數學簡化運算技巧

閱讀全文

與一位數乘以多個九的速演算法相關的資料

熱點內容
excel能編程嗎 瀏覽:929
android系統框架的介紹 瀏覽:945
無盤系統伺服器如何配置 瀏覽:836
背負貸款如何緩解壓力 瀏覽:82
linux獲取日期時間 瀏覽:881
搬磚問題最合適的演算法 瀏覽:446
小米安卓機密碼忘記了如何解鎖 瀏覽:910
產電plc編程手冊 瀏覽:761
vscodephp 瀏覽:535
阿里雲linux桌面 瀏覽:754
php二維數組搜索 瀏覽:116
ps快捷命令工具箱 瀏覽:253
c4d教程pdf 瀏覽:462
linux集群安裝配置 瀏覽:154
stc單片機介紹 瀏覽:901
如何解壓失戀的人 瀏覽:493
安卓微信滯後怎麼辦 瀏覽:942
手機編程跟電腦編程一樣嗎 瀏覽:624
android代碼規範文檔 瀏覽:99
word如何加密批註 瀏覽:327