導航:首頁 > 源碼編譯 > 聚類的演算法和應用

聚類的演算法和應用

發布時間:2023-02-08 00:45:50

『壹』 如何運用聚類分析法

聚類分析法是理想的多變數統計技術,主要有分層聚類法和迭代聚類法。聚類通過把目標數據放入少數相對同源的組或「類」(cluster)里。分析表達數據,(1)通過一系列的檢測將待測的一組基因的變異標准化,然後成對比較線性協方差。(2)通過把用最緊密關聯的譜來放基因進行樣本聚類,例如用簡單的層級聚類(hierarchical clustering)方法。這種聚類亦可擴展到每個實驗樣本,利用一組基因總的線性相關進行聚類。(3)多維等級分析(multidimensional scaling analysis,MDS)是一種在二維Euclidean 「距離」中顯示實驗樣本相關的大約程度。(4)K-means方法聚類,通過重復再分配類成員來使「類」內分散度最小化的方法。

聚類方法有兩個顯著的局限:首先,要聚類結果要明確就需分離度很好(well-separated)的數據。幾乎所有現存的演算法都是從互相區別的不重疊的類數據中產生同樣的聚類。但是,如果類是擴散且互相滲透,那麼每種演算法的的結果將有點不同。結果,每種演算法界定的邊界不清,每種聚類演算法得到各自的最適結果,每個數據部分將產生單一的信息。為解釋因不同演算法使同樣數據產生不同結果,必須注意判斷不同的方式。對遺傳學家來說,正確解釋來自任一演算法的聚類內容的實際結果是困難的(特別是邊界)。最終,將需要經驗可信度通過序列比較來指導聚類解釋。

第二個局限由線性相關產生。上述的所有聚類方法分析的僅是簡單的一對一的關系。因為只是成對的線性比較,大大減少發現表達類型關系的計算量,但忽視了生物系統多因素和非線性的特點。

從統計學的觀點看,聚類分析是通過數據建模簡化數據的一種方法。傳統的統計聚類分析方法包括系統聚類法、分解法、加入法、動態聚類法、有序樣品聚類、有重疊聚類和模糊聚類等。採用k-均值、k-中心點等演算法的聚類分析工具已被加入到許多著名的統計分析軟體包中,如SPSS、SAS等。
從機器學習的角度講,簇相當於隱藏模式。聚類是搜索簇的無監督學習過程。與分類不同,無監督學習不依賴預先定義的類或帶類標記的訓練實例,需要由聚類學習演算法自動確定標記,而分類學習的實例或數據對象有類別標記。聚類是觀察式學習,而不是示例式的學習。
從實際應用的角度看,聚類分析是數據挖掘的主要任務之一。就數據挖掘功能而言,聚類能夠作為一個獨立的工具獲得數據的分布狀況,觀察每一簇數據的特徵,集中對特定的聚簇集合作進一步地分析。
聚類分析還可以作為其他數據挖掘任務(如分類、關聯規則)的預處理步驟。
數據挖掘領域主要研究面向大型資料庫、數據倉庫的高效實用的聚類分析演算法。

聚類分析是數據挖掘中的一個很活躍的研究領域,並提出了許多聚類演算法。
這些演算法可以被分為劃分方法、層次方法、基於密度方法、基於網格方法和
基於模型方法。
1 劃分方法(PAM:PArtitioning method) 首先創建k個劃分,k為要創建的劃分個數;然後利用一個循環
定位技術通過將對象從一個劃分移到另一個劃分來幫助改善劃分質量。典型的劃分方法包括:
k-means,k-medoids,CLARA(Clustering LARge Application),
CLARANS(Clustering Large Application based upon RANdomized Search).
FCM
2 層次方法(hierarchical method) 創建一個層次以分解給定的數據集。該方法可以分為自上
而下(分解)和自下而上(合並)兩種操作方式。為彌補分解與合並的不足,層次合
並經常要與其它聚類方法相結合,如循環定位。典型的這類方法包括:
第一個是;BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用樹的結構對對象集進行劃分;然後再利
用其它聚類方法對這些聚類進行優化。
第二個是CURE(Clustering Using REprisentatives) 方法,它利用固定數目代表對象來表示相應聚類;然後對各聚類按照指定
量(向聚類中心)進行收縮。
第三個是ROCK方法,它利用聚類間的連接進行聚類合並。
最後一個CHEMALOEN,它則是在層次聚類時構造動態模型。
3 基於密度方法,根據密度完成對象的聚類。它根據對象周圍的密度(如
DBSCAN)不斷增長聚類。典型的基於密度方法包括:
DBSCAN(Densit-based Spatial Clustering of Application with Noise):該演算法通過不斷生長足夠高密
度區域來進行聚類;它能從含有雜訊的空間資料庫中發現任意形狀的聚類。此方法將一個聚類定義
為一組「密度連接」的點集。
OPTICS(Ordering Points To Identify the Clustering Structure):並不明確產生一
個聚類,而是為自動交互的聚類分析計算出一個增強聚類順序。。
4 基於網格方法,首先將對象空間劃分為有限個單元以構成網格結構;然後利
用網格結構完成聚類。
STING(STatistical INformation Grid) 就是一個利用網格單元保存的統計信息進行基
於網格聚類的方法。
CLIQUE(Clustering In QUEst)和Wave-Cluster 則是一個將基於網格與基於密度相結合的方
法。
5 基於模型方法,它假設每個聚類的模型並發現適合相應模型的數據。典型的
基於模型方法包括:
統計方法COBWEB:是一個常用的且簡單的增量式概念聚類方法。它的輸入對象是采
用符號量(屬性-值)對來加以描述的。採用分類樹的形式來創建
一個層次聚類。
CLASSIT是COBWEB的另一個版本.。它可以對連續取值屬性進行增量式聚
類。它為每個結點中的每個屬性保存相應的連續正態分布(均值與方差);並利
用一個改進的分類能力描述方法,即不象COBWEB那樣計算離散屬性(取值)
和而是對連續屬性求積分。但是CLASSIT方法也存在與COBWEB類似的問題。
因此它們都不適合對大資料庫進行聚類處理.

『貳』 聚類演算法有哪些分類

聚類演算法的分類有:

1、劃分法

劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K小於N。而且這K個分組滿足下列條件:

(1) 每一個分組至少包含一個數據紀錄;

(2)每一個數據紀錄屬於且僅屬於一個分組(注意:這個要求在某些模糊聚類演算法中可以放寬);

2、層次法

層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。

例如,在「自底向上」方案中,初始時每一個數據紀錄都組成一個單獨的組,在接下來的迭代中,它把那些相互鄰近的組合並成一個組,直到所有的記錄組成一個分組或者某個條件滿足為止。

3、密度演算法

基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。

4、圖論聚類法

圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。

5、網格演算法

基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。這么處理的一個突出的優點就是處理速度很快,通常這是與目標資料庫中記錄的個數無關的,它只與把數據空間分為多少個單元有關。

代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法;

6、模型演算法

基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。這樣一個模型可能是數據點在空間中的密度分布函數或者其它。它的一個潛在的假定就是:目標數據集是由一系列的概率分布所決定的。

通常有兩種嘗試方向:統計的方案和神經網路的方案。

(2)聚類的演算法和應用擴展閱讀:

聚類演算法的要求:

1、可伸縮性

許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。

我們需要具有高度可伸縮性的聚類演算法。

2、不同屬性

許多演算法被設計用來聚類數值類型的數據。但是,應用可能要求聚類其他類型的數據,如二元類型(binary),分類/標稱類型(categorical/nominal),序數型(ordinal)數據,或者這些數據類型的混合。

3、任意形狀

許多聚類演算法基於歐幾里得或者曼哈頓距離度量來決定聚類。基於這樣的距離度量的演算法趨向於發現具有相近尺度和密度的球狀簇。但是,一個簇可能是任意形狀的。提出能發現任意形狀簇的演算法是很重要的。

4、領域最小化

許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。

5、處理「雜訊」

絕大多數現實中的資料庫都包含了孤立點,缺失,或者錯誤的數據。一些聚類演算法對於這樣的數據敏感,可能導致低質量的聚類結果。

6、記錄順序

一些聚類演算法對於輸入數據的順序是敏感的。例如,同一個數據集合,當以不同的順序交給同一個演算法時,可能生成差別很大的聚類結果。開發對數據輸入順序不敏感的演算法具有重要的意義。

『叄』 聚類分析方法有哪些

問題一:什麼是聚類分析?聚類演算法有哪幾種 聚類分析又稱群分析,它是研究(樣品或指標)分類問題的一種統計分析方法。聚類分析起源於
分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行
定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識
難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又
將多元分析的技術引入到數值分類學形成了聚類分析。
聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論
聚類法、聚類預報法等。
聚類分析計算方法主要有如下幾種:分裂法(partitioning methods):層次法(hierarchical
methods):基於密度的方法(density-based methods): 基於網格的方法(grid-based
methods): 基於模型的方法(model-based methods)。

問題二:聚類分析方法有什麼好處 5分 聚類分析:將個體(樣品)或者對象(變數)按相似程度(距離遠近)劃分類別,使得同一類中的元素之間的相似性比其他類的元素的相似性更強。目的在於使類間元素的同質性最大化和類與類間元素的異質性最大化。其主要依據是聚到同一個數據集中的樣本應該彼此相似,而屬於不同組的樣本應該足夠不相似。
常用聚類方法:系統聚類法,K-均值法,模糊聚類法,有序樣品的聚類,分解法,加入法。
注意事項:
1. 系統聚類法可對變數或者記錄進行分類,K-均值法只能對記錄進行分類;
2. K-均值法要求分析人員事先知道樣品分為多少類;
3. 對變數的多元正態性,方差齊性等要求較高。
應用領域:細分市場,消費行為劃分,設計抽樣方案等
優點:聚類分析模型的優點就是直觀,結論形式簡明。
缺點:在樣本量較大時,要獲得聚類結論有一定困難。由於相似系數是根據被試的反映來建立反映琺試間內在聯系的指標,而實踐中有時盡管從被試反映所得出的數據中發現他們之間有緊密的關系,但事物之間卻無任何內在聯系,此時,如果根據距離或相似系數得出聚類分析的結果,顯然是不適當的,但是,聚類分析模型本身卻無法識別這類錯誤。

問題三:什麼是聚類分析? 聚類分析又稱群分析,它是研究(樣品或指標)分類問題的一種統計分析方法。聚類分析起源於
分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行
定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識
難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又
將多元分析的技術引入到數值分類學形成了聚類分析。
聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論
聚類法、聚類預報法等。
聚類分析計算方法主要有如下幾種:分裂法(partitioning methods):層次法(hierarchical
methods):基於密度的方法(density-based methods): 基於網格的方法(grid-based
methods): 基於模型的方法(model-based methods)。

問題四:常用的聚類方法有哪幾種?? 1.k-mean聚類分析 適用於樣本聚類;
2.分層聚類 適用於對變數聚類;
3.兩步搐類 適用於分類變數和連續變數聚類;
4.基於密度的聚類演算法;
5.基於網路的聚類;
6.機器學習中的聚類演算法;
前3種,可用spss簡單操作實現;

問題五:spss聚類分析方法有哪些 首先,k-means你每次算的結果都會不一樣,因為結果跟初始選取的k個點有關

問題六:聚類分析方法是什麼? 5分 聚類分析:將個體(樣品)或者對象(變數)按相似程度(距離遠近)劃分類別,使得同一類中的元素之間的相似性比其他類的元素的相似性更強。目的在於使類間元素的同質性最大化和類與類間元素的異質性最大化。

問題七:聚類分析的演算法 聚類分析是數據挖掘中的一個很活躍的研究領域,並提出了許多聚類演算法。傳統的聚類演算法可以被分為五類:劃分方法、層次方法、基於密度方法、基於網格方法和基於模型方法。1 劃分方法(PAM:PArtitioning method) 首先創建k個劃分,k為要創建的劃分個數;然後利用一個循環定位技術通過將對象從一個劃分移到另一個劃分來幫助改善劃分質量。典型的劃分方法包括:k-means,k-medoids,CLARA(Clustering LARge Application),CLARANS(Clustering Large Application based upon RANdomized Search).FCM2 層次方法(hierarchical method) 創建一個層次以分解給定的數據集。該方法可以分為自上而下(分解)和自下而上(合並)兩種操作方式。為彌補分解與合並的不足,層次合並經常要與其它聚類方法相結合,如循環定位。典型的這類方法包括:BIRCH(Balanced Iterative Recing and Clustering using Hierarchies) 方法,它首先利用樹的結構對對象集進行劃分;然後再利用其它聚類方法對這些聚類進行優化。CURE(Clustering Using REprisentatives) 方法,它利用固定數目代表對象來表示相應聚類;然後對各聚類按照指定量(向聚類中心)進行收縮。ROCK方法,它利用聚類間的連接進行聚類合並。CHEMALOEN方法,它則是在層次聚類時構造動態模型。3 基於密度的方法,根據密度完成對象的聚類。它根據對象周圍的密度(如DBSCAN)不斷增長聚類。典型的基於密度方法包括:DBSCAN(Densit-based Spatial Clustering of Application with Noise):該演算法通過不斷生長足夠高密度區域來進行聚類;它能從含有雜訊的空間資料庫中發現任意形狀的聚類。此方法將一個聚類定義為一組「密度連接」的點集。OPTICS(Ordering Points To Identify the Clustering Structure):並不明確產生一個聚類,而是為自動交互的聚類分析計算出一個增強聚類順序。。4 基於網格的方法,首先將對象空間劃分為有限個單元以構成網格結構;然後利用網格結構完成聚類。STING(STatistical INformation Grid) 就是一個利用網格單元保存的統計信息進行基於網格聚類的方法。CLIQUE(Clustering In QUEst)和Wave-Cluster 則是一個將基於網格與基於密度相結合的方法。5 基於模型的方法,它假設每個聚類的模型並發現適合相應模型的數據。典型的基於模型方法包括:統計方法COBWEB:是一個常用的且簡單的增量式概念聚類方法。它的輸入對象是採用符號量(屬性-值)對來加以描述的。採用分類樹的形式來創建一個層次聚類。CLASSIT是COBWEB的另一個版本.。它可以對連續取值屬性進行增量式聚類。它為每個結點中的每個屬性保存相應的連續正態分布(均值與方差);並利用一個改進的分類能力描述方法,即不象COBWEB那樣計算離散屬性(取值)和而是對連續屬性求積分。但是CLASSIT方法也存在與COBWEB類似的問題。因此它們都不適合對大資料庫進行聚類處理.傳統的聚類演算法已經比較成功的解決了低維數據的聚類問題。但是由於實際應用中數據的復雜性,在處理許多問題時,現有的演算法經常失效,特別是對於高維數據和大型數據的......>>

問題八:主成分分析法和聚類分析法的區別

問題九:聚類分析方法具體有哪些應用?可不可以舉個例子? 比如說現在要把n個產品按產品的m個指標繼續聚類,因為產品可能之前的特色是不一樣的。而這個時候影響產品的因素有m個,不可能一個一個的考慮,那樣是分不出類來的。所以只能對產品的m個指標綜合考慮,採用SPSS中的樣本聚類方法,就可以直接將產品分好類。並且從分析結果還可以看出各類產品的特色分別是什麼。。就是最主要的分類標準是什麼。
聚類分析不僅可以用於樣本聚類,還可以用於變數聚類,就是對m個指標進行聚類。因為有時指標太多,不能全部考慮,需要提取出主要因素,而往往指標之間又有很多相關聯的地方,所以可以先對變數聚類,然後從每一類中選取出一個代表型的指標。這樣就大大減少了指標,並且沒有造成巨大的信息丟失。

『肆』 用於數據挖掘的聚類演算法有哪些,各有何優勢

聚類方法的分類,主要分為層次化聚類演算法,劃分式聚類演算法,基於密度的聚類演算法,基於網格的聚類演算法,基於模型的聚類演算法等。

而衡量聚類演算法優劣的標准主要是這幾個方面:處理大的數據集的能力;處理任意形狀,包括有間隙的嵌套的數據的能力;演算法處理的結果與數據輸入的順序是否相關,也就是說演算法是否獨立於數據輸入順序;處理數據雜訊的能力;是否需要預先知道聚類個數,是否需要用戶給出領域知識;演算法處理有很多屬性數據的能力,也就是對數據維數是否敏感。

.聚類演算法主要有兩種演算法,一種是自下而上法(bottom-up),一種是自上而下法(top-down)。這兩種路徑本質上各有優勢,主要看實際應用的時候要根據數據適用於哪一種,Hierarchical methods中比較新的演算法有BIRCH主要是在數據體量很大的時候使用;ROCK優勢在於異常數據抗干擾性強……

關於數據挖掘的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。

『伍』 聚類演算法有哪幾種

聚類分析計算方法主要有: 層次的方法(hierarchical method)、劃分方法(partitioning method)、基於密度的方法(density-based method)、基於網格的方法(grid-based method)、基於模型的方法(model-based method)等。其中,前兩種演算法是利用統計學定義的距離進行度量。
k-means 演算法的工作過程說明如下:首先從n個數據對象任意選擇 k 個對象作為初始聚類中心;而對於所剩下其它對象,則根據它們與這些聚類中心的相似度(距離),分別將它們分配給與其最相似的(聚類中心所代表的)聚類;然 後再計算每個所獲新聚類的聚類中心(該聚類中所有對象的均值);不斷重復這一過程直到標准測度函數開始收斂為止。一般都採用均方差作為標准測度函數. k個聚類具有以下特點:各聚類本身盡可能的緊湊,而各聚類之間盡可能的分開。
其流程如下:
(1)從 n個數據對象任意選擇 k 個對象作為初始聚類中心;
(2)根據每個聚類對象的均值(中心對象),計算每個對象與這些中心對象的距離;並根據最小距離重新對相應對象進行劃分;
(3)重新計算每個(有變化)聚類的均值(中心對象);
(4)循環(2)、(3)直到每個聚類不再發生變化為止(標准測量函數收斂)。
優點: 本演算法確定的K個劃分到達平方誤差最小。當聚類是密集的,且類與類之間區別明顯時,效果較好。對於處理大數據集,這個演算法是相對可伸縮和高效的,計算的復雜度為 O(NKt),其中N是數據對象的數目,t是迭代的次數。
缺點:
1. K 是事先給定的,但非常難以選定;
2. 初始聚類中心的選擇對聚類結果有較大的影響。

『陸』 聲紋識別 | 快速概覽 + 了解N:N聚類演算法是如何應用的

關於聲紋識別的N:N聚類演算法

本文將從如下方面為你一一解讀:

聲紋(Voiceprint),是用電聲學儀器顯示的攜帶言語信息的聲波頻譜,是由波長、頻率以及強度等百餘種特徵維度組成的生物特徵,具有穩定性、可測量性、唯一性等特點。

人類語言的產生是人體語言中樞與發音器官之間一個復雜的生理物理過程,發聲器官--舌、牙齒、喉頭、肺、鼻腔在尺寸和形態方面每個人的差異很大,所以任何兩個人的聲紋圖譜都有差異。每個人的語音聲學特徵既有相對穩定性,又有變異性,不是一成不變的。這種變異可來自生理、病理、心理、模擬、偽裝,也與環境干擾有關。盡管如此,由於每個人的發音器官都不盡相同,因此在一般情況下,人們仍能區別不同的人的聲音或判斷是否是同一人的聲音。

1.  1:1 說話人確認

1:1 說話人確認是確認說話人身份的方法,針對「對於同樣的文本內容,有兩段錄音,這兩段錄音到底是不是出自一人之口」這樣的問題,也就是「兩句話到底是不是一個人說「的問題;該類場景相對簡單,主要應用於用戶的注冊和驗證,以及APP內的聲紋核身;

2.  1:N 說話人確認

1:N說話人辨認是辨認說話人身份的方法,針對「對於一段語音,需要迅速在樣本庫中進行搜尋比對,以確認這段語音與樣本庫中哪段語音相似度最高」,也就是說「給定的一段語音屬於樣本庫中誰說的」的問題;該類場景比較常見,主要應用於黑名單用戶進線檢測,提高安防能力等。

3.  N:N說話人聚類 

對於千億級別的無標簽錄音文件,如何做有效的處理?舉個例子,假如說你有很多的語音片段(語音的文本內容是相同的),這些語音片段分別歸屬於甲乙丙丁等人,僅憑人耳辨識是無法分辨出哪些語音片段屬於甲,哪些語音片段屬於乙,通過N:N聚類的演算法,進行聲紋的相似度檢測,將屬於同一個人說話的語音片段不斷進行合並歸類,最後屬於甲說話的語音片段全部被歸為一類,屬於乙說話的語音片段全部被歸為一類,以此類推,類內語音的相似度極高,類間語音的相似度較低,達到將這些語音片段分人整理的目的;

簡單介紹一下聚類分析:聚類分析是根據在數據中發現的描述對象及其關系的信息,將數據對象分組。目的是,組內的對象相互之間是相似的(相關的),而不同組中的對象是不同的(不相關的)。組內相似性越大,組間差距越大,說明聚類效果越好。聚類效果的好壞依賴於兩個因素:1.衡量距離的方法(distance measurement) 2.聚類演算法(algorithm)

目前主流的說話人聚類演算法是在說話人分割的基礎上,基於貝葉斯信息判據,採用凝聚分層聚類演算法,直接對說話人分割後的語音段進行判決,將屬於同一個說話人的語音段合並為一類。其基本思想是從每個語片段中提取特徵參數,例如梅爾倒譜參數,計算每兩個語音段之間特徵參數的相似度,並利用BIC判斷相似度最高的兩個語音段是否合並為同一類。對任意兩段語音都進行上述判決,直到所有的語音段不再合並。 ---摘自「說話人聚類的初始類生成方法」

聚類&聲紋識別的主要場景 :在跨渠道,跨場景收集語音同時建立聲紋庫的時候,由於各場景應用的客戶賬號或許不同,說話人在不同場景中分別注冊過聲紋,難以篩除重復注冊語音,建立統一聲紋庫;我們如何快速的去篩除屬於某一個人在不同情況下錄制的多條錄音文件?也就是如何保證最終留下的錄音文件(聲紋庫)是唯一的?每一個人只對應一條音頻,這就要用到聚類的演算法;利用聲紋識別N:N說話人聚類,對所有收集到的語音進行語音相似度檢測,將同一說話人在不同場景中的多次錄制的語音篩選出來,並只保留其中一條,從而保證了聲紋庫的獨特性,節省了大量的人力成本,資源成本。

對於目前的場景,我們選擇 凝聚層次聚類演算法 ,在這種場景下,我們是要篩除重復人說話,那麼我們可以將每一個錄音文件都當作一個獨立的數據點,看最後有凝聚出多少個獨立的數據簇,此時可以理解為類內都是同一個人在說話;

1. 我們首先將每個數據點(每一條錄音文件)視為一個單一的類,即如果我們的數據集中有 X 個數據點,那麼我們就有 X 個類。然後,我們選擇一個測量兩個類之間距離的距離度量標准。作為例子,我們將用 average linkage,它將兩個類之間的距離定義為第一個類中的數據點與第二個類中的數據點之間的平均距離。 (這個距離度量標准可以選擇其他的)

2. 在每次迭代中,我們將兩個類合並成一個。這兩個要合並的類應具有最小的 average linkage。即根據我們選擇的距離度量標准,這兩個類之間的距離最小,因此是最相似的,應該合並在一起。 

3. 重復步驟 2 直到我們到達樹根,即我們只有一個包含所有數據點的類。這樣我們只需要選擇何時停止合並類,即何時停止構建樹,來選擇最終需要多少個類--- 摘自知乎

按照實際的場景,如果我們最終要得到1000個不重復的錄音文件,為了防止過度合並,定義的退出條件是最後想要得到的錄音文件數目;

1. 錄音重放攻擊 : 攻擊者錄制目標說話人的語音進行播放,以目標人身份試圖通過聲紋識別系統的認證。

策略:基於隨機內容聲紋的檢測技術:利用隨機數字的不確定性,用戶在規定的時間內(5-10S)需要念出指定的隨機內容,如果超時,則隨機內容更新; 因為對於錄音重放的內容是固定的,很不靈活,所以比較容易做限制

2. 波形拼接攻擊

攻擊者將目標說話人的語音錄制下來,通過波形編輯工具,拼接出指定內容的語音數據,以放音的方式假冒目標說話人,試圖以目標人身份通過聲紋識別系統的認證。

策略:同錄音重放

3.語音合成攻擊

攻擊者用語音合成技術生成目標說話人的語音,以放音的方式假冒目標說話人,試圖以目標人的身份通過聲紋識別系統的認證。

策略:1. 同錄音重放 

           2. 利用活體檢測技術,加強演算法的識別度

『柒』 常用的聚類方法有哪幾種

聚類分析的演算法可以分為劃分法、層次法、基於密度的方法、基於網格的方法、基於模型的方法。

1、劃分法,給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。

2、層次法,這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。

3、基於密度的方法,基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。

4、圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。

5、基於網格的方法,這種方法首先將數據空間劃分成為有限個單元的網格結構,所有的處理都是以單個的單元為對象的。

6、基於模型的方法,基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。

(7)聚類的演算法和應用擴展閱讀:

在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。

它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。

許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。

許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。

『捌』 16種常用的數據分析方法-聚類分析

聚類(Clustering)就是一種尋找數據之間內在結構的技術。聚類把全體數據實例組織成一些相似組,而這些相似組被稱作簇。處於相同簇中的數據實例彼此相同,處於不同簇中的實例彼此不同。











聚類分析定義









聚類分析是根據在數據中發現的描述對象及其關系的信息,將數據對象分組。目的是,組內的對象相互之間是相似的(相關的),而不同組中的對象是不同的(不相關的)。組內相似性越大,組間差距越大,說明聚類效果越好。


聚類效果的好壞依賴於兩個因素:1.衡量距離的方法(distance measurement) 2.聚類演算法(algorithm)

 
















聚類分析常見演算法









K-均值聚類也稱為快速聚類法,在最小化誤差函數的基礎上將數據劃分為預定的類數K。該演算法原理簡單並便於處理大量數據。


K-均值演算法對孤立點的敏感性,K-中心點演算法不採用簇中對象的平均值作為簇中心,而選用簇中離平均值最近的對象作為簇中心。


也稱為層次聚類,分類的單位由高到低呈樹形結構,且所處的位置越低,其所包含的對象就越少,但這些對象間的共同特徵越多。該聚類方法只適合在小數據量的時候使用,數據量大的時候速度會非常慢。

 
















案例









有20種12盎司啤酒成分和價格的數據,變數包括啤酒名稱、熱量、鈉含量、酒精含量、價格。


 

問題一:選擇那些變數進行聚類?——採用「R 型聚類」

 

現在我們有4個變數用來對啤酒分類,是否有必要將4個變數都納入作為分類變數呢?熱量、鈉含量、酒精含量這3個指標是要通過化驗員的辛苦努力來測定,而且還有花費不少成本。


所以,有必要對4個變數進行降維處理,這里採用spss R型聚類(變數聚類),對4個變數進行降維處理。輸出「相似性矩陣」有助於我們理解降維的過程。



4個分類變數各自不同,這一次我們先用相似性來測度,度量標准選用pearson系數,聚類方法選最遠元素,此時,涉及到相關,4個變數可不用標准化處理,將來的相似性矩陣里的數字為相關系數。若果有某兩個變數的相關系數接近1或-1,說明兩個變數可互相替代。



只輸出「樹狀圖」就可以了,從proximity matrix表中可以看出熱量和酒精含量兩個變數相關系數0.903,最大,二者選其一即可,沒有必要都作為聚類變數,導致成本增加。


至於熱量和酒精含量選擇哪一個作為典型指標來代替原來的兩個變數,可以根據專業知識或測定的難易程度決定。(與因子分析不同,是完全踢掉其中一個變數以達到降維的目的。)這里選用酒精含量,至此,確定出用於聚類的變數為:酒精含量,鈉含量,價格。

        


問題二:20 中啤酒能分為幾類?—— 採用「Q 型聚類」

 

現在開始對20中啤酒進行聚類。開始不確定應該分為幾類,暫時用一個3-5類范圍來試探。Q型聚類要求量綱相同,所以我們需要對數據標准化,這一回用歐式距離平方進行測度。



主要通過樹狀圖和冰柱圖來理解類別。最終是分為4類還是3類,這是個復雜的過程,需要專業知識和最初的目的來識別。


這里試著確定分為4類。選擇「保存」,則在數據區域內會自動生成聚類結果。




問題三:用於聚類的變數對聚類過程、結果又貢獻么,有用么?——採用「單因素方差分析」

 

聚類分析除了對類別的確定需討論外,還有一個比較關鍵的問題就是分類變數到底對聚類有沒有作用有沒有貢獻,如果有個別變數對分類沒有作用的話,應該剔除。


這個過程一般用單因素方差分析來判斷。注意此時,因子變數選擇聚為4類的結果,而將三個聚類變數作為因變數處理。方差分析結果顯示,三個聚類變數sig值均極顯著,我們用於分類的3個變數對分類有作用,可以使用,作為聚類變數是比較合理的。




 

問題四:聚類結果的解釋?——採用」均值比較描述統計「


聚類分析最後一步,也是最為困難的就是對分出的各類進行定義解釋,描述各類的特徵,即各類別特徵描述。這需要專業知識作為基礎並結合分析目的才能得出。


我們可以採用spss的means均值比較過程,或者excel的透視表功能對各類的各個指標進行描述。其中,report報表用於描述聚類結果。對各類指標的比較來初步定義類別,主要根據專業知識來判定。這里到此為止。



以上過程涉及到spss層次聚類中的Q型聚類和R型聚類,單因素方差分析,means過程等,是一個很不錯的多種分析方法聯合使用的案例。

 
















聚類分析的應用









聚類分析是細分市場的有效工具,被用來發現不同的客戶群,並且它通過對不同的客戶群的特徵的刻畫,被用於研究消費者行為,尋找新的潛在市場。

 



聚類分析被用來對動植物和基因進行分類,以獲取對種群固有結構的認識。

 



聚類分析可以通過平均消費來鑒定汽車保險單持有者的分組,同時可以根據住宅類型、價值、地理位置來鑒定城市的房產分組。

 



聚類分析被用來在網上進行文檔歸類。

 



聚類分析通過分組聚類出具有相似瀏覽行為的客戶,並分析客戶的共同特徵,從而幫助電子商務企業了解自己的客戶,向客戶提供更合適的服務。

 


『玖』 聚類演算法有哪些

聚類演算法有:劃分法、層次法、密度演算法、圖論聚類法、網格演算法、模型演算法。

1、劃分法

劃分法(partitioning methods),給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。使用這個基本思想的演算法有:K-MEANS演算法、K-MEDOIDS演算法、CLARANS演算法。

2、層次法

層次法(hierarchical methods),這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。具體又可分為「自底向上」和「自頂向下」兩種方案。代表演算法有:BIRCH演算法、CURE演算法、CHAMELEON演算法等。

3、密度演算法

基於密度的方法(density-based methods),基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。代表演算法有:DBSCAN演算法、OPTICS演算法、DENCLUE演算法等。

4、圖論聚類法

圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。因此,每一個最小處理單元數據之間都會有一個度量表達,這就確保了數據的局部特性比較易於處理。圖論聚類法是以樣本數據的局域連接特徵作為聚類的主要信息源,因而其主要優點是易於處理局部數據的特性。

5、網格演算法

基於網格的方法(grid-based methods),這種方法首先將數據空間劃分成為有限個單元(cell)的網格結構,所有的處理都是以單個的單元為對象的。代表演算法有:STING演算法、CLIQUE演算法、WAVE-CLUSTER演算法。

6、模型演算法

基於模型的方法(model-based methods),基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。通常有兩種嘗試方向:統計的方案和神經網路的方案。

(9)聚類的演算法和應用擴展閱讀:

聚類分析起源於分類學,在古老的分類學中,人們主要依靠經驗和專業知識來實現分類,很少利用數學工具進行定量的分類。隨著人類科學技術的發展,對分類的要求越來越高,以致有時僅憑經驗和專業知識難以確切地進行分類,於是人們逐漸地把數學工具引用到了分類學中,形成了數值分類學,之後又將多元分析的技術引入到數值分類學形成了聚類分析。聚類分析內容非常豐富,有系統聚類法、有序樣品聚類法、動態聚類法、模糊聚類法、圖論聚類法、聚類預報法等。

在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。

『拾』 建議收藏!10 種 python 聚類演算法完整操作示例

聚類或聚類分析是無監督學習問題。它通常被用作數據分析技術,用於發現數據中的有趣模式,例如基於其行為的客戶群。有許多聚類演算法可供選擇,對於所有情況,沒有單一的最佳聚類演算法。相反,最好探索一系列聚類演算法以及每種演算法的不同配置。在本教程中,你將發現如何在 python 中安裝和使用頂級聚類演算法。完成本教程後,你將知道:

聚類分析,即聚類,是一項無監督的機器學習任務。它包括自動發現數據中的自然分組。與監督學習(類似預測建模)不同,聚類演算法只解釋輸入數據,並在特徵空間中找到自然組或群集。

群集通常是特徵空間中的密度區域,其中來自域的示例(觀測或數據行)比其他群集更接近群集。群集可以具有作為樣本或點特徵空間的中心(質心),並且可以具有邊界或范圍。

聚類可以作為數據分析活動提供幫助,以便了解更多關於問題域的信息,即所謂的模式發現或知識發現。例如:

聚類還可用作特徵工程的類型,其中現有的和新的示例可被映射並標記為屬於數據中所標識的群集之一。雖然確實存在許多特定於群集的定量措施,但是對所識別的群集的評估是主觀的,並且可能需要領域專家。通常,聚類演算法在人工合成數據集上與預先定義的群集進行學術比較,預計演算法會發現這些群集。

有許多類型的聚類演算法。許多演算法在特徵空間中的示例之間使用相似度或距離度量,以發現密集的觀測區域。因此,在使用聚類演算法之前,擴展數據通常是良好的實踐。

一些聚類演算法要求您指定或猜測數據中要發現的群集的數量,而另一些演算法要求指定觀測之間的最小距離,其中示例可以被視為「關閉」或「連接」。因此,聚類分析是一個迭代過程,在該過程中,對所識別的群集的主觀評估被反饋回演算法配置的改變中,直到達到期望的或適當的結果。scikit-learn 庫提供了一套不同的聚類演算法供選擇。下面列出了10種比較流行的演算法:

每個演算法都提供了一種不同的方法來應對數據中發現自然組的挑戰。沒有最好的聚類演算法,也沒有簡單的方法來找到最好的演算法為您的數據沒有使用控制實驗。在本教程中,我們將回顧如何使用來自 scikit-learn 庫的這10個流行的聚類演算法中的每一個。這些示例將為您復制粘貼示例並在自己的數據上測試方法提供基礎。我們不會深入研究演算法如何工作的理論,也不會直接比較它們。讓我們深入研究一下。

在本節中,我們將回顧如何在 scikit-learn 中使用10個流行的聚類演算法。這包括一個擬合模型的例子和可視化結果的例子。這些示例用於將粘貼復制到您自己的項目中,並將方法應用於您自己的數據。

1.庫安裝

首先,讓我們安裝庫。不要跳過此步驟,因為你需要確保安裝了最新版本。你可以使用 pip Python 安裝程序安裝 scikit-learn 存儲庫,如下所示:

接下來,讓我們確認已經安裝了庫,並且您正在使用一個現代版本。運行以下腳本以輸出庫版本號。

運行該示例時,您應該看到以下版本號或更高版本。

2.聚類數據集

我們將使用 make _ classification ()函數創建一個測試二分類數據集。數據集將有1000個示例,每個類有兩個輸入要素和一個群集。這些群集在兩個維度上是可見的,因此我們可以用散點圖繪制數據,並通過指定的群集對圖中的點進行顏色繪制。這將有助於了解,至少在測試問題上,群集的識別能力如何。該測試問題中的群集基於多變數高斯,並非所有聚類演算法都能有效地識別這些類型的群集。因此,本教程中的結果不應用作比較一般方法的基礎。下面列出了創建和匯總合成聚類數據集的示例。

運行該示例將創建合成的聚類數據集,然後創建輸入數據的散點圖,其中點由類標簽(理想化的群集)著色。我們可以清楚地看到兩個不同的數據組在兩個維度,並希望一個自動的聚類演算法可以檢測這些分組。

已知聚類著色點的合成聚類數據集的散點圖接下來,我們可以開始查看應用於此數據集的聚類演算法的示例。我已經做了一些最小的嘗試來調整每個方法到數據集。3.親和力傳播親和力傳播包括找到一組最能概括數據的範例。

它是通過 AffinityPropagation 類實現的,要調整的主要配置是將「 阻尼 」設置為0.5到1,甚至可能是「首選項」。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法取得良好的結果。

數據集的散點圖,具有使用親和力傳播識別的聚類

4.聚合聚類

聚合聚類涉及合並示例,直到達到所需的群集數量為止。它是層次聚類方法的更廣泛類的一部分,通過 AgglomerationClustering 類實現的,主要配置是「 n _ clusters 」集,這是對數據中的群集數量的估計,例如2。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組。

使用聚集聚類識別出具有聚類的數據集的散點圖

5.BIRCHBIRCH

聚類( BIRCH 是平衡迭代減少的縮寫,聚類使用層次結構)包括構造一個樹狀結構,從中提取聚類質心。

它是通過 Birch 類實現的,主要配置是「 threshold 」和「 n _ clusters 」超參數,後者提供了群集數量的估計。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個很好的分組。

使用BIRCH聚類確定具有聚類的數據集的散點圖

6.DBSCANDBSCAN

聚類(其中 DBSCAN 是基於密度的空間聚類的雜訊應用程序)涉及在域中尋找高密度區域,並將其周圍的特徵空間區域擴展為群集。

它是通過 DBSCAN 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,盡管需要更多的調整,但是找到了合理的分組。

使用DBSCAN集群識別出具有集群的數據集的散點圖

7.K均值

K-均值聚類可以是最常見的聚類演算法,並涉及向群集分配示例,以盡量減少每個群集內的方差。

它是通過 K-均值類實現的,要優化的主要配置是「 n _ clusters 」超參數設置為數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以找到一個合理的分組,盡管每個維度中的不等等方差使得該方法不太適合該數據集。

使用K均值聚類識別出具有聚類的數據集的散點圖

8.Mini-Batch

K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的樣本而不是整個數據集對群集質心進行更新,這可以使大數據集的更新速度更快,並且可能對統計雜訊更健壯。

它是通過 MiniBatchKMeans 類實現的,要優化的主配置是「 n _ clusters 」超參數,設置為數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,會找到與標准 K-均值演算法相當的結果。

帶有最小批次K均值聚類的聚類數據集的散點圖

9.均值漂移聚類

均值漂移聚類涉及到根據特徵空間中的實例密度來尋找和調整質心。

它是通過 MeanShift 類實現的,主要配置是「帶寬」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,可以在數據中找到一組合理的群集。

具有均值漂移聚類的聚類數據集散點圖

10.OPTICSOPTICS

聚類( OPTICS 短於訂購點數以標識聚類結構)是上述 DBSCAN 的修改版本。

它是通過 OPTICS 類實現的,主要配置是「 eps 」和「 min _ samples 」超參數。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我無法在此數據集上獲得合理的結果。

使用OPTICS聚類確定具有聚類的數據集的散點圖

11.光譜聚類

光譜聚類是一類通用的聚類方法,取自線性線性代數。

它是通過 Spectral 聚類類實現的,而主要的 Spectral 聚類是一個由聚類方法組成的通用類,取自線性線性代數。要優化的是「 n _ clusters 」超參數,用於指定數據中的估計群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,找到了合理的集群。

使用光譜聚類聚類識別出具有聚類的數據集的散點圖

12.高斯混合模型

高斯混合模型總結了一個多變數概率密度函數,顧名思義就是混合了高斯概率分布。它是通過 Gaussian Mixture 類實現的,要優化的主要配置是「 n _ clusters 」超參數,用於指定數據中估計的群集數量。下面列出了完整的示例。

運行該示例符合訓練數據集上的模型,並預測數據集中每個示例的群集。然後創建一個散點圖,並由其指定的群集著色。在這種情況下,我們可以看到群集被完美地識別。這並不奇怪,因為數據集是作為 Gaussian 的混合生成的。

使用高斯混合聚類識別出具有聚類的數據集的散點圖

在本文中,你發現了如何在 python 中安裝和使用頂級聚類演算法。具體來說,你學到了:

閱讀全文

與聚類的演算法和應用相關的資料

熱點內容
h264壓縮工具 瀏覽:320
為什麼app總是用手機號注冊 瀏覽:429
編譯程序卡死怎麼回事 瀏覽:976
鋼鐵命令氪金指南 瀏覽:938
團鬼六所有電影 瀏覽:826
方舟生存進化ol伺服器怎麼傳送 瀏覽:972
文件怎麼解壓微信怎麼發 瀏覽:385
管家無線網未加密 瀏覽:581
棋盤密碼加密的原理 瀏覽:431
重生越戰後升少將1979 瀏覽:872
php微信群發介面開發 瀏覽:292
主角連親生女兒都收的小說 瀏覽:437
活人解剖電影大全 瀏覽:862
信息加密需要幾對密鑰 瀏覽:847
快手視頻能分文件夾嗎 瀏覽:317
雷達流速儀演算法 瀏覽:811
游戲美工重要還是程序員重要 瀏覽:438
程序員隱藏游戲彩蛋 瀏覽:247
apache載入php7 瀏覽:329
天貓程序員有什麼用 瀏覽:555