導航:首頁 > 源碼編譯 > 螞蟻優化演算法視頻

螞蟻優化演算法視頻

發布時間:2024-09-14 08:40:10

A. 如何用蟻群演算法來計算固定時間內走更多的城市且路程最短

概念:蟻群演算法(ant colony optimization,ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法.它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為.蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值
其原理:為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄.這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序
應用范圍:螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內
引申:跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:1、多樣性 2、正反饋 多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來.我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力.正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了.引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合.如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水.這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整.既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化.而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合.而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!蟻群演算法的實現 下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩.其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了.

B. 群智能演算法有哪些

群智能演算法主要包括蟻群演算法(Ant Colony Optimization)、粒子群優化演算法(Particle Swarm Optimization)、人工蜂群演算法(Artificial Bee Colony Algorithm)等。

蟻群演算法是一種模擬自然界蟻群覓食行為的優化演算法。它通過模擬螞蟻尋找食物過程中的信息素傳遞和路徑選擇機制,來解決一些優化問題。蟻群演算法常用於解決旅行商問題、車輛路徑問題等典型的組合優化問題。其通過個體間的信息傳遞和協同工作,能夠在復雜的解空間中找到近似最優解。

粒子群優化演算法是一種基於群體智能的優化技術,模擬鳥群、魚群等生物群體行為的一種優化演算法。它通過模擬鳥群飛行的過程,讓粒子在解空間內搜索最優解。粒子群優化演算法具有較強的全局搜索能力,能夠處理復雜的優化問題,特別是在連續函數優化、神經網路訓練等領域有廣泛應用。

人工蜂群演算法是一種模擬蜜蜂采蜜行為的優化演算法。它採用蜜蜂分工合作的機制,通過模擬蜜蜂採集花蜜和傳遞信息的過程來解決優化問題。人工蜂群演算法具有良好的全局搜索能力和並行計算能力,能夠處理多峰問題和動態環境的問題,常用於求解大規模多變數非線性函數的優化問題。此外,它也常被應用於求解多維背包問題等具有約束條件的優化問題。它的求解效率和性能在不同的應用中都有所表現,被認為是一種非常有前途的智能優化演算法。

以上這些群智能演算法在解決復雜的優化問題時都有良好的表現,通過模擬自然界的群體行為來發揮集體智慧的優勢,從而在求解過程中獲得較好的效果。

C. 什麼是蟻群演算法

蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型技術。它由Marco Dorigo於1992年在他的博士論文中引入,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。
蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質.針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值.
蟻群演算法是一種求解組合最優化問題的新型通用啟發式方法,該方法具有正反饋、分布式計算和富於建設性的貪婪啟發式搜索的特點。通過建立適當的數學模型,基於故障過電流的配電網故障定位變為一種非線性全局尋優問題。由柳洪平創建。
預期的結果:
各個螞蟻在沒有事先告訴他們食物在什麼地方的前提下開始尋找食物。當一隻找到食物以後,它會向環境釋放一種信息素,吸引其他的螞蟻過來,這樣越來越多的螞蟻會找到食物!有些螞蟻並沒有象其它螞蟻一樣總重復同樣的路,他們會另闢蹊徑,如果令開辟的道路比原來的其他道路更短,那麼,漸漸,更多的螞蟻被吸引到這條較短的路上來。最後,經過一段時間運行,可能會出現一條最短的路徑被大多數螞蟻重復著。
原理:
為什麼小小的螞蟻能夠找到食物?他們具有智能么?設想,如果我們要為螞蟻設計一個人工智慧的程序,那麼這個程序要多麼復雜呢?首先,你要讓螞蟻能夠避開障礙物,就必須根據適當的地形給它編進指令讓他們能夠巧妙的避開障礙物,其次,要讓螞蟻找到食物,就需要讓他們遍歷空間上的所有點;再次,如果要讓螞蟻找到最短的路徑,那麼需要計算所有可能的路徑並且比較它們的大小,而且更重要的是,你要小心翼翼的編程,因為程序的錯誤也許會讓你前功盡棄。這是多麼不可思議的程序!太復雜了,恐怕沒人能夠完成這樣繁瑣冗餘的程序。
然而,事實並沒有你想得那麼復雜,上面這個程序每個螞蟻的核心程序編碼不過100多行!為什麼這么簡單的程序會讓螞蟻干這樣復雜的事情?答案是:簡單規則的涌現。事實上,每隻螞蟻並不是像我們想像的需要知道整個世界的信息,他們其實只關心很小范圍內的眼前信息,而且根據這些局部信息利用幾條簡單的規則進行決策,這樣,在蟻群這個集體里,復雜性的行為就會凸現出來。這就是人工生命、復雜性科學解釋的規律!那麼,這些簡單規則是什麼呢?下面詳細說明:
1、范圍:
螞蟻觀察到的范圍是一個方格世界,螞蟻有一個參數為速度半徑(一般是3),那麼它能觀察到的范圍就是3*3個方格世界,並且能移動的距離也在這個范圍之內。
2、環境:
螞蟻所在的環境是一個虛擬的世界,其中有障礙物,有別的螞蟻,還有信息素,信息素有兩種,一種是找到食物的螞蟻灑下的食物信息素,一種是找到窩的螞蟻灑下的窩的信息素。每個螞蟻都僅僅能感知它范圍內的環境信息。環境以一定的速率讓信息素消失。
3、覓食規則:
在每隻螞蟻能感知的范圍內尋找是否有食物,如果有就直接過去。否則看是否有信息素,並且比較在能感知的范圍內哪一點的信息素最多,這樣,它就朝信息素多的地方走,並且每隻螞蟻多會以小概率犯錯誤,從而並不是往信息素最多的點移動。螞蟻找窩的規則和上面一樣,只不過它對窩的信息素做出反應,而對食物信息素沒反應。
4、移動規則:
每隻螞蟻都朝向信息素最多的方向移,並且,當周圍沒有信息素指引的時候,螞蟻會按照自己原來運動的方向慣性的運動下去,並且,在運動的方向有一個隨機的小的擾動。為了防止螞蟻原地轉圈,它會記住最近剛走過了哪些點,如果發現要走的下一點已經在最近走過了,它就會盡量避開。
5、避障規則:
如果螞蟻要移動的方向有障礙物擋住,它會隨機的選擇另一個方向,並且有信息素指引的話,它會按照覓食的規則行為。
7、播撒信息素規則:
每隻螞蟻在剛找到食物或者窩的時候撒發的信息素最多,並隨著它走遠的距離,播撒的信息素越來越少。
根據這幾條規則,螞蟻之間並沒有直接的關系,但是每隻螞蟻都和環境發生交互,而通過信息素這個紐帶,實際上把各個螞蟻之間關聯起來了。比如,當一隻螞蟻找到了食物,它並沒有直接告訴其它螞蟻這兒有食物,而是向環境播撒信息素,當其它的螞蟻經過它附近的時候,就會感覺到信息素的存在,進而根據信息素的指引找到了食物。
問題:
說了這么多,螞蟻究竟是怎麼找到食物的呢?
在沒有螞蟻找到食物的時候,環境沒有有用的信息素,那麼螞蟻為什麼會相對有效的找到食物呢?這要歸功於螞蟻的移動規則,尤其是在沒有信息素時候的移動規則。首先,它要能盡量保持某種慣性,這樣使得螞蟻盡量向前方移動(開始,這個前方是隨機固定的一個方向),而不是原地無謂的打轉或者震動;其次,螞蟻要有一定的隨機性,雖然有了固定的方向,但它也不能像粒子一樣直線運動下去,而是有一個隨機的干擾。這樣就使得螞蟻運動起來具有了一定的目的性,盡量保持原來的方向,但又有新的試探,尤其當碰到障礙物的時候它會立即改變方向,這可以看成一種選擇的過程,也就是環境的障礙物讓螞蟻的某個方向正確,而其他方向則不對。這就解釋了為什麼單個螞蟻在復雜的諸如迷宮的地圖中仍然能找到隱蔽得很好的食物。
當然,在有一隻螞蟻找到了食物的時候,其他螞蟻會沿著信息素很快找到食物的。
螞蟻如何找到最短路徑的?這一是要歸功於信息素,另外要歸功於環境,具體說是計算機時鍾。信息素多的地方顯然經過這里的螞蟻會多,因而會有更多的螞蟻聚集過來。假設有兩條路從窩通向食物,開始的時候,走這兩條路的螞蟻數量同樣多(或者較長的路上螞蟻多,這也無關緊要)。當螞蟻沿著一條路到達終點以後會馬上返回來,這樣,短的路螞蟻來回一次的時間就短,這也意味著重復的頻率就快,因而在單位時間里走過的螞蟻數目就多,灑下的信息素自然也會多,自然會有更多的螞蟻被吸引過來,從而灑下更多的信息素……;而長的路正相反,因此,越來越多地螞蟻聚集到較短的路徑上來,最短的路徑就近似找到了。也許有人會問局部最短路徑和全局最短路的問題,實際上螞蟻逐漸接近全局最短路的,為什麼呢?這源於螞蟻會犯錯誤,也就是它會按照一定的概率不往信息素高的地方走而另闢蹊徑,這可以理解為一種創新,這種創新如果能縮短路途,那麼根據剛才敘述的原理,更多的螞蟻會被吸引過來。
引申
跟著螞蟻的蹤跡,你找到了什麼?通過上面的原理敘述和實際操作,我們不難發現螞蟻之所以具有智能行為,完全歸功於它的簡單行為規則,而這些規則綜合起來具有下面兩個方面的特點:
1、多樣性
2、正反饋
多樣性保證了螞蟻在覓食的時候不置走進死胡同而無限循環,正反饋機制則保證了相對優良的信息能夠被保存下來。我們可以把多樣性看成是一種創造能力,而正反饋是一種學習強化能力。正反饋的力量也可以比喻成權威的意見,而多樣性是打破權威體現的創造性,正是這兩點小心翼翼的巧妙結合才使得智能行為涌現出來了。
引申來講,大自然的進化,社會的進步、人類的創新實際上都離不開這兩樣東西,多樣性保證了系統的創新能力,正反饋保證了優良特性能夠得到強化,兩者要恰到好處的結合。如果多樣性過剩,也就是系統過於活躍,這相當於螞蟻會過多的隨機運動,它就會陷入混沌狀態;而相反,多樣性不夠,正反饋機制過強,那麼系統就好比一潭死水。這在蟻群中來講就表現為,螞蟻的行為過於僵硬,當環境變化了,螞蟻群仍然不能適當的調整。
既然復雜性、智能行為是根據底層規則涌現的,既然底層規則具有多樣性和正反饋特點,那麼也許你會問這些規則是哪裡來的?多樣性和正反饋又是哪裡來的?我本人的意見:規則來源於大自然的進化。而大自然的進化根據剛才講的也體現為多樣性和正反饋的巧妙結合。而這樣的巧妙結合又是為什麼呢?為什麼在你眼前呈現的世界是如此栩栩如生呢?答案在於環境造就了這一切,之所以你看到栩栩如生的世界,是因為那些不能夠適應環境的多樣性與正反饋的結合都已經死掉了,被環境淘汰了!
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素。信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快。
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性。
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍。
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前。而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈。
蟻群演算法的實現
下面的程序開始運行之後,螞蟻們開始從窩里出動了,尋找食物;他們會順著屏幕爬滿整個畫面,直到找到食物再返回窩。
其中,『F』點表示食物,『H』表示窩,白色塊表示障礙物,『+』就是螞蟻了。
參數說明:
最大信息素:螞蟻在一開始擁有的信息素總量,越大表示程序在較長一段時間能夠存在信息素。信息素消減的速度:隨著時間的流逝,已經存在於世界上的信息素會消減,這個數值越大,那麼消減的越快。
錯誤概率表示這個螞蟻不往信息素最大的區域走的概率,越大則表示這個螞蟻越有創新性。
速度半徑表示螞蟻一次能走的最大長度,也表示這個螞蟻的感知范圍。
記憶能力表示螞蟻能記住多少個剛剛走過點的坐標,這個值避免了螞蟻在本地打轉,停滯不前。而這個值越大那麼整個系統運行速度就慢,越小則螞蟻越容易原地轉圈。

D. 蟻群演算法及其應用的目錄

第1章緒論
1.1螞蟻的基本習性
1.1.1螞蟻的信息系統
1.1.2蟻群社會的遺傳與進化
1.2蟻群覓食行為與覓食策略
1.2.1螞蟻的覓食行為
1.2.2螞蟻的覓食策略
1.3人工蟻群演算法的基本思想
1.3.1人工蟻與真實螞蟻的異同
1.3.2人工蟻群演算法的實現過程
1.4蟻群優化演算法的意義及應用
1.4.1蟻群優化演算法的意義
l.4.2蟻群演算法的應用
1.5蟻群演算法的展望
第2章螞蟻系統——蟻群演算法的原型
2.1螞蟻系統模型的建立
2.2蟻量系統和蟻密系統的模型
2.3蟻周系統模型
第3章改進的蟻群優化演算法
3.1帶精英策略的螞蟻系統
3.2基於優化排序的螞蟻系統
3.3蟻群系統
3.3.1蟻群系統狀態轉移規則
3.3.2蟻群系統全局更新規則
3.3.3蟻群系統局部更新規則
3.3.4候選集合策略
3.4最大一最小螞蟻系統
3.4.1信息素軌跡更新
3.4.2信息素軌跡的限制
3.4.3信息素軌跡的初始化
3.4.4信息素軌跡的平滑化
3.5最優一最差螞蟻系統
3.5.1最優一最差螞蟻系統的基本思想
3.5.2最優一最差螞蟻系統的工作過程
第4章蟻群優化演算法的模擬研究
4.1螞蟻系統三類模型的模擬研究
4.1.1三類模型性能的比較
4.2.2基於統計的參數優化
4.2基於蟻群系統模型的模擬研究
4.2.1局部優化演算法的有效性
4.2.2蟻群系統與其他啟發演算法的比較
4.3最大一最小螞蟻系統的模擬研究
4.3.1信息素軌跡初始化研究
4.3.2信息素軌跡量下限的作用
4.3.3蟻群演算法的對比
4.4最優一最差螞蟻系統的模擬研究
4.4.1參數ε的設置
4.4.2幾種改進的蟻群演算法比較
第5章蟻群演算法與遺傳、模擬退火演算法的對比
5.1遺傳演算法
5.1.1遺傳演算法與自然選擇
5.1.2遺傳演算法的基本步驟
5.1.3旅行商問題的遺傳演算法實現
5.2模擬退火演算法
5.2.1物理退火過程和Metroplis准則
5.2.2模擬退火法的基本原理
5.3蟻群演算法與遺傳演算法、模擬退火演算法的比較
5.3.1三種演算法的優化質量比較
5.3.2三種演算法收斂速度比較
5.3.3三種演算法的特點與比較分析
第6章蟻群演算法與遺傳、免疫演算法的融合
6.1遺傳演算法與螞蟻演算法融合的GAAA演算法
6.1.1遺傳演算法與螞蟻演算法融合的基本思想
……
第7章自適應蟻群演算法
第8章並行蟻群演算法
第9章蟻群演算法的收斂性與蟻群行為模型
第10章蟻群演算法在優化問題中的應用
附錄
參考文獻

E. 人工智慧導論蟻群優化演算法的尋優過程包含哪幾個階段尋優的准則有哪些

蟻群優化演算法的尋優過程包衡清敗咐顫含以下幾個階段:

1. 初始化:初始化螞蟻的位置和初始信息素濃度。
2. 路徑選擇:每隻螞蟻根據信息素濃度選擇路徑。
3. 更新信息素:每隻螞蟻在路程中釋放信息素,路徑上信息素濃度增加。
4. 更新最優路徑:將經過最短路徑的螞蟻留下的信息素濃度增加。
5. 改變路徑:增加路徑上信息素的影響,使得下一次選擇更優路徑的概率更大。

尋優的准則主要有兩個:

1. 最短路徑准則:目標是找到一正笑條路徑使得其總距離最短。
2. 最大流准則:目標是使得網路中的最大流量最大化。

F. 蟻群演算法及其應用實例

       蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種對自然界螞蟻的尋徑方式進行模擬而得到的一種仿生演算法,是一種用來在圖中尋找優化路徑的機率型演算法。
       螞蟻在運動過程中,可以在行走的路徑上留下信息素,後來的螞蟻可以感知到信息素的存在,信息素濃度越高的路徑越容易被後來的螞蟻選擇,從而形成一種正反饋現象。
       它能夠求出從原點出發,經過若干個給定的需求點,最終返回原點的最短路徑。這也就是著名的旅行商問題(Traveling Saleman Problem,TSP)。

       若螞蟻從A點出發到D點覓食,它可以隨機從ABD或ACD中選擇一條路。假設初始時為每條路分配一隻螞蟻,每個時間單位行走一步,則經過8個時間單位後,情形如下圖所示:ABD路線的螞蟻到達D點,ACD路線的螞蟻到達C點。

       那麼,再過8個時間單位,很容易可以得到下列情形:ABD路線的螞蟻回到A點,ACD路線的螞蟻到達D點。

α 代表信息素量對是否選擇當前路徑的影響程度,反映了蟻群在路徑搜索中隨機性因素作用的強度。
α 越大,螞蟻選擇以前走過的路徑的可能性越大,搜索的隨機性就會減弱。
α 過小,會導致蟻群搜索過早陷入局部最優,取值范圍通常為[1,4]。

β 反映了啟發式信息在指導蟻群搜索中的相對重要程度,蟻群尋優過程中先驗性、確定性因素作用的強度。
β 過大,雖然收斂速度加快,但是易陷入局部最優。
β 過小,蟻群易陷入純粹的隨機搜索,很難找到最優解。通常取[0,5]。

ρ 反映了信息素的蒸發程度,相反,1-ρ 表示信息素的保留水平
ρ 過大,信息素會發過快,容易導致最優路徑被排除。
ρ 過小,各路徑上信息素含量差別過小,以前搜索過的路徑被在此選擇的可能性過大,會影響演算法的隨機性和全局搜索能力。通常取[0.2,0.5]。

m過大,每條路徑上信息素趨於平均,正反饋作用減弱,從而導致收斂速度減慢。
m過小,可能導致一些從未搜索過的路徑信息素濃度減小為0,導致過早收斂,解的全局最優性降低

總信息量Q對演算法性能的影響有賴於αβρ的選取,以及演算法模型的選擇。
Q對ant-cycle模型蟻群演算法的性能沒有明顯影響,不必特別考慮,可任意選取。

G. 哪本python書立有蟻群演算法

簡介

蟻群演算法(ant colony optimization, ACO),又稱螞蟻演算法,是一種用來在圖中尋找優化路徑的機率型演算法。它由Marco Dorigo於1992年在他的博士論文中提出,其靈感來源於螞蟻在尋找食物過程中發現路徑的行為。蟻群演算法是一種模擬進化演算法,初步的研究表明該演算法具有許多優良的性質。針對PID控制器參數優化設計問題,將蟻群演算法設計的結果與遺傳演算法設計的結果進行了比較,數值模擬結果表明,蟻群演算法具有一種新的模擬進化優化方法的有效性和應用價值。
定義

各個螞蟻在沒有事先告訴他們食物在什麼地方的前提下開始尋找食物。當一隻找到食物以後,它會向環境釋放一種揮發性分泌物pheromone (稱為信息素,該物質隨著時間的推移會逐漸揮發消失,信息素濃度的大小表徵路徑的遠近)來實現的,吸引其他的螞蟻過來,這樣越來越多的螞蟻會找到食物。有些螞蟻並沒有像其它螞蟻一樣總重復同樣的路,他們會另闢蹊徑,如果另開辟的道路比原來的其他道路更短,那麼,漸漸地,更多的螞蟻被吸引到這條較短的路上來。最後,經過一段時間運行,可能會出現一條最短的路徑被大多數螞蟻重復著。

解決的問題

三維地形中,給出起點和重點,找到其最優路徑。

程序代碼:

numpy as npimport matplotlib.pyplot as plt%pylabcoordinates = np.array([[565.0,575.0],[25.0,185.0],[345.0,750.0],[945.0,685.0],[845.0,655.0],[880.0,660.0],[25.0,230.0],[525.0,1000.0],[580.0,1175.0],[650.0,1130.0],[1605.0,620.0],[1220.0,580.0],[1465.0,200.0],[1530.0, 5.0],[845.0,680.0],[725.0,370.0],[145.0,665.0],[415.0,635.0],[510.0,875.0],[560.0,365.0],[300.0,465.0],[520.0,585.0],[480.0,415.0],[835.0,625.0],[975.0,580.0],[1215.0,245.0],[1320.0,315.0],[1250.0,400.0],[660.0,180.0],[410.0,250.0],[420.0,555.0],[575.0,665.0],[1150.0,1160.0],[700.0,580.0],[685.0,595.0],[685.0,610.0],[770.0,610.0],[795.0,645.0],[720.0,635.0],[760.0,650.0],[475.0,960.0],[95.0,260.0],[875.0,920.0],[700.0,500.0],[555.0,815.0],[830.0,485.0],[1170.0, 65.0],[830.0,610.0],[605.0,625.0],[595.0,360.0],[1340.0,725.0],[1740.0,245.0]])def getdistmat(coordinates):num = coordinates.shape[0]distmat = np.zeros((52,52))for i in range(num):for j in range(i,num):distmat[i][j] = distmat[j][i]=np.linalg.norm(coordinates[i]-coordinates[j])return distmatdistmat = getdistmat(coordinates)numant = 40 #螞蟻個數numcity = coordinates.shape[0] #城市個數alpha = 1 #信息素重要程度因子beta = 5 #啟發函數重要程度因子rho = 0.1 #信息素的揮發速度Q = 1iter = 0itermax = 250etatable = 1.0/(distmat+np.diag([1e10]*numcity)) #啟發函數矩陣,表示螞蟻從城市i轉移到矩陣j的期望程度pheromonetable = np.ones((numcity,numcity)) # 信息素矩陣pathtable = np.zeros((numant,numcity)).astype(int) #路徑記錄表distmat = getdistmat(coordinates) #城市的距離矩陣lengthaver = np.zeros(itermax) #各代路徑的平均長度lengthbest = np.zeros(itermax) #各代及其之前遇到的最佳路徑長度pathbest = np.zeros((itermax,numcity)) # 各代及其之前遇到的最佳路徑長度while iter < itermax:# 隨機產生各個螞蟻的起點城市if numant <= numcity:#城市數比螞蟻數多pathtable[:,0] = np.random.permutation(range(0,numcity))[:numant]else: #螞蟻數比城市數多,需要補足pathtable[:numcity,0] = np.random.permutation(range(0,numcity))[:]pathtable[numcity:,0] = np.random.permutation(range(0,numcity))[:numant-numcity]length = np.zeros(numant) #計算各個螞蟻的路徑距離for i in range(numant):visiting = pathtable[i,0] # 當前所在的城市#visited = set() #已訪問過的城市,防止重復#visited.add(visiting) #增加元素unvisited = set(range(numcity))#未訪問的城市unvisited.remove(visiting) #刪除元素for j in range(1,numcity):#循環numcity-1次,訪問剩餘的numcity-1個城市#每次用輪盤法選擇下一個要訪問的城市listunvisited = list(unvisited)probtrans = np.zeros(len(listunvisited))for k in range(len(listunvisited)):probtrans[k] = np.power(pheromonetable[visiting][listunvisited[k]],alpha)*np.power(etatable[visiting][listunvisited[k]],alpha)cumsumprobtrans = (probtrans/sum(probtrans)).cumsum()cumsumprobtrans -= np.random.rand()k = listunvisited[find(cumsumprobtrans>0)[0]] #下一個要訪問的城市pathtable[i,j] = kunvisited.remove(k)#visited.add(k)length[i] += distmat[visiting][k]visiting = klength[i] += distmat[visiting][pathtable[i,0]] #螞蟻的路徑距離包括最後一個城市和第一個城市的距離#print length# 包含所有螞蟻的一個迭代結束後,統計本次迭代的若干統計參數lengthaver[iter] = length.mean()if iter == 0:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()else:if length.min() > lengthbest[iter-1]:lengthbest[iter] = lengthbest[iter-1]pathbest[iter] = pathbest[iter-1].()else:lengthbest[iter] = length.min()pathbest[iter] = pathtable[length.argmin()].()# 更新信息素changepheromonetable = np.zeros((numcity,numcity))for i in range(numant):for j in range(numcity-1):changepheromonetable[pathtable[i,j]][pathtable[i,j+1]] += Q/distmat[pathtable[i,j]][pathtable[i,j+1]]changepheromonetable[pathtable[i,j+1]][pathtable[i,0]] += Q/distmat[pathtable[i,j+1]][pathtable[i,0]]pheromonetable = (1-rho)*pheromonetable + changepheromonetableiter += 1 #迭代次數指示器+1#觀察程序執行進度,該功能是非必須的if (iter-1)%20==0:print iter-1# 做出平均路徑長度和最優路徑長度fig,axes = plt.subplots(nrows=2,ncols=1,figsize=(12,10))axes[0].plot(lengthaver,'k',marker = u'')axes[0].set_title('Average Length')axes[0].set_xlabel(u'iteration')axes[1].plot(lengthbest,'k',marker = u'')axes[1].set_title('Best Length')axes[1].set_xlabel(u'iteration')fig.savefig('Average_Best.png',dpi=500,bbox_inches='tight')plt.close()#作出找到的最優路徑圖bestpath = pathbest[-1]plt.plot(coordinates[:,0],coordinates[:,1],'r.',marker=u'$cdot$')plt.xlim([-100,2000])plt.ylim([-100,1500])for i in range(numcity-1):#m,n = bestpath[i],bestpath[i+1]print m,nplt.plot([coordinates[m][0],coordinates[n][0]],[coordinates[m][1],coordinates[n][1]],'k')plt.plot([coordinates[bestpath[0]][0],coordinates[n][0]],[coordinates[bestpath[0]][1],coordinates[n][1]],'b')ax=plt.gca()ax.set_title("Best Path")ax.set_xlabel('X axis')ax.set_ylabel('Y_axis')plt.savefig('Best Path.png',dpi=500,bbox_inches='tight')plt.close()
閱讀全文

與螞蟻優化演算法視頻相關的資料

熱點內容
馬思純參加密室大逃脫 瀏覽:317
文件夾冬季澆築溫度 瀏覽:710
京東有返點的aPp叫什麼 瀏覽:601
如何查看u點家庭伺服器是幾兆 瀏覽:258
python應用介面怎麼接 瀏覽:63
腐蝕怎麼進不去伺服器啊 瀏覽:357
linuxcpiogz 瀏覽:626
安卓中的布局是什麼文件 瀏覽:395
dex反編譯部分代碼無法查看 瀏覽:461
linuxandroid編譯 瀏覽:601
程序員電視劇20集 瀏覽:905
怎麼擴建文件夾 瀏覽:158
波普諾社會學pdf 瀏覽:96
通風網路理論與演算法 瀏覽:737
win8如何關閉伺服器 瀏覽:381
醫護比例演算法 瀏覽:804
伺服器s是什麼意思 瀏覽:31
華為手機怎麼設置不讓app訪問照片 瀏覽:694
編程貓微信小程序 瀏覽:390
app內部購如何購買 瀏覽:332