1. noip復賽會考哪些類型的題目該如何復習
【模擬】高精度加、減、乘
【圖論】圖的表示:鄰接矩陣,鄰接表,邊表
傳遞閉包和floyd
最小生成樹演算法(至少會一種)
單源最短路dijkstra(O(n2))或者bellman(spfa優化,O(km))
拓撲排序
【樹】 樹的先序、中序、後序遍歷
樹中的最長路(兩遍bfs或者dfs)
並查集
【搜索】深搜、寬搜
【排序】冒泡排序、快速排序 選擇排序 記數排序(又稱「桶排」)
【動態規劃】
01背包,無限背包
【數論】
最大公約數和最小公倍數,進制轉換
【模擬】
表達式求值(中綴轉後綴,棧的操作)、前綴表達式、中綴表達式、後綴表達式之間的相互轉化
【樹】線段樹 字母樹
【搜索】迭代深搜
【動態規劃】
樹形動態規劃、最長不下降子序列、最長公共子序列和最長公共子串
【排序】歸並排序、堆排序
【串】 KMP(字串匹配)
【數論】 判斷質數(sqrt式與篩法求素數)
【有序表】順序表、鏈表、線段樹及其基本操作
【圖論】
Dijkstra演算法的堆優化、求割點、求割邊、強連通分量、歐拉路(邊一次)、漢密爾頓迴路(點一次)、差分約束系統
【動態規劃】
狀態壓縮的動態規劃
【分治】二分查找、二分答案、最近點對
【樹】 歸並樹(逆序對)
【其他】
Hash、矩形切割(與線段樹的比較)
【數論】歐拉函數
【幾何】線段相交
【有序表】樹狀數組
【樹】 Lca(最近公共祖先)與rmq(區間最值)
【圖論】匹配演算法(最大匹配,最小點覆蓋,最小路徑覆蓋,最大獨立集)
網路流演算法(最大流dinic,最小費用流spfa)
【動態規劃】動態規劃的優化(快速冪,改變狀態,優化轉移,單調性,四邊形不等式)
【串】 Kmp擴展、AC自動機
【數論】 中國剩餘定理、概率與期望
【幾何】 最遠點對(旋轉卡殼) 、凸包(水平序和極角序)
、半平面交
【有序表】平衡樹(sbt、treap、splay)後綴數組
【其他】隨機化演算法、高斯消元
2. acm競賽的演算法總共有那些范圍 求大牛概括......
初級:
一.基本演算法:
(1)枚舉. (poj1753,poj2965)
(2)貪心(poj1328,poj2109,poj2586)
(3)遞歸和分治法.
(4)遞推.
(5)構造法.(poj3295)
(6)模擬法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.圖演算法:
(1)圖的深度優先遍歷和廣度優先遍歷.
(2)最短路徑演算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
(3)最小生成樹演算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓撲排序 (poj1094)
(5)二分圖的最大匹配 (匈牙利演算法) (poj3041,poj3020)
(6)最大流的增廣路演算法(KM演算法). (poj1459,poj3436)
三.數據結構.
(1)串 (poj1035,poj3080,poj1936)
(2)排序(快排、歸並排(與逆序數有關)、堆排) (poj2388,poj2299)
(3)簡單並查集的應用.
(4)哈希表和二分查找等高效查找法(數的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼樹(poj3253)
(6)堆
(7)trie樹(靜態建樹、動態建樹) (poj2513)
四.簡單搜索
(1)深度優先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
(2)廣度優先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)簡單搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.動態規劃
(1)背包問題. (poj1837,poj1276)
(2)型如下表的簡單DP(可參考lrj的書 page149):
1.E[j]=opt{D[i]+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最長公共子序列)
(poj3176,poj1080,poj1159)
3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最優二分檢索樹問題)
六.數學
(1)組合數學:
1.加法原理和乘法原理.
2.排列組合.
3.遞推關系.
(POJ3252,poj1850,poj1019,poj1942)
(2)數論.
1.素數與整除問題
2.進制位.
3.同餘模運算.
(poj2635, poj3292,poj1845,poj2115)
(3)計算方法.
1.二分法求解單調函數相關知識.(poj3273,poj3258,poj1905,poj3122)
七.計算幾何學.
(1)幾何公式.
(2)叉積和點積的運用(如線段相交的判定,點到線段的距離等). (poj2031,poj1039)
(3)多邊型的簡單演算法(求面積)和相關判定(點在多邊型內,多邊型是否相交)
(poj1408,poj1584)
(4)凸包. (poj2187,poj1113)
3. 點集的Delaunay三角剖分方法
3.2.1.1 基本理論
B.Delaunay於1934年提出了Delaunay三角網格的概念,它是Voronoi圖(簡稱V圖)的幾何對偶圖,具有嚴格的數學定義和完備的理論基礎。
圖3.1 Voronoi圖(虛線)及對應的Delaunay三角剖分(實線)
3.2.1.1.1 Voronoi圖
假設V={v1,v2,…,vN},N≥3是歐幾里得平面上的一個點集,並且這些點不共線,四點不共圓。用d(vi,vj)表示點vi與vj間的歐幾里得距離。
設x為平面上的點,則:
區域V(i)={x∈E2d(x,vi)≤d(x,vj),j=1,2,…,N,j≠i}稱為Voronoi多邊形,也稱為該點的鄰域。點集中所有點的Voronoi多邊形組成Voronoi圖,如圖3.1所示。
平面上的Voronoi圖可以看做是點集V中的每個點作為生長核,以相同的速率向外擴張,直到彼此相遇為止而在平面上形成的圖形。除最外層的點形成開放的區域外,其餘每個點都形成一個凸多邊形。
3.2.1.1.2 Delaunay三角剖分
Delaunay三角形網格為V圖的幾何對偶圖。在二維平面中,點集中若無四點共圓,則該點集V圖中每個頂點恰好是3個邊的公共頂點,並且是3個Voronoi多邊形的公共頂點;上述3個Voronoi多邊形所對應的點集中的點連成的三角形稱為與該Voronoi頂點對應的Delaunay三角形,如圖3.1所示。如果一個二維點集中有四點共圓的情況,此時,這些點對應的Voronoi多邊形共用一個Voronoi頂點,這個公共的Voronoi頂點對應多於3個Voronoi多邊形,也就是對應於點集中多於3個的點;這些點可以連成多於一個的三角形。此時,可以任意將上述幾個點形成的凸包劃分為若干三角形,這些三角形也稱為和這個Voronoi頂點對應的Delaunay三角形。
所有與Voronoi頂點對應的Delaunay三角形就構成了Delaunay三角剖分。當無退化情況(四點共圓)出現時,點集的Delaunay三角剖分是唯一的。
3.2.1.1.3 Delaunay三角剖分的特性
Delaunay三角剖分具有兩個重要特性:
(1)最小角最大化特性:即要求三角形的最小內角盡量最大,具體地說是指在兩個相鄰的三角形構成凸四邊形的對角線,在相互交換後,6個內角的最小角不再增大,並且使三角形盡量接近等邊。
(2)空外接圓特性:即三角形的外接圓中不包含其他三角形的頂點(任意四點不能共圓),該特性保證了最鄰近的點構成三角形,使三角形的邊長之和盡量最小。
3.2.1.2 常用演算法
Delaunay三角剖分方法是目前最流行的通用的全自動網格生成方法之一。比較有效的Delaunay三角剖分演算法有分治演算法、逐點插入法和三角網生長法等(Tsai,1993),其中逐點插入法由於其演算法的簡潔性且易於實現,因而獲得廣泛的應用。其主要思路是先構建一個包含點集或區域的初始網格,再依次向初始網格中插入點,最後形成Delaunay三角剖分。
採用逐點插入法建立Delaunay三角網的演算法思想最初是由Lawson於1977年提出的(Lawson,1977),Bowyer和Watson等先後對該演算法進行了發展和完善(Bowyer,1981;Watson,1981)。目前涌現出的大量逐點插入法中,主要為以Lawson演算法代表的對角線交換演算法和以Bowyer-Watson演算法代表的空外接圓法。
3.2.1.2.1 Lawson演算法
Lawson演算法的主要思想是將要插入的數據點逐一插入到一個已存在的Delaunay三角網內,然後再用局部優化演算法(Local Optimization Procere,LOP)優化使其滿足Delau-nay三角網的要求,其主要步驟如下:
圖3.7 Bowyer-Watson演算法剖分實例
4. 程序員必須掌握哪些演算法
一.基本演算法:
枚舉. (poj1753,poj2965)
貪心(poj1328,poj2109,poj2586)
遞歸和分治法.
遞推.
構造法.(poj3295)
模擬法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.圖演算法:
圖的深度優先遍歷和廣度優先遍歷.
最短路徑演算法(dijkstra,bellman-ford,floyd,heap+dijkstra)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
最小生成樹演算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
拓撲排序 (poj1094)
二分圖的最大匹配 (匈牙利演算法) (poj3041,poj3020)
最大流的增廣路演算法(KM演算法). (poj1459,poj3436)
三.數據結構.
串 (poj1035,poj3080,poj1936)
排序(快排、歸並排(與逆序數有關)、堆排) (poj2388,poj2299)
簡單並查集的應用.
哈希表和二分查找等高效查找法(數的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
哈夫曼樹(poj3253)
堆
trie樹(靜態建樹、動態建樹) (poj2513)
四.簡單搜索
深度優先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
廣度優先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
簡單搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.動態規劃
背包問題. (poj1837,poj1276)
型如下表的簡單DP(可參考lrj的書 page149):
E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最長公共子序列) (poj3176,poj1080,poj1159)
C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最優二分檢索樹問題)
六.數學
組合數學:
1.加法原理和乘法原理.
2.排列組合.
3.遞推關系.
(POJ3252,poj1850,poj1019,poj1942)
數論.
1.素數與整除問題
2.進制位.
3.同餘模運算.
(poj2635, poj3292,poj1845,poj2115)
計算方法.
1.二分法求解單調函數相關知識.(poj3273,poj3258,poj1905,poj3122)
七.計算幾何學.
幾何公式.
叉積和點積的運用(如線段相交的判定,點到線段的距離等). (poj2031,poj1039)
多邊型的簡單演算法(求面積)和相關判定(點在多邊型內,多邊型是否相交)
(poj1408,poj1584)
凸包. (poj2187,poj1113)
中級(校賽壓軸及省賽中等難度):
一.基本演算法:
C++的標准模版庫的應用. (poj3096,poj3007)
較為復雜的模擬題的訓練(poj3393,poj1472,poj3371,poj1027,poj2706)
二.圖演算法:
差分約束系統的建立和求解. (poj1201,poj2983)
最小費用最大流(poj2516,poj2516,poj2195)
雙連通分量(poj2942)
強連通分支及其縮點.(poj2186)
圖的割邊和割點(poj3352)
最小割模型、網路流規約(poj3308)
三.數據結構.
線段樹. (poj2528,poj2828,poj2777,poj2886,poj2750)
靜態二叉檢索樹. (poj2482,poj2352)
樹狀樹組(poj1195,poj3321)
RMQ. (poj3264,poj3368)
並查集的高級應用. (poj1703,2492)
KMP演算法. (poj1961,poj2406)
四.搜索
最優化剪枝和可行性剪枝
搜索的技巧和優化 (poj3411,poj1724)
記憶化搜索(poj3373,poj1691)
五.動態規劃
較為復雜的動態規劃(如動態規劃解特別的旅行商TSP問題等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
記錄狀態的動態規劃. (POJ3254,poj2411,poj1185)
樹型動態規劃(poj2057,poj1947,poj2486,poj3140)
六.數學
組合數學:
1.容斥原理.
2.抽屜原理.
3.置換群與Polya定理(poj1286,poj2409,poj3270,poj1026).
4.遞推關系和母函數.
數學.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率問題. (poj3071,poj3440)
3.GCD、擴展的歐幾里德(中國剩餘定理) (poj3101)
計算方法.
1.0/1分數規劃. (poj2976)
2.三分法求解單峰(單谷)的極值.
3.矩陣法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
隨機化演算法(poj3318,poj2454)
雜題(poj1870,poj3296,poj3286,poj1095)
七.計算幾何學.
坐標離散化.
掃描線演算法(例如求矩形的面積和周長並,常和線段樹或堆一起使用)
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
多邊形的內核(半平面交)(poj3130,poj3335)
幾何工具的綜合應用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)
高級(regional中等難度):
一.基本演算法要求:
代碼快速寫成,精簡但不失風格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
保證正確性和高效性. poj3434
二.圖演算法:
度限制最小生成樹和第K最短路. (poj1639)
最短路,最小生成樹,二分圖,最大流問題的相關理論(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
最優比率生成樹. (poj2728)
最小樹形圖(poj3164)
次小生成樹.
無向圖、有向圖的最小環
三.數據結構.
trie圖的建立和應用. (poj2778)
LCA和RMQ問題(LCA(最近公共祖先問題) 有離線演算法(並查集+dfs) 和 在線演算法(RMQ+dfs)).(poj1330)
雙端隊列和它的應用(維護一個單調的隊列,常常在動態規劃中起到優化狀態轉移的目的). (poj2823)
左偏樹(可合並堆).
後綴樹(非常有用的數據結構,也是賽區考題的熱點).(poj3415,poj3294)
四.搜索
較麻煩的搜索題目訓練(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)
廣搜的狀態優化:利用M進制數存儲狀態、轉化為串用hash表判重、按位壓縮存儲狀態、雙向廣搜、A*演算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
深搜的優化:盡量用位運算、一定要加剪枝、函數參數盡可能少、層數不易過大、可以考慮雙向搜索或者是輪換搜索、IDA*演算法. (poj3131,poj2870,poj2286)
五.動態規劃
需要用數據結構優化的動態規劃.(poj2754,poj3378,poj3017)
四邊形不等式理論.
較難的狀態DP(poj3133)
六.數學
組合數學.
1.MoBius反演(poj2888,poj2154)
2.偏序關系理論.
博奕論.
1.極大極小過程(poj3317,poj1085)
2.Nim問題.
七.計算幾何學.
半平面求交(poj3384,poj2540)
可視圖的建立(poj2966)
點集最小圓覆蓋.
對踵點(poj2079)
5. 是的 計算機演算法
計算機演算法是以一步接一步的方式來詳細描述計算機如何將輸入轉化為所要求的輸出的過程,或者說,演算法是對計算機上執行的計算過程的具體描述。
編輯本段演算法性質一個演算法必須具備以下性質: (1)演算法首先必須是正確的,即對於任意的一組輸入,包括合理的輸入與不合理的輸入,總能得到預期的輸出。如果一個演算法只是對合理的輸入才能得到預期的輸出,而在異常情況下卻無法預料輸出的結果,那麼它就不是正確的。 (2)演算法必須是由一系列具體步驟組成的,並且每一步都能夠被計算機所理解和執行,而不是抽象和模糊的概念。 (3)每個步驟都有確定的執行順序,即上一步在哪裡,下一步是什麼,都必須明確,無二義性。 (4)無論演算法有多麼復雜,都必須在有限步之後結束並終止運行,即演算法的步驟必須是有限的。在任何情況下,演算法都不能陷入無限循環中。 一個問題的解決方案可以有多種表達方式,但只有滿足以上4個條件的解才能稱之為演算法。編輯本段重要演算法A*搜尋演算法
俗稱A星演算法。這是一種在圖形平面上,有多個節點的路徑,求出最低通過成本的演算法。常用於游戲中的NPC的移動計算,或線上游戲的BOT的移動計算上。該演算法像Dijkstra演算法一樣,可以找到一條最短路徑;也像BFS一樣,進行啟發式的搜索。
Beam Search
束搜索(beam search)方法是解決優化問題的一種啟發式方法,它是在分枝定界方法基礎上發展起來的,它使用啟發式方法估計k個最好的路徑,僅從這k個路徑出發向下搜索,即每一層只有滿意的結點會被保留,其它的結點則被永久拋棄,從而比分枝定界法能大大節省運行時間。束搜索於20 世紀70年代中期首先被應用於人工智慧領域,1976 年Lowerre在其稱為HARPY的語音識別系統中第一次使用了束搜索方法,他的目標是並行地搜索幾個潛在的最優決策路徑以減少回溯,並快速地獲得一個解。
二分取中查找演算法
一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。這種搜索演算法每一次比較都使搜索范圍縮小一半。
Branch and bound
分支定界(branch and bound)演算法是一種在問題的解空間樹上搜索問題的解的方法。但與回溯演算法不同,分支定界演算法採用廣度優先或最小耗費優先的方法搜索解空間樹,並且,在分支定界演算法中,每一個活結點只有一次機會成為擴展結點。
數據壓縮
數據壓縮是通過減少計算機中所存儲數據或者通信傳播中數據的冗餘度,達到增大數據密度,最終使數據的存儲空間減少的技術。數據壓縮在文件存儲和分布式系統領域有著十分廣泛的應用。數據壓縮也代表著尺寸媒介容量的增大和網路帶寬的擴展。
Diffie–Hellman密鑰協商
Diffie–Hellman key exchange,簡稱「D–H」,是一種安全協議。它可以讓雙方在完全沒有對方任何預先信息的條件下通過不安全信道建立起一個密鑰。這個密鑰可以在後續的通訊中作為對稱密鑰來加密通訊內容。
Dijkstra』s 演算法
迪科斯徹演算法(Dijkstra)是由荷蘭計算機科學家艾茲格·迪科斯徹(Edsger Wybe Dijkstra)發明的。演算法解決的是有向圖中單個源點到其他頂點的最短路徑問題。舉例來說,如果圖中的頂點表示城市,而邊上的權重表示著城市間開車行經的距離,迪科斯徹演算法可以用來找到兩個城市之間的最短路徑。
動態規劃
動態規劃是一種在數學和計算機科學中使用的,用於求解包含重疊子問題的最優化問題的方法。其基本思想是,將原問題分解為相似的子問題,在求解的過程中通過子問題的解求出原問題的解。動態規劃的思想是多種演算法的基礎,被廣泛應用於計算機科學和工程領域。比較著名的應用實例有:求解最短路徑問題,背包問題,項目管理,網路流優化等。這里也有一篇文章說得比較詳細。
歐幾里得演算法
在數學中,輾轉相除法,又稱歐幾里得演算法,是求最大公約數的演算法。輾轉相除法首次出現於歐幾里得的《幾何原本》(第VII卷,命題i和ii)中,而在中國則可以追溯至東漢出現的《九章算術》。
最大期望(EM)演算法
在統計計算中,最大期望(EM)演算法是在概率(probabilistic)模型中尋找參數最大似然估計的演算法,其中概率模型依賴於無法觀測的隱藏變數(Latent Variable)。最大期望經常用在機器學習和計算機視覺的數據聚類(Data Clustering)領域。最大期望演算法經過兩個步驟交替進行計算,第一步是計算期望(E),利用對隱藏變數的現有估計值,計算其最大似然估計值;第二步是最大化(M),最大化在 E 步上求得的最大似然值來計算參數的值。M 步上找到的參數估計值被用於下一個 E 步計算中,這個過程不斷交替進行。
快速傅里葉變換(FFT)
快速傅里葉變換(Fast Fourier Transform,FFT),是離散傅里葉變換的快速演算法,也可用於計算離散傅里葉變換的逆變換。快速傅里葉變換有廣泛的應用,如數字信號處理、計算大整數乘法、求解偏微分方程等等。
哈希函數
HashFunction是一種從任何一種數據中創建小的數字「指紋」的方法。該函數將數據打亂混合,重新創建一個叫做散列值的指紋。散列值通常用來代表一個短的隨機字母和數字組成的字元串。好的散列函數在輸入域中很少出現散列沖突。在散列表和數據處理中,不抑制沖突來區別數據,會使得資料庫記錄更難找到。
堆排序
Heapsort是指利用堆積樹(堆)這種數據結構所設計的一種排序演算法。堆積樹是一個近似完全二叉樹的結構,並同時滿足堆積屬性:即子結點的鍵值或索引總是小於(或者大於)它的父結點。
歸並排序
Merge sort是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
RANSAC 演算法
RANSAC 是」RANdom SAmpleConsensus」的縮寫。該演算法是用於從一組觀測數據中估計數學模型參數的迭代方法,由Fischler and Bolles在1981提出,它是一種非確定性演算法,因為它只能以一定的概率得到合理的結果,隨著迭代次數的增加,這種概率是增加的。該演算法的基本假設是觀測數據集中存在」inliers」(那些對模型參數估計起到支持作用的點)和」outliers」(不符合模型的點),並且這組觀測數據受到雜訊影響。RANSAC 假設給定一組」inliers」數據就能夠得到最優的符合這組點的模型。
RSA加密演演算法
這是一個公鑰加密演算法,也是世界上第一個適合用來做簽名的演算法。今天的RSA已經專利失效,其被廣泛地用於電子商務加密,大家都相信,只要密鑰足夠長,這個演算法就會是安全的。
並查集Union-find
並查集是一種樹型的數據結構,用於處理一些不相交集合(Disjoint Sets)的合並及查詢問題。常常在使用中以森林來表示。
Viterbi algorithm
尋找最可能的隱藏狀態序列(Finding most probable sequence of hidden states)。編輯本段演算法特點1.有窮性。一個演算法應包含有限的操作步驟,而不能是無限的。事實上「有窮性」往往指「在合理的范圍之內」。如果讓計算機執行一個歷時1000年才結束的演算法,這雖然是有窮的,但超過了合理的限度,人們不把他是為有效演算法。 2. 確定性。演算法中的每一個步驟都應當是確定的,而不應當是含糊的、模稜兩可的。演算法中的每一個步驟應當不致被解釋成不同的含義,而應是十分明確的。也就是說,演算法的含義應當是唯一的,而不應當產生「歧義性」。 3. 有零個或多個輸入、所謂輸入是指在執行演算法是需要從外界取得必要的信息。 4. 有一個或多個輸出。演算法的目的是為了求解,沒有輸出的演算法是沒有意義的。 5.有效性。 演算法中的每一個 步驟都應當能有效的執行。並得到確定的結果。編輯本段演算法與程序雖然演算法與計算機程序密切相關,但二者也存在區別:計算機程序是演算法的一個實例,是將演算法通過某種計算機語言表達出來的具體形式;同一個演算法可以用任何一種計算機語言來表達。 演算法列表 圖論 路徑問題 0/1邊權最短路徑 BFS 非負邊權最短路徑(Dijkstra) 可以用Dijkstra解決問題的特徵 負邊權最短路徑 Bellman-Ford Bellman-Ford的Yen-氏優化 差分約束系統 Floyd 廣義路徑問題 傳遞閉包 極小極大距離 / 極大極小距離 Euler Path / Tour 圈套圈演算法 混合圖的 Euler Path / Tour Hamilton Path / Tour 特殊圖的Hamilton Path / Tour 構造 生成樹問題 最小生成樹 第k小生成樹 最優比率生成樹 0/1分數規劃 度限制生成樹 連通性問題 強大的DFS演算法 無向圖連通性 割點 割邊 二連通分支 有向圖連通性 強連通分支 2-SAT 最小點基 有向無環圖 拓撲排序 有向無環圖與動態規劃的關系 二分圖匹配問題 一般圖問題與二分圖問題的轉換思路 最大匹配 有向圖的最小路徑覆蓋 0 / 1矩陣的最小覆蓋 完備匹配 最優匹配 穩定婚姻 網路流問題 網路流模型的簡單特徵和與線性規劃的關系 最大流最小割定理 最大流問題 有上下界的最大流問題 循環流 最小費用最大流 / 最大費用最大流 弦圖的性質和判定 組合數學 解決組合數學問題時常用的思想 逼近 遞推 / 動態規劃 概率問題 Polya定理 計算幾何 / 解析幾何 計算幾何的核心:叉積 / 面積 解析幾何的主力:復數 基本形 點 直線,線段 多邊形 凸多邊形 / 凸包 凸包演算法的引進,卷包裹法 Graham掃描法 水平序的引進,共線凸包的補丁 完美凸包演算法 相關判定 兩直線相交 兩線段相交 點在任意多邊形內的判定 點在凸多邊形內的判定 經典問題 最小外接圓 近似O(n)的最小外接圓演算法 點集直徑 旋轉卡殼,對踵點 多邊形的三角剖分 數學 / 數論 最大公約數 Euclid演算法 擴展的Euclid演算法 同餘方程 / 二元一次不定方程 同餘方程組 線性方程組 高斯消元法 解mod 2域上的線性方程組 整系數方程組的精確解法 矩陣 行列式的計算 利用矩陣乘法快速計算遞推關系 分數 分數樹 連分數逼近 數論計算 求N的約數個數 求phi(N) 求約數和 快速數論變換 …… 素數問題 概率判素演算法 概率因子分解 數據結構 組織結構 二叉堆 左偏樹 二項樹 勝者樹 跳躍表 樣式圖標 斜堆 reap 統計結構 樹狀數組 虛二叉樹 線段樹 矩形面積並 圓形面積並 關系結構 Hash表 並查集 路徑壓縮思想的應用 STL中的數據結構 vector deque set / map 動態規劃 / 記憶化搜索 動態規劃和記憶化搜索在思考方式上的區別 最長子序列系列問題 最長不下降子序列 最長公共子序列 一類NP問題的動態規劃解法 樹型動態規劃 背包問題 動態規劃的優化 四邊形不等式 函數的凸凹性 狀態設計 規劃方向 線性規劃 常用思想 二分 最小表示法 串 KMP Trie結構 後綴樹/後綴數組 LCA/RMQ 有限狀態自動機理論 排序 選擇/冒泡 快速排序 堆排序 歸並排序 基數排序 拓撲排序 排序網路
擴展閱讀:
1
《計算機演算法設計與分析導論》朱清新等編著人民郵電出版社
開放分類:
計算機,演算法
6. 關於NOIP
NOIP級別中,普及組和提高組的要求不同。
但是這幾類動規的題目掌握了,基本也就可以了:
1、背包問題:01背包、完全背包、需要構造的多維01背包
詳見背包九講
2、最大降序:例如打導彈
3、矩陣相乘:例如能量珠子
4、買股票
5、方格取數:單向的、雙向的
6、三角取數
這些都是簡單的動規的應用,必須掌握,背也要背出來,還要會套用。
至於排序,本人認為基本的選擇排序大家都會,快速排序是一定要會的,當數據規模<500時用選擇排序,當數據規模在500和100000之間是用快速排序,但是NOIP中經常考到基數排序,例如劃分數線等,數據規模會達到1000000,用其他的排序法可能會超時一兩個測試點。
至於搜索,那是必須掌握的深搜、廣搜都要會,主要是深搜,當提高組碰到一下子想不出動規的狀態轉移方程式,深搜窮舉也是可行的,一般都能拿到不少的分數。個人之間廣搜的用處不大,程序復雜而且爆機率很高。當然n個for的窮舉法在不得已的時候也能得不少分,只要if剪枝的好,對付八後問題等問題時,時間效率比很高。
另外就是圖的遍歷,有關圖的最小生成樹、圖的單源最短路徑,也是需要很好地掌握,一直會考。當然,深搜的本事高的人可以用深搜搞定。
總結如下:要得一等,必須對模擬法和窮舉法有深刻的體會,並知道很多變通的手段;對快排要背的滾瓜爛熟;對深搜要做到不管是貪心還是動規的題,都能用深搜實現,只不過少量點超時而已;動規要記住六大模型,然後背包要理解透徹;數學很重要,數學分析的題要做對,例如排組合、凸包、計算幾何近幾年常考。有了這些,一等可以穩拿。
7. 常見演算法有哪些
模擬
擬陣
暴力
貪心
二分法
整體二
三分法
一般動規與遞推
斯坦納樹
動態樹分治
2-SAT
並查集
差分約束
最短路
最小割
費用流
最大流
有上下界網路流
虛樹
矩陣樹定理
最小生成樹
點分治
樹鏈剖分
prufer編碼
哈夫曼樹
拉格朗日乘數法
BSGS
博弈論
矩陣乘法
高斯消元
容斥原理
抽屜原理
模線性方程組
莫比烏斯反演
快速傅里葉變換
擴展歐幾里得演算法(
裴蜀定理
dfs序
深度搜索
迭代深搜
廣度搜索
雙向廣搜
啟發式搜索
dancing link
迴文自動機
KMP
字典樹
後綴數組
AC自動機
後綴自動機
manacher
凸包
掃描線
三角剖分
旋轉卡殼
半平面交
cdq分治
莫隊演算法
爬山演算法
分數規劃
模擬退火
朱劉演算法
隨機增量法
倍增演算法