A.對稱加密技術 a. 描述 對稱演算法(symmetric algorithm),有時又叫傳統密碼演算法,就是加密密鑰能夠從解密密鑰中推算出來,同時解密密鑰也可以從加密密鑰中推算出來。而在大多數的對稱演算法中,加密密鑰和解密密鑰是相同的。所以也稱這種加密演算法為秘密密鑰演算法或單密鑰演算法。它要求發送方和接收方在安全通信之前,商定一個密鑰。對稱演算法的安全性依賴於密鑰,泄漏密鑰就意味著任何人都可以對他們發送或接收的消息解密,所以密鑰的保密性對通信性至關重要。 b.特點分析 對稱加密的優點在於演算法實現後的效率高、速度快。 對稱加密的缺點在於密鑰的管理過於復雜。如果任何一對發送方和接收方都有他們各自商議的密鑰的話,那麼很明顯,假設有N個用戶進行對稱加密通信,如果按照上述方法,則他們要產生N(N-1)把密鑰,每一個用戶要記住或保留N-1把密鑰,當N很大時,記住是不可能的,而保留起來又會引起密鑰泄漏可能性的增加。常用的對稱加密演算法有DES,DEA等。 B.非對稱加密技術 a.描述 非對稱加密(dissymmetrical encryption),有時又叫公開密鑰演算法(public key algorithm)。這種加密演算法是這樣設計的:用作加密的密鑰不同於用作解密的密鑰,而且解密密鑰不能根據加密密鑰計算出來(至少在合理假定的長時間內)。之所以又叫做公開密鑰演算法是由於加密密鑰可以公開,即陌生人可以得到它並用來加密信息,但只有用相應的解密密鑰才能解密信息。在這種加密演算法中,加密密鑰被叫做公開密鑰(public key),而解密密鑰被叫做私有密鑰(private key)。 b.特點分析 非對稱加密的缺點在於演算法實現後的效率低、速度慢。 非對稱加密的優點在於用戶不必記憶大量的提前商定好的密鑰,因為發送方和接收方事先根本不必商定密鑰,發放方只要可以得到可靠的接收方的公開密鑰就可以給他發送信息了,而且即使雙方根本互不相識。但為了保證可靠性,非對稱加密演算法需要一種與之相配合使用的公開密鑰管理機制,這種公開密鑰管理機制還要解決其他一些公開密鑰所帶來的問題。常用的非對稱加密演算法有RSA等。 (3) 關於密碼技術 密碼技術包括加密技術和密碼分析技術,也即加密和解密技術兩個方面。在一個新的加密演算法的研發需要有相應的數學理論證明,證明這個演算法的安全性有多高,同時還要從密碼分析的角度對這個演算法進行安全證明,說明這個演算法對於所知的分析方法來說是有防範作用的。 三、對稱加密演算法分析 對稱加密演算法的分類 對稱加密演算法可以分成兩類:一類為序列演算法(stream algorithm):一次只對明文中單個位(有時為位元組)加密或解密運算。另一類為分組演算法(block algorithm):一次明文的一組固定長度的位元組加密或解密運算。 現代計算機密碼演算法一般採用的都是分組演算法,而且一般分組的長度為64位,之所以如此是由於這個長度大到足以防止分析破譯,但又小到足以方便使用。 1.DES加密演算法 (Data Encryption Standard )
(1) 演算法簡介
1973 年 5 月 15 日,美國國家標准局 (NBS) 在「聯邦注冊」上發布了一條通知,徵求密碼演算法,用於在傳輸和存儲期間保護數據。IBM 提交了一個候選演算法,它是 IBM 內部開發的,名為 LUCIFER。在美國國家安全局 (NSA) 的「指導」下完成了演算法評估之後,在 1977 年 7 月 15 日,NBS 採納了 LUCIFER 演算法的修正版作為新的數據加密標准。
原先規定使用10年,但由於新的加密標准還沒有完成,所以DES演算法及其的變形演算法一直廣泛的應用於信息加密方面。 (2) 演算法描述 (包括加密和解密)
Feistel結構(畫圖說明)。
DES 的工作方式:可怕的細節
DES 將消息分成 64 位(即 16 個十六進制數)一組進行加密。DES 使用「密鑰」進行加密,從符號的角度來看,「密鑰」的長度是 16 個十六進制數(或 64 位)。但是,由於某些原因(可能是因為 NSA 給 NBS 的「指引」),DES 演算法中每逢第 8 位就被忽略。這造成密鑰的實際大小變成 56 位。編碼系統對「強行」或「野蠻」攻擊的抵抗力與其密鑰空間或者系統可能有多少密鑰有直接關系。使用的位數越多轉換出的密鑰也越多。密鑰越多,就意味著強行攻擊中計算密鑰空間中可能的密鑰范圍所需的時間就越長。從總長度中切除 8 位就會在很大程度上限制了密鑰空間,這樣系統就更容易受到破壞。
DES 是塊加密演算法。這表示它處理特定大小的純文本塊(通常是 64 位),然後返回相同大小的密碼塊。這樣,64 位(每位不是 0 就是 1)有 264 種可能排列,DES 將生成其中的一種排列。每個 64 位的塊都被分成 L、R 左右兩塊,每塊 32 位。
DES 演算法使用以下步驟:
1. 創建 16 個子密鑰,每個長度是 48 位。根據指定的順序或「表」置換 64 位的密鑰。如果表中的第一項是 "27",這表示原始密鑰 K 中的第 27 位將變成置換後的密鑰 K+ 的第一位。如果表的第二項是 36,則這表示原始密鑰中的第 36 位將變成置換後密鑰的第二位,以此類推。這是一個線性替換方法,它創建了一種線性排列。置換後的密鑰中只出現了原始密鑰中的 56 位。
2. 接著,將這個密鑰分成左右兩半,C0 和 D0,每一半 28 位。定義了 C0 和 D0 之後,創建 16 個 Cn 和 Dn 塊,其中 1<=n<=16。每一對 Cn 和 Dn 塊都通過使用標識「左移位」的表分別從前一對 Cn-1 和 Dn-1 形成,n = 1, 2, ..., 16,而「左移位」表說明了要對哪一位進行操作。在所有情況下,單一左移位表示這些位輪流向左移動一個位置。在一次左移位之後,28 個位置中的這些位分別是以前的第 2、3……28 位。
通過將另一個置換表應用於每一個 CnDn 連接對,從而形成密鑰 Kn,1<=n<=16。每一對有 56 位,而置換表只使用其中的 48 位,因為每逢第 8 位都將被忽略。
3. 編碼每個 64 位的數據塊。
64 位的消息數據 M 有一個初始置換 IP。這將根據置換表重新排列這些位,置換表中的項按這些位的初始順序描述了它們新的排列。我們以前見過這種線性表結構。
使用函數 f 來生成一個 32 位的塊,函數 f 對兩個塊進行操作,一個是 32 位的數據塊,一個是 48 位的密鑰 Kn,連續迭代 16 次,其中 1<=n<=16。用 + 表示 XOR 加法(逐位相加,模除 2)。然後,n 從 1 到 16,計算 Ln = Rn-1 Rn = Ln-1 + f(Rn-1,Kn)。即在每次迭代中,我們用前一結果的右邊 32 位,並使它們成為當前步驟中的左邊 32 位。對於當前步驟中的右邊 32 位,我們用演算法 f XOR 前一步驟中的左邊 32 位。
要計算 f,首先將每一塊 Rn-1 從 32 位擴展到 48 位。可以使用選擇表來重復 Rn-1 中的一些位來完成這一操作。這個選擇表的使用就成了函數 f。因此 f(Rn-1) 的輸入塊是 32 位,輸出塊是 48 位。f 的輸出是 48 位,寫成 8 塊,每塊 6 位,這是通過根據已知表按順序選擇輸入中的位來實現的。
我們已經使用選擇表將 Rn-1 從 32 位擴展成 48 位,並將結果 XOR 密鑰 Kn。現在有 48 位,或者是 8 組,每組 6 位。每組中的 6 位現在將經歷一次變換,該變換是演算法的核心部分:在叫做「S 盒」的表中,我們將這些位當作地址使用。每組 6 位在不同的 S 盒中表示不同的地址。該地址中是一個 4 位數字,它將替換原來的 6 位。最終結果是 8 組,每組 6 位變換成 8 組,每組 4 位(S 盒的 4 位輸出),總共 32 位。
f 計算的最後階段是對 S 盒輸出執行置換 P,以得到 f 的最終值。f 的形式是 f = P(S1(B1)S2(B2)...S8(B8))。置換 P 根據 32 位輸入,在以上的過程中通過置換輸入塊中的位,生成 32 位輸出。
解密只是加密的逆過程,使用以上相同的步驟,但要逆轉應用子密鑰的順序。DES 演算法是可逆的
(2) 演算法的安全性分析
在知道一些明文和密文分組的條件下,從理論上講很容易知道對DES進行一次窮舉攻擊的復雜程度:密鑰的長度是56位,所以會有 種的可能的密鑰。
在1993年的一年一度的世界密碼大會上,加拿大北方電信公司貝爾實驗室的 Michael Wiener 描述了如何構造一台專用的機器破譯DES,該機器利用一種每秒能搜索5000萬個密鑰的專用晶元。而且此機器的擴展性很好,投入的經費越多則效率越高。用100萬美元構造的機器平均3.5小時就可以破譯密碼。
如果不用專用的機器,破譯DES也有其他的方法。在1994年的世界密碼大會上,M.Matsui 提出一種攻克DES的新方法--"線性密碼分析"法。它可使用平均 個明文及其密文,在12台HP9000/735工作站上用此方法的軟體實現,花費50天時間完成對DES的攻擊。
如前所述DES作為加密演算法的標准已經二十多年了,可以說是一個很老的演算法,而在新的加密演算法的國際標准出現之前,許多DES的加固性改進演算法仍有實用價值,在本文的3.4節詳細的描述,同時考慮的以上所述DES的安全性已受到了威脅。
(4) 演算法的變體 三重DES(TDEA),使用3個密鑰,執行3次DES演算法:
加密:C = Ek3[Dk2[Ek1[P]]] 解密:P = Dk1[Ek2[Dk3[C]]]
特點:安全性得到增強,但是速度變慢。
2.AES
自 20 世紀 70 年代以來一直廣泛使用的「數據加密標准」(DES) 日益顯出衰老的痕跡,而一種新的演算法 -- Rijndael -- 正順利地逐漸變成新標准。這里,Larry Loeb 詳細說明了每一種演算法,並提供了關於為什麼會發生這種變化的內幕信息。
DES 演算法是全世界最廣泛使用的加密演算法。最近,就在 2000 年 10 月,它在其初期就取得的硬體方面的優勢已經阻礙了其發展,作為政府加密技術的基礎,它已由「高級加密標准」(AES) 中包含的另一種加密演算法代替了。AES 是指定的標准密碼系統,未來將由政府和銀行業用戶使用。AES 用來實際編碼數據的加密演算法與以前的 DES 標准不同。我們將討論這是如何發生的,以及 AES 中的 Rijndael 演算法是如何取代 DES 的演算法的。
「高級加密標准」成就
但直到 1997 年,美國國家標准技術局 (NIST) 才開始打著 AES 項目的旗幟徵集其接任者。1997 年 4 月的一個 AES 研討會宣布了以下 AES 成就的最初目標:
• 可供政府和商業使用的功能強大的加密演算法
• 支持標准密碼本方式
• 要明顯比 DES 3 有效
• 密鑰大小可變,這樣就可在必要時增加安全性
• 以公正和公開的方式進行選擇
• 可以公開定義
• 可以公開評估
AES 的草案中最低可接受要求和評估標準是:
A.1 AES 應該可以公開定義。
A.2 AES 應該是對稱的塊密碼。
A.3 AES 應該設計成密鑰長度可以根據需要增加。
A.4 AES 應該可以在硬體和軟體中實現。
A.5 AES 應該 a) 可免費獲得。
A.6 將根據以下要素評價符合上述要求的演算法:
1. 安全性(密碼分析所需的努力)
2. 計算效率
3. 內存需求
4. 硬體和軟體可適用性
5. 簡易性
6. 靈活性
7. 許可證需求(見上面的 A5)
Rijndael:AES 演算法獲勝者
1998年8月20日NIST召開了第一次AES侯選會議,並公布了15個AES侯選演算法。經過一年的考察,MARS,RC6,Rijndael,Serpent,Twofish共5種演算法通過了第二輪的選拔。2000 年 10 月,NIST 選擇 Rijndael(發音為 "Rhine dale")作為 AES 演算法。它目前還不會代替 DES 3 成為政府日常加密的方法,因為它還須通過測試過程,「使用者」將在該測試過程後發表他們的看法。但相信它可以順利過關。
Rijndael 是帶有可變塊長和可變密鑰長度的迭代塊密碼。塊長和密鑰長度可以分別指定成 128、192 或 256 位。
Rijndael 中的某些操作是在位元組級上定義的,位元組表示有限欄位 GF(28) 中的元素,一個位元組中有 8 位。其它操作都根據 4 位元組字定義。
加法照例對應於位元組級的簡單逐位 EXOR。
在多項式表示中,GF(28) 的乘法對應於多項式乘法模除階數為 8 的不可約分二進制多項式。(如果一個多項式除了 1 和它本身之外沒有其它約數,則稱它為不可約分的。)對於 Rijndael,這個多項式叫做 m(x),其中:m(x) = (x8 + x4 + x3 + x + 1) 或者十六進製表示為 '11B'。其結果是一個階數低於 8 的二進制多項式。不像加法,它沒有位元組級的簡單操作。
不使用 Feistel 結構!
在大多數加密演算法中,輪回變換都使用著名的 Feistel 結構。在這個結構中,中間 State 的位部分通常不做更改調換到另一個位置。(這種線性結構的示例是我們在 DES 部分中討論的那些表,即使用固定表的形式交換位。)Rijndael 的輪回變換不使用這個古老的 Feistel 結構。輪回變換由三個不同的可逆一致變換組成,叫做層。(「一致」在這里表示以類似方法處理 State 中的位。)
線性混合層保證了在多個輪回後的高度擴散。非線性層使用 S 盒的並行應用,該應用程序有期望的(因此是最佳的)最差非線性特性。S 盒是非線性的。依我看來,這就 DES 和 Rijndael 之間的密鑰概念差異。密鑰加法層是對中間 State 的輪回密鑰 (Round Key) 的簡單 EXOR,如以下所注。
Rijndael演算法
加密演算法
Rijndael演算法是一個由可變數據塊長和可變密鑰長的迭代分組加密演算法,數據塊長和密鑰長可分別為128,192或256比特。
數據塊要經過多次數據變換操作,每一次變換操作產生一個中間結果,這個中間結果叫做狀態。狀態可表示為二維位元組數組,它有4行,Nb列,且Nb等於數據塊長除32。如表2-3所示。
a0,0 a0,1 a0,2 a0,3 a0,4 a0,5
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5
a2,0 a2,1 a2,2 a2,3 a2,4 a2,5
a3,0 a3,1 a3,2 a3,3 a3,4 a3,5
數據塊按a0,0 , a1,0 , a2,0 , a3,0 , a0,1 , a1,1 , a2,1 , a3,1 , a0,2…的順序映射為狀態中的位元組。在加密操作結束時,密文按同樣的順序從狀態中抽取。
密鑰也可類似地表示為二維位元組數組,它有4行,Nk列,且Nk等於密鑰塊長除32。演算法變換的圈數Nr由Nb和Nk共同決定,具體值列在表2-4中。
表3-2 Nb和Nk決定的Nr的值
Nr Nb = 4 Nb = 6 Nb = 8
Nk = 4 10 12 14
Nk = 6 12 12 14
Nk = 8 14 14 14
3.2.1圈變換
加密演算法的圈變換由4個不同的變換組成,定義成:
Round(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey); (EXORing a Round Key to the State)
}
加密演算法的最後一圈變換與上面的略有不同,定義如下:
FinalRound(State,RoundKey)
{
ByteSub(State);
ShiftRow(State);
AddRoundKey(State,RoundKey);
}
ByteSub變換
ByteSub變換是作用在狀態中每個位元組上的一種非線形位元組變換。這個S盒子是可逆的且由以下兩部分組成:
把位元組的值用它的乘法逆替代,其中『00』的逆就是它自己。
經(1)處理後的位元組值進行如下定義的仿射變換:
y0 1 1 1 1 1 0 0 0 x0 0
y1 0 1 1 1 1 1 0 0 x1 1
y2 0 0 1 1 1 1 1 0 x2 1
y3 0 0 0 1 1 1 1 1 x3 0
y4 = 1 0 0 0 1 1 1 1 x4 + 0
y5 1 1 0 0 0 1 1 1 x5 0
y6 1 1 1 0 0 0 1 1 x6 1
y7 1 1 1 1 0 0 0 1 x7 1
ShiftRow變換
在ShiftRow變換中,狀態的後3行以不同的移位值循環右移,行1移C1位元組,行2移C2位元組,行3移C3位元組。
移位值C1,C2和C3與加密塊長Nb有關,具體列在表2-5中:
表3-3 不同塊長的移位值
Nb C1 C2 C3
4 1 2 3
MixColumn變換
在MixColumn變換中,把狀態中的每一列看作GF(28)上的多項式與一固定多項式c(x)相乘然後模多項式x4+1,其中c(x)為:
c(x) =『03』x3 + 『01』x2 + 『01』x + 『02』
圈密鑰加法
在這個操作中,圈密鑰被簡單地使用異或操作按位應用到狀態中。圈密鑰通過密鑰編製得到,圈密鑰長等於數據塊長Nb。
在這個表示法中,「函數」(Round, ByteSub, ShiftRow,...) 對那些被提供指針 (State, RoundKey) 的數組進行操作。ByteSub 變換是非線性位元組交換,各自作用於每個 State 位元組上。在 ShiftRow 中,State 的行按不同的偏移量循環移位。在 MixColumn 中,將 State 的列視為 GF(28) 多項式,然後乘以固定多項式 c( x ) 並模除 x4 + 1,其中 c( x ) = '03' x3 + '01' x2+ '01' x + '02'。這個多項式與 x4 + 1 互質,因此是可逆的。
輪回密鑰通過密鑰計劃方式從密碼密鑰 (Cipher Key) 派生而出。它有兩個組件:密鑰擴展 (Key Expansion) 和輪回密鑰選擇 (Round Key Selection)。輪回密鑰的總位數等於塊長度乘以輪回次數加 1(例如,塊長度等於 128 位,10 次輪回,那麼就需要 1408 個輪回密鑰位)。
密碼密鑰擴充成擴展密鑰 (Expanded Key)。輪回密鑰是通過以下方法從這個擴展密鑰中派生的:第一個輪回密鑰由前 Nb(Nb = 塊長度)個字組成,第二個由接著的 Nb 個字組成,以此類推。
加密演算法由以下部分組成:初始輪回密鑰加法、Nr-1 個輪回和最後一個輪回。在偽 C 代碼中:
Rijndael(State,CipherKey)
{
KeyExpansion(CipherKey,ExpandedKey);
AddRoundKey(State,ExpandedKey);
For( i=1 ; i<Nr ; i++ ) Round(State,ExpandedKey + Nb*i);
FinalRound(State,ExpandedKey + Nb*Nr).
}
如果已經預先執行了密鑰擴展,則可以根據擴展密鑰指定加密演算法。
Rijndael(State,ExpandedKey)
{
AddRoundKey(State,ExpandedKey);
For( i=1 ; i<Nr ; i++ ) Round(State,ExpandedKey + Nb*i);
FinalRound(State,ExpandedKey + Nb*Nr);
}
由於 Rijndael 是可逆的,解密過程只是顛倒上述的步驟。
最後,開發者將仔細考慮如何集成這種安全性進展,使之成為繼 Rijndael 之後又一個得到廣泛使用的加密演算法。AES 將很快應一般商業團體的要求取代 DES 成為標准,而該領域的發展進步無疑將追隨其後。
3.IDEA加密演算法 (1) 演算法簡介 IDEA演算法是International Data Encryption Algorithmic 的縮寫,意為國際數據加密演算法。是由中國學者朱學嘉博士和著名密碼學家James Massey 於1990年聯合提出的,當時被叫作PES(Proposed Encryption Standard)演算法,後為了加強抵抗差分密碼分,經修改於1992年最後完成,並命名為IDEA演算法。 (2) 演算法描述 這個部分參見論文上的圖 (3) 演算法的安全性分析 安全性:IDEA的密鑰長度是128位,比DES長了2倍多。所以如果用窮舉強行攻擊的話, 么,為了獲得密鑰需要 次搜索,如果可以設計一種每秒能搜索十億把密鑰的晶元,並且 採用十億個晶元來並行處理的話,也要用上 年。而對於其他攻擊方式來說,由於此演算法 比較的新,在設計時已經考慮到了如差分攻擊等密碼分析的威脅,所以還未有關於有誰 發現了能比較成功的攻擊IDEA方法的結果。從這點來看,IDEA還是很安全的。
4.總結
幾種演算法的性能對比
演算法 密鑰長度 分組長度 循環次數
DES 56 64 16
三重DES 112、168 64 48
AES 128、192、256 128 10、12、14
IDEA 128 64 8
速度:在200MHz的奔騰機上的對比。
C++ DJGP(++pgcc101)
AES 30.2Mbps 68.275Mbps
DES(RSAREF) 10.6Mbps 16.7Mbps
3DES 4.4Mbps 7.3Mbps
Celeron 1GHz的機器上AES的速度,加密內存中的數據
128bits密鑰:
C/C++ (Mbps) 匯編(Mbps)
Linux 2.4.7 93 170
Windows2K 107 154
256bits密鑰:
C/C++ (Mbps) 匯編(Mbps)
Linux 2.4.7 76 148
Windows2K 92 135
安全性
1990年以來,特製的"DES Cracker"的機器可在幾個小時內找出一個DES密鑰。換句話說,通過測試所有可能的密鑰值,此硬體可以確定用於加密信息的是哪個密鑰。假設一台一秒內可找出DES密鑰的機器(如,每秒試255個密鑰),如果用它來找出128-bit AES的密鑰,大約需要149萬億年。
四、對稱加密應用 在保密通信中的應用。(保密電話) 附加內容
安全哈希演算法(SHA)
由NIST開發出來的。
此演算法以最大長度不超過264位的消息為輸入,生成160位的消息摘要輸出。主要步驟:
1. 附加填充位
2. 附加長度
3. 初始化MD緩沖區,為160位的數據
A=67452301
B=EFCDAB89
C=89BADCFE
D=10325476
E=C3D2E1F0
4. 處理512位消息塊,將緩沖虛數據和消息塊共同計算出下一個輸出
5. 輸出160位摘要
此外還有其他哈希演算法,如MD5(128位摘要),RIPEMD-160(160位摘要)等。
2. 對稱加密和不對稱加密有什麼不同它們各有什麼優缺點hash演算法有什麼功能
對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文,則需要使用加密用過的密鑰及相同演算法的逆演算法對密文進行解密,才能使其恢復成可讀明文。在對稱加密演算法中,使用的密鑰只有一個,發收信雙方都使用這個密鑰對數據進行加密和解密,這就要求解密方事先必須知道加密密鑰。對稱加密演算法的特點是演算法公開、計算量小、加密速度快、加密效率高。不足之處是,交易雙方都使用同樣鑰匙,安全性得不到保證。此外,每對用戶每次使用對稱加密演算法時,都需要使用其他人不知道的惟一鑰匙,這會使得發收信雙方所擁有的鑰匙數量成幾何級數增長,密鑰管理成為用戶的負擔。對稱加密演算法在分布式網路系統上使用較為困難,主要是因為密鑰管理困難,使用成本較高。在計算機專網系統中廣泛使用的對稱加密演算法有DES、IDEA和AES。
3. 怎樣將哈希結果用作對稱加解密演算法密鑰
呵呵,你的問題意思不通,多了個字吧?!應該是:數字信封技術為什麼要用對稱密碼DES加密數據,用非稱加解密RSA演算法加密密鑰?
非對稱加密演算法對大容量數據加密時,運算速度非常慢,比對稱演算法差好幾個數量級!!
所以用對稱演算法加密大容量數據,非對稱演算法加密密鑰。
4. 朋友老說哈希演算法,請問到底什麼是哈希演算法
首先,一般哈希演算法不是大學里數據結構課里那個HASH表的演算法。一般哈希演算法是密碼學的基礎,比較常用的有MD5和SHA,最重要的兩條性質,就是不可逆和無沖突。
所謂不可逆,就是當你知道x的HASH值,無法求出x;
所謂無沖突,就是當你知道x,無法求出一個y, 使x與y的HASH值相同。
這兩條性質在數學上都是不成立的。因為一個函數必然可逆,且由於HASH函數的值域有限,理論上會有無窮多個不同的原始值,它們的hash值都相同。MD5和SHA做到的,是求逆和求沖突在計算上不可能,也就是正向計算很容易,而反向計算即使窮盡人類所有的計算資源都做不到。
我覺得密碼學的幾個演算法(HASH、對稱加密、公私鑰)是計算機科學領域最偉大的發明之一,它授予了弱小的個人在強權面前信息的安全(而且是絕對的安全)。舉個例子,只要你一直使用https與國外站點通訊,並注意對方的公鑰沒有被篡改,G**W可以斷開你的連接,但它永遠不可能知道你們的傳輸內容是什麼。
順便說一下,王小雲教授曾經成功製造出MD5的碰撞,即md5(a) = md5(b)。這樣的碰撞只能隨機生成,並不能根據一個已知的a求出b(即並沒有破壞MD5的無沖突特性)。但這已經讓他聲名大噪了。
5. 如何使用hash運算實現消息驗證
對稱加密演算法 對稱加密演算法是應用較早的加密演算法,技術成熟。在對稱加密演算法中,數據發信方將明文(原始數據)和加密密鑰一起經過特殊加密演算法處理後,使其變成復雜的加密密文發送出去。收信方收到密文後,若想解讀原文
6. 對稱與非對稱加密演算法有何不同
在談到加密的時候,最新的不一定是最好的。你應該選擇那種合適的、已經被大量公開分析和測試過的加密演算法,因為在密碼學領域是沒有機會去嘗試一個新演算法的。讓我們來看看一些已經被廣泛應用的演算法。
對絕大多數人來說,加密就是將明文轉換為密文的過程,用密鑰(key)或者密碼(secret)來對內容進行加密和解密。這就是對稱加密,相對於其他類型的加密方法(如,非對稱加密),它速度更快。在對稱密匙加密中,應用最為廣泛的是AES(高級加密標准),它包含三個加密模塊:AES-128、AES-192和AES-256,其中任何一種都足以有效保護政府的機密(SECRET)信息,最高機密(TOP SECRET)採用的是192位或者256位長度的密鑰。
對稱密匙加密最大的缺點是:所有參與的部門在他們解密前必須交換他們用於加密的密鑰。這要求必須安全地發布和管理大量密鑰數據,也意味著大多數的密碼服務還需要其他類型的加密演算法。例如為了具備不可抵賴性(non-repudiation),Secure MIME(S/MIME)採用了一種非對稱演算法(公鑰/私鑰演算法),還使用了一種對稱演算法來對隱私和數據進行有效地保護。
非對稱加密演算法採用兩個相互依賴的密鑰:一個進行加密,另一個進行解密。這種相互依賴的關系提供了一些不同特性,其中最重要的也許是數字簽名,它可以確保一條信息被某個特定的實體或者遠程授權的系統或者用戶創建。RSA(Rivest,Shamir and Adleman)非對稱加密演算法被廣泛地應用於電子商務協議(如SSL),考慮到RSA提供了充分長的密鑰並利用了最新的實現方式,它被認為是安全的。由於RSA比對稱密碼要慢很多,所以典型的做法是對數據使用對稱演算法進行加密,然後再使用RSA演算法對較短的對稱密匙進行加密。這使得解密數據所需的密鑰可以安全地隨對稱加密數據一起傳到另一方。
在某種程度上,一個加密哈希的功能與其他加密演算法有所不同。例如,它可以返回一個數據、一個文件或者信息的值。一個好的哈希演算法能夠避免針對某個哈希值產生一個初始輸入,並禁止通過哈希值逆推出初始輸入。MD5和SHA-1曾是被廣泛應用的哈希演算法,但現在它們的加密強度都不夠了,已被SHA-244、SHA-256、SHA-384或SHA-512所代替(這些演算法有時會被統一看成是SHA-2演算法)。微軟甚至表示,早在2005年它就禁止開發者在任何場合都使用DES、MD4和MD5,在某些情況下甚至禁止使用SHA-1加密演算法。雖然針對SHA-2的各個版本還未出現任何攻擊報告,但它們在演算法上和SHA-1很相似,所以SHA-3在未來幾年將會以一種和AES相似的方式被選擇成為新的哈希方式。正如你所能看到的,密碼學領域總是在不斷的變化,並始終和最新的技術發展保持一致
7. 區塊鏈技術中的哈希演算法是什麼
1.1. 簡介
計算機行業從業者對哈希這個詞應該非常熟悉,哈希能夠實現數據從一個維度向另一個維度的映射,通常使用哈希函數實現這種映射。通常業界使用y = hash(x)的方式進行表示,該哈希函數實現對x進行運算計算出一個哈希值y。
區塊鏈中哈希函數特性:
函數參數為string類型;
固定大小輸出;
計算高效;
collision-free 即沖突概率小:x != y => hash(x) != hash(y)
隱藏原始信息:例如區塊鏈中各個節點之間對交易的驗證只需要驗證交易的信息熵,而不需要對原始信息進行比對,節點間不需要傳輸交易的原始數據只傳輸交易的哈希即可,常見演算法有SHA系列和MD5等演算法
1.2. 哈希的用法
哈希在區塊鏈中用處廣泛,其一我們稱之為哈希指針(Hash Pointer)
哈希指針是指該變數的值是通過實際數據計算出來的且指向實際的數據所在位置,即其既可以表示實際數據內容又可以表示實際數據的存儲位置。下圖為Hash Pointer的示意圖
8. 什麼是哈希演算法
就是空間映射函數,例如,全體的長整數的取值作為一個取值空間,映射到全部的位元組整數的取值的空間,這個映射函數就是HASH函數。通常這種映射函數是從一個非常大的取值空間映射到一個非常小的取值空間,由於不是一對一的映射,HASH函數轉換後不可逆,即不可能通過逆操作和HASH值還原出原始的值,受到計算能力限制(注意,不是邏輯上不可能,前面的不可能是邏輯上的)而且也無法還原出所有可能的全部原始值。HASH函數運用在字典表等需要快速查找的數據結構中,他的計算復雜度幾乎是O(1),不會隨著數據量增加而增加。另外一種用途就是文件簽名,文件內容很多,將文件內容通過HASH函數處理後得到一個HASH值,驗證這個文件是否被修改過,只需要把文件內容用同樣的HASH函數處理後得到HASH值再比對和文件一起傳送的HASH值即可,如不公開HASH演算法,那麼信道是無法篡改文件內容的時候篡改文件HASH值,一般應用的時候,HASH演算法是公開的,這時候會用一個非對稱加密演算法加密一下這個HASH值,這樣即便能夠計算HASH值,但沒有加密密鑰依然無法篡改加密後HASH值。這種演算法用途很廣泛,用在電子簽名中。HASH演算法也可進行破解,這種破解不是傳統意義上的解密,而是按照已有的HASH值構造出能夠計算出相同HASH值的其他原文,從而妨礙原文的不可篡改性的驗證,俗稱找碰撞。這種碰撞對現有的電子簽名危害並不嚴重,主要是要能夠構造出有意義的原文才有價值,否則就是構造了一個完全不可識別的原文罷了,接收系統要麼無法處理報錯,要麼人工處理的時候發現完全不可讀。理論上我們終於找到了在可計算時間內發現碰撞的演算法,推算了HASH演算法的逆操作的時間復雜度大概的范圍。HASH演算法的另外一個很廣泛的用途,就是很多程序員都會使用的在資料庫中保存用戶密碼的演算法,通常不會直接保存用戶密碼(這樣DBA就能看到用戶密碼啦,好危險啊),而是保存密碼的HASH值,驗證的時候,用相同的HASH函數計算用戶輸入的密碼得到計算HASH值然後比對資料庫中存儲的HASH值是否一致,從而完成驗證。由於用戶的密碼的一樣的可能性是很高的,防止DBA猜測用戶密碼,我們還會用一種俗稱「撒鹽」的過程,就是計算密碼的HASH值之前,把密碼和另外一個會比較發散的數據拼接,通常我們會用用戶創建時間的毫秒部分。這樣計算的HASH值不大會都是一樣的,會很發散。最後,作為一個老程序員,我會把用戶的HASH值保存好,然後把我自己密碼的HASH值保存到資料庫裡面,然後用我自己的密碼和其他用戶的用戶名去登錄,然後再改回來解決我看不到用戶密碼而又要「偷窺」用戶的需要。最大的好處是,資料庫泄露後,得到用戶資料庫的黑客看著一大堆HASH值會翻白眼。
9. java中如何把計算出來的哈希函數值(MD5)轉換為對稱加密(DES)的密鑰
package com.kingsoft.main;/**
* @author King_wangyao
*/
public class MD5Main {
private final static String[] hexDigits = { "0", "1", "2", "3", "4", "5",
"6", "7", "8", "9", "A", "B", "C", "D", "E", "F" }; /**
* 轉換位元組數組為16進制字串
*
* @param b
* 位元組數組
* @return 16進制字串
*/
public static String byteArrayToHexString(byte[] b) {
StringBuffer resultSb = new StringBuffer();
for (int i = 0; i < b.length; i++) {
resultSb.append(byteToHexString(b[i]));
}
return resultSb.toString();
} private static String byteToHexString(byte b) {
int n = b;
if (n < 0)
n = 256 + n;
int d1 = n / 16;
int d2 = n % 16;
return hexDigits[d1] + hexDigits[d2];
} /**
* MD5 摘要計算(byte[]).
*
* @param src
* byte[]
* @throws Exception
* @return byte[] 16 bit digest
*/
public static byte[] md5Digest(byte[] src) throws Exception {
java.security.MessageDigest alg = java.security.MessageDigest
.getInstance("MD5"); // MD5 is 16 bit message digest return alg.digest(src);
} /**
* MD5 摘要計算(String).
*
* @param src
* String
* @throws Exception
* @return String
*/
public static String md5Digest(String src) throws Exception {
return byteArrayToHexString(md5Digest(src.getBytes()));
} /** Test crypt */
public static void main(String[] args) {
try {
// 獲得的明文數據
String desStr = "MERCHANTID=2300000003&ORDERSEQ=5465646&ORDERDATE=20100919&ORDERAMOUNT=1";
System.out.println("原文字元串:" + desStr);
// 生成MAC
String MAC = MainTest_T1.md5Digest(desStr);
System.out.println(" MAC:" + MAC);
// 使用key值生成 SIGN
String keyStr = "123456";// 使用固定key
// 獲得的明文數據
desStr = "UPTRANSEQ=20080101000001&MERCHANTID=0250000001&ORDERID=2006050112564931556&PAYMENT=10000&RETNCODE=00&RETNINFO=00&PAYDATE =20060101";
// 將key值和明文數據組織成一個待簽名的串
desStr = desStr + "&KEY:" + keyStr;
System.out.println("原文字元串:" + desStr);
// 生成 SIGN
String SIGN = md5Digest(desStr);
System.out.println(" SIGN:" + SIGN); } catch (Exception ex) {
ex.printStackTrace();
}
}
}
10. 電子合同中,對稱加密、非對稱加密、哈希演算法、CA、時間戳、數字簽名這些是什麼,有什麼用,你們知道嗎
演算法,因為只要你有足夠的時間,完全可以用窮舉法來進行試探,如果說一個加密演算法是牢固的,一般就是指在現有的計算條件下,需要花費相當長的時間才能夠窮舉成功(比如100年)。一、主動攻擊和被動攻擊數據在傳輸過程中或者在日常的工作中,如果沒有密碼的保護,很容易造成文件的泄密,造成比較嚴重的後果。一般來說,攻擊分為主動攻擊和被動攻擊。被動攻擊指的是從傳輸信道上或者從磁碟介質上非法獲取了信息,造成了信息的泄密。主動攻擊則要嚴重的多,不但獲取了信息,而且還有可能對信息進行刪除,篡改,危害後果及其嚴重。 二、對稱加密基於密鑰的演算法通常分為對稱加密演算法和非對稱加密演算法(公鑰演算法)。對成加密演算法就是加密用的密鑰和解密用的密鑰是相等的。比如著名的愷撒密碼,其加密原理就是所有的字母向後移動三位,那麼3就是這個演算法的密鑰,向右循環移位就是加密的演算法。那麼解密的密鑰也是3,解密演算法就是向左循環移動3位。很顯而易見的是,這種演算法理解起來比較簡單,容易實現,加密速度快,但是對稱加密的安全性完全依賴於密鑰,如果密鑰丟失,那麼整個加密就完全不起作用了。比較著名的對稱加密演算法就是DES,其分組長度位64位,實際的密鑰長度為56位,還有8位的校驗碼。DES演算法由於其密鑰較短,隨著計算機速度的不斷提高,使其使用窮舉法進行破解成為可能。三、非對稱加密非對稱加密演算法的核心就是加密密鑰不等於解密密鑰,且無法從任意一個密鑰推導出另一個密鑰,這樣就大大加強了信息保護的力度,而且基於密鑰對的原理很容易的實現數字簽名和電子信封。比較典型的非對稱加密演算法是RSA演算法,它的數學原理是大素數的分解,密鑰是成對出現的,一個為公鑰,一個是私鑰。公鑰是公開的,可以用私鑰去解公鑰加密過的信息,也可以用公鑰去解私鑰加密過的信息。比如A向B發送信息,由於B的公鑰是公開的,那麼A用B的公鑰對信息進行加密,發送出去,因為只有B有對應的私鑰,所以信息只能為B所讀取。牢固的RSA演算法需要其密鑰長度為1024位,加解密的速度比較慢是它的弱點。另外一種比較典型的非對稱加密演算法是ECC演算法,基於的數學原理是橢圓曲線離散對數系統,這種演算法的標准我國尚未確定,但是其只需要192 bit 就可以實現牢固的加密。所以,應該是優於RSA演算法的。優越性:ECC > RSA > DES