A. 如何使用python畫小波圖像
最簡單有效的庫是來自於約翰內斯布赫爾的imagehash庫。可以在庫中實現多種圖像散列:aHash,pHash,dHash。
所有三種方法的縮放圖像轉換成灰度級8×8的圖像首位。
然後該庫執行用於每個64像素的一些計算並分配一個二進制的1或0的值。這些64bit值形成演算法的輸出。
B. 怎麼找相似圖
有時候收藏了一些有趣的圖片,想查找一下這些圖片的來源和一些類似這樣的圖片,但是不知道如何去找,其實網路就有這個查找功能,一起來試一試吧。
材料/工具
電腦
方法
1/4
首先用360瀏覽器打開網路,可以看到搜索框有一個照相機的小圖標。
2/4
然後點擊一下相機的小圖標,會出現提示拖拽一張照片或者上傳一張照片。
3/4
這里選擇上傳,選一張自己想找的相似的圖片,然後雙擊圖片。
4/4
好了,這個時候強大的360瀏覽器網路就為我們搜索出了圖片的來源和出處,還有類似的很多圖片哦,快去試一試吧。
一 在游覽網頁時看見一些圖片我們想多了解圖片的更多信息用網路搜圖,打開網路首頁。
二 選擇圖片
三 在輸入框後面 點擊識圖圖標。
四 如果你要搜索的圖片在本地就選擇本地,點擊從本地上傳。
五 在本地找到想要查找的圖片,點擊要找的圖片。
六 在文件名後面點擊打開,圖片開始上傳。
七 稍等片刻,圖片搜索成功
C. Python標准庫的主要功能有哪些
Python常用庫大全,看看有沒有你需要的。
環境管理
管理 Python 版本和環境的工具
p – 非常簡單的互動式 python 版本管理工具。
pyenv – 簡單的 Python 版本管理工具。
Vex – 可以在虛擬環境中執行命令。
virtualenv – 創建獨立 Python 環境的工具。
virtualenvwrapper- virtualenv 的一組擴展。
包管理
管理包和依賴的工具。
pip – Python 包和依賴關系管理工具。
pip-tools – 保證 Python 包依賴關系更新的一組工具。
conda – 跨平台,Python 二進制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分發的新標准,意在取代 eggs。
包倉庫
本地 PyPI 倉庫服務和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 鏡像工具。
devpi – PyPI 服務和打包/測試/分發工具。
localshop – 本地 PyPI 服務(自定義包並且自動對 PyPI 鏡像)。
分發
打包為可執行文件以便分發。
PyInstaller – 將 Python 程序轉換成獨立的執行文件(跨平台)。
dh-virtualenv – 構建並將 virtualenv 虛擬環境作為一個 Debian 包來發布。
Nuitka – 將腳本、模塊、包編譯成可執行文件或擴展模塊。
py2app – 將 Python 腳本變為獨立軟體包(Mac OS X)。
py2exe – 將 Python 腳本變為獨立軟體包(Windows)。
pynsist – 一個用來創建 Windows 安裝程序的工具,可以在安裝程序中打包 Python本身。
構建工具
將源碼編譯成軟體。
buildout – 一個構建系統,從多個組件來創建,組裝和部署應用。
BitBake – 針對嵌入式 Linux 的類似 make 的構建工具。
fabricate – 對任何語言自動找到依賴關系的構建工具。
PlatformIO – 多平台命令行構建工具。
PyBuilder – 純 Python 實現的持續化構建工具。
SCons – 軟體構建工具。
互動式解析器
互動式 Python 解析器。
IPython – 功能豐富的工具,非常有效的使用互動式 Python。
bpython- 界面豐富的 Python 解析器。
ptpython – 高級互動式Python解析器, 構建於python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的網際郵件擴充協議)類型檢測。
imghdr – (Python 標准庫)檢測圖片類型。
mimetypes – (Python 標准庫)將文件名映射為 MIME 類型。
path.py – 對 os.path 進行封裝的模塊。
pathlib – (Python3.4+ 標准庫)跨平台的、面向對象的路徑操作庫。
python-magic- 文件類型檢測的第三方庫 libmagic 的 Python 介面。
Unipath- 用面向對象的方式操作文件和目錄
watchdog – 管理文件系統事件的 API 和 shell 工具
日期和時間
操作日期和時間的類庫。
arrow- 更好的 Python 日期時間操作類庫。
Chronyk – Python 3 的類庫,用於解析手寫格式的時間和日期。
dateutil – Python datetime 模塊的擴展。
delorean- 解決 Python 中有關日期處理的棘手問題的庫。
moment – 一個用來處理時間和日期的Python庫。靈感來自於Moment.js。
PyTime – 一個簡單易用的Python模塊,用於通過字元串來操作日期/時間。
pytz – 現代以及歷史版本的世界時區定義。將時區資料庫引入Python。
when.py – 提供用戶友好的函數來幫助用戶進行常用的日期和時間操作。
文本處理
用於解析和操作文本的庫。
通用
chardet – 字元編碼檢測器,兼容 Python2 和 Python3。
difflib – (Python 標准庫)幫助我們進行差異化比較。
ftfy – 讓Unicode文本更完整更連貫。
fuzzywuzzy – 模糊字元串匹配。
Levenshtein – 快速計算編輯距離以及字元串的相似度。
pangu.py – 在中日韓語字元和數字字母之間添加空格。
pyfiglet -figlet 的 Python實現。
shortuuid – 一個生成器庫,用以生成簡潔的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 轉換形式 。
uniout – 列印可讀的字元,而不是轉義的字元串。
xpinyin – 一個用於把漢字轉換為拼音的庫。
D. 如何用Python構造hash表解決DNA k-mer問題
思路:
1、首先採用命A=0,C=1,G=2,T=3. 就相當於4進制數字,然後採用karp-Rabin演算法轉換成唯一十進制數字。由於用此演算法的哈希函數為:hash(value)=value*(4^(k-q-1));
value是該字元對應的值,k是kmer長度,q是此字元在字元串的位置范圍在[0-(q-1)]。然後把一個kmer裡面所有字元的hash值求和就行了。
2、那麼很容易看出來,對於連續的下害常憤端蒞得縫全俯戶一個Kmer,就有推理公式了 hashNew=addValue+(hashOld-deleteValue*(4^(k-1)))*4; hashNew就是往右平移一個字元的kmer hash值,hashOld就是平移之前的值,addValue就是平移後右邊多的一個字元,deleteValue就是平移後左邊少的一個字元。這樣整個hash表建立的時間復雜度約為O(m+k),m是整個文本長度。
3、由於kmer長度如果過長,其hash值過大,會造成內存不夠溢出的現象,所以kmer內部定死為10 。那麼問題就來了,如何應對不同的kmer值。分三種情況。
第一種:q>10
這種可以將kmer以10為單位,將hash表中對應值取出,然後對結果進行分析,這邊分析方法為建立兩個數組一個二維數組unionName儲存位置關系,一個一維數組unionScore,計數用。 思路就是首先第一輪初始化unionName[Name][Pos]全部賦值Pos 並初始化unionScore,然後再第二輪匹配如果unionName[Name][Pos-cycle]=Pos-1則將其賦值為當前Pos,cycle為當前循環次數。並將當前循環數存入unionScore[NAME]中。最後當unionScore[NAME]值也就是循環數為k-1,即我們需要的交集了。
第二種:q=10
直接求出hash值,取出相應的值即可。
第三種:q<10
可以用前綴種子+後綴種子交集產生。
前綴種子:在字元串後面補字元直到長度等於K,這個很容易看出來 最小是全補A,最大是全補T,然後將最小值到最大值之間的hash值即為所求。
後綴種子:後綴種子和前綴種子不同就是在字元串左邊補齊字元。所以此時需要進行變換。只要對前置種子產生的值變化下就行了。(preValue-minValue)*(4^(K-q))+hash(p) 。其中preValue就是對應的前置種子的hash值,minValue就是前置種子中最小值也就是全補A的情況,hash(p)就是字元串長度為p時候的hash值。
交集就是先求後綴種子所有的值,再加上 前綴種子中起始位置在[0-(k-1)]中的值。
E. 最常用的幾個python庫
Python常用庫大全,看看有沒有你需要的。
環境管理
管理 Python 版本和環境的工具
p – 非常簡單的互動式 python 版本管理工具。
pyenv – 簡單的 Python 版本管理工具。
Vex – 可以在虛擬環境中執行命令。
virtualenv – 創建獨立 Python 環境的工具。
virtualenvwrapper- virtualenv 的一組擴展。
包管理
管理包和依賴的工具。
pip – Python 包和依賴關系管理工具。
pip-tools – 保證 Python 包依賴關系更新的一組工具。
conda – 跨平台,Python 二進制包管理工具。
Curdling – 管理 Python 包的命令行工具。
wheel – Python 分發的新標准,意在取代 eggs。
包倉庫
本地 PyPI 倉庫服務和代理。
warehouse – 下一代 PyPI。
Warehousebandersnatch – PyPA 提供的 PyPI 鏡像工具。
devpi – PyPI 服務和打包/測試/分發工具。
localshop – 本地 PyPI 服務(自定義包並且自動對 PyPI 鏡像)。
分發
打包為可執行文件以便分發。
PyInstaller – 將 Python 程序轉換成獨立的執行文件(跨平台)。
dh-virtualenv – 構建並將 virtualenv 虛擬環境作為一個 Debian 包來發布。
Nuitka – 將腳本、模塊、包編譯成可執行文件或擴展模塊。
py2app – 將 Python 腳本變為獨立軟體包(Mac OS X)。
py2exe – 將 Python 腳本變為獨立軟體包(Windows)。
pynsist – 一個用來創建 Windows 安裝程序的工具,可以在安裝程序中打包 Python本身。
構建工具
將源碼編譯成軟體。
buildout – 一個構建系統,從多個組件來創建,組裝和部署應用。
BitBake – 針對嵌入式 Linux 的類似 make 的構建工具。
fabricate – 對任何語言自動找到依賴關系的構建工具。
PlatformIO – 多平台命令行構建工具。
PyBuilder – 純 Python 實現的持續化構建工具。
SCons – 軟體構建工具。
互動式解析器
互動式 Python 解析器。
IPython – 功能豐富的工具,非常有效的使用互動式 Python。
bpython- 界面豐富的 Python 解析器。
ptpython – 高級互動式Python解析器, 構建於python-prompt-toolkit 之上。
文件
文件管理和 MIME(多用途的網際郵件擴充協議)類型檢測。
imghdr – (Python 標准庫)檢測圖片類型。
mimetypes – (Python 標准庫)將文件名映射為 MIME 類型。
path.py – 對 os.path 進行封裝的模塊。
pathlib – (Python3.4+ 標准庫)跨平台的、面向對象的路徑操作庫。
python-magic- 文件類型檢測的第三方庫 libmagic 的 Python 介面。
Unipath- 用面向對象的方式操作文件和目錄
watchdog – 管理文件系統事件的 API 和 shell 工具
日期和時間
操作日期和時間的類庫。
arrow- 更好的 Python 日期時間操作類庫。
Chronyk – Python 3 的類庫,用於解析手寫格式的時間和日期。
dateutil – Python datetime 模塊的擴展。
delorean- 解決 Python 中有關日期處理的棘手問題的庫。
moment – 一個用來處理時間和日期的Python庫。靈感來自於Moment.js。
PyTime – 一個簡單易用的Python模塊,用於通過字元串來操作日期/時間。
pytz – 現代以及歷史版本的世界時區定義。將時區資料庫引入Python。
when.py – 提供用戶友好的函數來幫助用戶進行常用的日期和時間操作。
文本處理
用於解析和操作文本的庫。
通用
chardet – 字元編碼檢測器,兼容 Python2 和 Python3。
difflib – (Python 標准庫)幫助我們進行差異化比較。
ftfy – 讓Unicode文本更完整更連貫。
fuzzywuzzy – 模糊字元串匹配。
Levenshtein – 快速計算編輯距離以及字元串的相似度。
pangu.py – 在中日韓語字元和數字字母之間添加空格。
pyfiglet -figlet 的 Python實現。
shortuuid – 一個生成器庫,用以生成簡潔的,明白的,URL 安全的 UUID。
unidecode – Unicode 文本的 ASCII 轉換形式 。
uniout – 列印可讀的字元,而不是轉義的字元串。
xpinyin – 一個用於把漢字轉換為拼音的庫。
F. 百度圖片搜索引擎原理是如何實現的
圖片搜索的原理有三個步驟
1. 將目標圖片進行特徵提取,描述圖像的演算法很多,用的比較多的是:SIFT描述子,指紋演算法函數,bundling features演算法,hash function(散列函數)等。也可以根據不同的圖像,設計不同的演算法,比如圖像局部N階矩的方法提取圖像特徵。
2. 將圖像特徵信息進行編碼,並將海量圖像編碼做查找表。對於目標圖像,可以對解析度較大的圖像進行降采樣,減少運算量後在進行圖像特徵提取和編碼處理。
3. 相似度匹配運算:利用目標圖像的編碼值,在圖像搜索引擎中的圖像資料庫進行全局或是局部的相似度計算;根據所需要的魯棒性,設定閾值,然後將相似度高的圖片預保留下來;最後應該還有一步篩選最佳匹配圖片,這個應該還是用到特徵檢測演算法。
其中每個步驟都有很多演算法研究,圍繞數學,統計學,圖像編碼,信號處理等理論進行研究。
根據Neal Krawetz博士的解釋,原理非常簡單易懂。我們可以用一個快速演算法,就達到基本的效果。
這里的關鍵技術叫做"感知哈希演算法"(Perceptual hash algorithm),它的作用是對每張圖片生成一個"指紋"(fingerprint)字元串,然後比較不同圖片的指紋。結果越接近,就說明圖片越相似。下面是一個最簡單的實現:
第一步,縮小尺寸。
將圖片縮小到8x8的尺寸,總共64個像素。這一步的作用是去除圖片的細節,只保留結構、明暗等基本信息,摒棄不同尺寸、比例帶來的圖片差異。
第二步,簡化色彩。
將縮小後的圖片,轉為64級灰度。也就是說,所有像素點總共只有64種顏色。
第三步,計算平均值。
計算所有64個像素的灰度平均值。
第四步,比較像素的灰度。
將每個像素的灰度,與平均值進行比較。大於或等於平均值,記為1;小於平均值,記為0。
第五步,計算哈希值。
將上一步的比較結果,組合在一起,就構成了一個64位的整數,這就是這張圖片的指紋。組合的次序並不重要,只要保證所有圖片都採用同樣次序就行了。
得到指紋以後,就可以對比不同的圖片,看看64位中有多少位是不一樣的。在理論上,這等同於計算"漢明距離"(Hammingdistance)。如果不相同的數據位不超過5,就說明兩張圖片很相似;如果大於10,就說明這是兩張不同的圖片。
具體的代碼實現,可以參見Wote用python語言寫的imgHash.py。代碼很短,只有53行。使用的時候,第一個參數是基準圖片,第二個參數是用來比較的其他圖片所在的目錄,返回結果是兩張圖片之間不相同的數據位數量(漢明距離)。
這種演算法的優點是簡單快速,不受圖片大小縮放的影響,缺點是圖片的內容不能變更。如果在圖片上加幾個文字,它就認不出來了。所以,它的最佳用途是根據縮略圖,找出原圖。
實際應用中,往往採用更強大的pHash演算法和SIFT演算法,它們能夠識別圖片的變形。只要變形程度不超過25%,它們就能匹配原圖。這些演算法雖然更復雜,但是原理與上面的簡便演算法是一樣的,就是先將圖片轉化成Hash字元串,然後再進行比較。
G. 相似圖片搜索的原理是怎樣的
2011年,Google把「相似圖片搜索」正式放上了首頁。你可以用一張圖片,搜索互聯網上所有與它相似的圖片。點擊搜索框中照相機的圖標。
有了50×50像素的黑白縮略圖,就等於有了一個50×50的0-1矩陣。矩陣的每個值對應原圖的一個像素,0表示黑色,1表示白色。這個矩陣就是一張圖片的特徵矩陣。
兩個特徵矩陣的不同之處越少,就代表兩張圖片越相似。這可以用」異或運算」實現(即兩個值之中只有一個為1,則運算結果為1,否則運算結果為0)。對不同圖片的特徵矩陣進行」異或運算」,結果中的1越少,就是越相似的圖片。
H. python 為什麼沒法導入phash
可以正常安裝phash庫的
下載安裝地址:
https://pypi.python.org/pypi/phash/0.2.0