㈠ python的循環和MATLAB循環哪個難
python約比matlab慢60倍 ,MATLAB更難。
㈡ python為什麼沒有一個高效的for循環,還是我無知
本回答適用於python3.x
python本身速度確實相對比較慢。 但是相對來說,python有比直接的for循環快速的寫法。
比如標准for循環寫法如下
for i in range(10000):
i**2
這樣就比較慢,標准寫法的嵌套循環更慢。
可改寫為列表推斷式 : [ i**2 for i in range(10000)], 這樣就比直接for循環標准寫法要快不少;
此外, 還可以用python自帶的高級函數 map,自動並行計算。
寫為 list(map(lambda i: i**2, range(10000))) 也很快。 map函數和列表推斷式速度差不多。
㈢ Python中for循環遍歷數據有點慢,有沒有像java一樣做一個多進程的呢,如何做呢,有demo嗎謝謝!!
你遍歷的什麼數據啊,是列表,還是文件,python中的for是用c實現的,這個應該不是瓶頸,你可以使用timeit測試一下,看看哪塊比較耗時間,你也可以貼出你的代碼。
如果解決了您的問題請採納!
如果未解決請繼續追問
㈣ 使用python編程處理大量數據,效率太慢怎麼解決
既然存有上千萬個數據,為什麼不使用資料庫呢?
使用小型的sqlite資料庫,加上適當的索引、篩選,肯定能大大提高數據處理速度。
python也自身帶有處理sqlite資料庫的模塊,極其方便。
㈤ python語言運行速度如此差
這就要說到 Python 類語言和 C 類語言的主要區別了,Python 屬於解釋型語言,通俗來說就是你可以一句一句地輸入,而 Python 解釋器(Interpreter)可以一句一句地執行,而 C 語言屬於編譯型語言,無法做到這一點,只能一次性輸入完成,編譯成一個完整的程序再執行,而這個編譯的過程由於現代編譯器做了非常多的優化,並且你的程序沒有輸入只有輸出,每次運行都出固定的結果,所以極有可能被編譯器優化成為了只有一條輸出語句(實際情況可能要復雜一些),總的來說就是由於二者之間原理的差異導致了性能的差異,你可以搜一搜相關的資料,關掉 C 語言編譯時的優化,再看一下性能,或者將固定的那些值改為運行時需要輸入再看一下效果。
Python 相較於 C 的優勢有很多,性能這一方面你不需要關心,做出一個足夠復雜的程序,它們之間運行效率差不了多少的。
㈥ python提高for循環速度
把數據放在一個list, 在全部計算完以後輸出這個list?
print本來就是很慢的, 拖慢速度的是print不是for
最好使用內置函數
㈦ python中從列表中用for循環刪除(remove方法)停用詞特別慢,有快一點的方法嗎
python中最好不要在list遍歷中使用list.remove方法:
remove 僅僅 刪除一個值的首次出現。
如果在 list 中沒有找到值,程序會拋出一個異常
建議使用新的list存儲要保留的內容,然後返回這個新list。比如
a_list=[1,2,3,4,5]
needs_to_be_removed=[3,4,5]
result=[]
forvina_list:
ifvnotinneeds_to_be_removed:
result.append(v)
printresult
㈧ python運行速度慢怎麼辦
yxhtest7772017-07-18
關注
分享
697 2
python運行速度慢怎麼辦?6個Python性能優化技巧
Python是一門非常酷的語言,因為很少的Python代碼可以在短時間內做很多事情,並且,Python很容易就能支持多任務和多重處理。
Python的批評者聲稱Python性能低效、執行緩慢,但實際上並非如此:嘗試以下6個小技巧,可以加快Python應用程序。
關鍵代碼可以依賴於擴展包
Python使許多編程任務變得簡單,但是對於很關鍵的任務並不總是提供最好的性能。使用C、C++或者機器語言擴展包來執行關鍵任務能極大改善性能。這些包是依賴於平台的,也就是說,你必須使用特定的、與你使用的平台相關的包。簡而言之,該解決方案提供了一些應用程序的可移植性,以換取性能,您可以獲得只有通過直接向底層主機編程。
下面這些擴展包你可以考慮添加到你的個人擴展庫中:
Cython
PyInlne
PyPy
Pyrex
這些包有不同的作用和執行方式。例如,Pyrex 讓Python處理一些內存任務變得簡單高效;PyInline可以直接讓你在Python應用程序中使用C代碼,雖然內聯代碼被單獨編譯,但是如果你能高效的利用C代碼,它可以在同一個地方處理每一件事情。
使用關鍵字排序
有很多古老的Python代碼在執行時將花費額外的時間去創建一個自定義的排序函數。最好的排序方式是使用關鍵字和默認的sort()方法。
優化循環
每一種編程語言都強調循環語句的優化,Python也是一樣的。盡管你可以依賴於豐富的技術讓循環運行的更快,然而,開發者經常忽略的一個方法是避免在循環內部使用點拼接字元串。
使用新版本
任何一個在線上搜索Python資料的人都會發現無數關於Python版本遷移的信息。通常,Python每一個版本都針對之前的一個版本做了優化和改進,以讓Python運行的更快。限制因素是你喜歡的函數庫是否也針對Python的新版本做了改進。
當你使用了新的函數庫,獲得了Python的新版本,你需要保證代碼依然能夠運行,檢查應用,修正差異。然後,如果你僅僅是
㈨ 請問大佬們,為什麼我python運行程序特別慢啊,我這個程序怎麼改一下可以運行的更快呢
您好,茫茫人海之中,能為君排憂解難實屬朕的榮幸,在下拙見,若有錯誤,還望見諒!。展開全部
yxhtest7772017-07-18
關注
分享
697 2
python運行速度慢怎麼辦?6個Python性能優化技巧
Python是一門非常酷的語言,因為很少的Python代碼可以在短時間內做很多事情,並且,Python很容易就能支持多任務和多重處理。
Python的批評者聲稱Python性能低效、執行緩慢,但實際上並非如此:嘗試以下6個小技巧,可以加快Python應用程序。
關鍵代碼可以依賴於擴展包
Python使許多編程任務變得簡單,但是對於很關鍵的任務並不總是提供最好的性能。使用C、C++或者機器語言擴展包來執行關鍵任務能極大改善性能。這些包是依賴於平台的,也就是說,你必須使用特定的、與你使用的平台相關的包。簡而言之,該解決方案提供了一些應用程序的可移植性,以換取性能,您可以獲得只有通過直接向底層主機編程。
下面這些擴展包你可以考慮添加到你的個人擴展庫中:
Cython
PyInlne
PyPy
Pyrex
這些包有不同的作用和執行方式。例如,Pyrex 讓Python處理一些內存任務變得簡單高效;PyInline可以直接讓你在Python應用程序中使用C代碼,雖然內聯代碼被單獨編譯,但是如果你能高效的利用C代碼,它可以在同一個地方處理每一件事情。
使用關鍵字排序
有很多古老的Python代碼在執行時將花費額外的時間去創建一個自定義的排序函數。最好的排序方式是使用關鍵字和默認的sort()方法。
優化循環
每一種編程語言都強調循環語句的優化,Python也是一樣的。盡管你可以依賴於豐富的技術讓循環運行的更快,然而,開發者經常忽略的一個方法是避免在循環內部使用點拼接字元串。
使用新版本
任何一個在線上搜索Python資料的人都會發現無數關於Python版本遷移的信息。通常,Python每一個版本都針對之前的一個版本做了優化和改進,以讓Python運行的更快。限制因素是你喜歡的函數庫是否也針對Python的新版本做了改進。
當你使用了新的函數庫,獲得了Python的新版本,你需要保證代碼依然能夠運行,檢查應用,修正差異。然後,如果你僅僅是非常感謝您的耐心觀看,如有幫助請採納,祝生活愉快!謝謝!
㈩ python在一個循環中處理數據,越來越慢,求教
要麼開多線程,要麼用C/C++或python數組的語法特徵處理循環,沒代碼沒法判斷,要是用原生的python代碼處理循環當然慢。