导航:首页 > 源码编译 > apriori算法c语言

apriori算法c语言

发布时间:2022-06-29 16:16:59

Ⅰ Apriori算法的问题

不知道你知不知道什么叫泛型,你可以写成List<transact> ,然后在while中给transact赋值,比如说transact.setContener(contener)然后,把你需要的字段全部set进去,然后在transList.add(transact)。ok问题解决。
如果你这都看不懂的话,建议去看看书

Ⅱ apriori算法是什么

经典的关联规则挖掘算法包括Apriori算法和FP-growth算法。

apriori算法多次扫描交易数据库,每次利用候选频繁集产生频繁集;而FP-growth则利用树形结构,无需产生候选频繁集而是直接得到频繁集,大大减少扫描交易数据库的次数,从而提高了算法的效率,但是apriori的算法扩展性较好,可以用于并行计算等领域。

基本算法:

Apriori algorithm是关联规则里一项基本算法

Apriori算法将发现关联规则的过程分:

第一通过迭代,检索出事务数据库1中的所有频繁项集,即支持度不低于用户设定的阈值的项集;

第二利用频繁项集构造出满足用户最小信任度的规则。其中,挖掘或识别出所有频繁项集是该算法的核心,占整个计算量的大部分。

Ⅲ 利用Apriori算法产生频繁项集,(min sup=0.6),给出具体计算过程

Apriori算法是一种发现频繁项集的基本算法。算法使用频繁项集性质的先验知识。Apriori算法使用一种称为逐层搜索的迭代方法,其中K项集用于探索(k+1)项集。首先,通过扫描数据库,累计每个项的计数,并收集满足最小支持度的项,找出频繁1项集的集合。该集合记为L1.然后,使用L1找出频繁2项集的集合L2,使用L2找到L3,如此下去,直到不能再找到频繁k项集。Apriori算法的主要步骤如下:(1)扫描事务数据库中的每个事务,产生候选1.项集的集合Cl;(2)根据最小支持度min_sup,由候选l-项集的集合Cl产生频繁1一项集的集合Ll;(3)对k=l;(4)由Lk执行连接和剪枝操作,产生候选(k+1).项集的集合Ck+l-(5)根据最小支持度min_sup,由候选(k+1)一项集的集合Ck+l产生频繁(k+1)-项集的集合Lk+1.(6)若L?≠①,则k.k+1,跳往步骤(4);否则,跳往步骤(7);(7)根据最小置信度min_conf,由频繁项集产生强关联规则,结束。

Ⅳ 数据挖掘中的apriori算法的具体步骤是什么

算法:Apriori
输入:D - 事务数据库;min_sup - 最小支持度计数阈值
输出:L - D中的频繁项集
方法:
L1=find_frequent_1-itemsets(D); // 找出所有频繁1项集
For(k=2;Lk-1!=null;k++){
Ck=apriori_gen(Lk-1); // 产生候选,并剪枝
For each 事务t in D{ // 扫描D进行候选计数
Ct =subset(Ck,t); // 得到t的子集
For each 候选c 属于 Ct
c.count++;
}
Lk={c属于Ck | c.count>=min_sup}
}
Return L=所有的频繁集;

Procere apriori_gen(Lk-1:frequent(k-1)-itemsets)
For each项集l1属于Lk-1
For each项集 l2属于Lk-1
If((l1[1]=l2[1])&&( l1[2]=l2[2])&&……..
&& (l1[k-2]=l2[k-2])&&(l1[k-1]<l2[k-1])) then{
c=l1连接l2 //连接步:产生候选
if has_infrequent_subset(c,Lk-1) then
delete c; //剪枝步:删除非频繁候选
else add c to Ck;
}
Return Ck;

Procere has_infrequent_sub(c:candidate k-itemset; Lk-1:frequent(k-1)-itemsets)
For each(k-1)-subset s of c
If s不属于Lk-1 then
Return true;
Return false;

Ⅳ 急需C++实现的Apriori算法代码

用C++ 实现的 可以 到http://download.csdn.net/down/188143/chanjuanzz下载 不过要注册扣积分的

算法实现

(一)核心类

Apriori算法的核心实现类为AprioriAlgorithm,实现的java代码如下所示:

package org.shirdrn.datamining.association;

import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.TreeMap;

/**
* <B>关联规则挖掘:Apriori算法</B>
*
* <P>该算法基本上按照Apriori算法的基本思想来实现的。
*
* @author shirdrn
* @date 2009/07/22 22:56:23
* @msn shirdrn#hotmail.com(#→@)
* @qq 187071722
*/
public class AprioriAlgorithm {

private Map<Integer, Set<String>> txDatabase; // 事务数据库
private Float minSup; // 最小支持度
private Float minConf; // 最小置信度
private Integer txDatabaseCount; // 事务数据库中的事务数

private Map<Integer, Set<Set<String>>> freqItemSet; // 频繁项集集合
private Map<Set<String>, Set<Set<String>>> assiciationRules; // 频繁关联规则集合

public AprioriAlgorithm(
Map<Integer, Set<String>> txDatabase,
Float minSup,
Float minConf) {
this.txDatabase = txDatabase;
this.minSup = minSup;
this.minConf = minConf;
this.txDatabaseCount = this.txDatabase.size();
freqItemSet = new TreeMap<Integer, Set<Set<String>>>();
assiciationRules = new HashMap<Set<String>, Set<Set<String>>>();
}

/**
* 扫描事务数据库,计算频繁1-项集
* @return
*/
public Map<Set<String>, Float> getFreq1ItemSet() {
Map<Set<String>, Float> freq1ItemSetMap = new HashMap<Set<String>, Float>();
Map<Set<String>, Integer> candFreq1ItemSet = this.getCandFreq1ItemSet();
Iterator<Map.Entry<Set<String>, Integer>> it = candFreq1ItemSet.entrySet().iterator();
while(it.hasNext()) {
Map.Entry<Set<String>, Integer> entry = it.next();
// 计算支持度
Float supported = new Float(entry.getValue().toString())/new Float(txDatabaseCount);
if(supported>=minSup) {
freq1ItemSetMap.put(entry.getKey(), supported);
}
}
return freq1ItemSetMap;
}

/**
* 计算候选频繁1-项集
* @return
*/
public Map<Set<String>, Integer> getCandFreq1ItemSet() {
Map<Set<String>, Integer> candFreq1ItemSetMap = new HashMap<Set<String>, Integer>();
Iterator<Map.Entry<Integer, Set<String>>> it = txDatabase.entrySet().iterator();
// 统计支持数,生成候选频繁1-项集
while(it.hasNext()) {
Map.Entry<Integer, Set<String>> entry = it.next();
Set<String> itemSet = entry.getValue();
for(String item : itemSet) {
Set<String> key = new HashSet<String>();
key.add(item.trim());
if(!candFreq1ItemSetMap.containsKey(key)) {
Integer value = 1;
candFreq1ItemSetMap.put(key, value);
}
else {
Integer value = 1+candFreq1ItemSetMap.get(key);
candFreq1ItemSetMap.put(key, value);
}
}
}
return candFreq1ItemSetMap;
}

/**
* 根据频繁(k-1)-项集计算候选频繁k-项集
*
* @param m 其中m=k-1
* @param freqMItemSet 频繁(k-1)-项集
* @return
*/
public Set<Set<String>> aprioriGen(int m, Set<Set<String>> freqMItemSet) {
Set<Set<String>> candFreqKItemSet = new HashSet<Set<String>>();
Iterator<Set<String>> it = freqMItemSet.iterator();
Set<String> originalItemSet = null;
while(it.hasNext()) {
originalItemSet = it.next();
Iterator<Set<String>> itr = this.getIterator(originalItemSet, freqMItemSet);
while(itr.hasNext()) {
Set<String> identicalSet = new HashSet<String>(); // 两个项集相同元素的集合(集合的交运算)
identicalSet.addAll(originalItemSet);
Set<String> set = itr.next();
identicalSet.retainAll(set); // identicalSet中剩下的元素是identicalSet与set集合中公有的元素
if(identicalSet.size() == m-1) { // (k-1)-项集中k-2个相同
Set<String> differentSet = new HashSet<String>(); // 两个项集不同元素的集合(集合的差运算)
differentSet.addAll(originalItemSet);
differentSet.removeAll(set); // 因为有k-2个相同,则differentSet中一定剩下一个元素,即differentSet大小为1
differentSet.addAll(set); // 构造候选k-项集的一个元素(set大小为k-1,differentSet大小为k)
candFreqKItemSet.add(differentSet); // 加入候选k-项集集合
}
}
}
return candFreqKItemSet;
}

/**
* 根据一个频繁k-项集的元素(集合),获取到频繁k-项集的从该元素开始的迭代器实例
* @param itemSet
* @param freqKItemSet 频繁k-项集
* @return
*/
private Iterator<Set<String>> getIterator(Set<String> itemSet, Set<Set<String>> freqKItemSet) {
Iterator<Set<String>> it = freqKItemSet.iterator();
while(it.hasNext()) {
if(itemSet.equals(it.next())) {
break;
}
}
return it;
}

/**
* 根据频繁(k-1)-项集,调用aprioriGen方法,计算频繁k-项集
*
* @param k
* @param freqMItemSet 频繁(k-1)-项集
* @return
*/
public Map<Set<String>, Float> getFreqKItemSet(int k, Set<Set<String>> freqMItemSet) {
Map<Set<String>, Integer> candFreqKItemSetMap = new HashMap<Set<String>, Integer>();
// 调用aprioriGen方法,得到候选频繁k-项集
Set<Set<String>> candFreqKItemSet = this.aprioriGen(k-1, freqMItemSet);

// 扫描事务数据库
Iterator<Map.Entry<Integer, Set<String>>> it = txDatabase.entrySet().iterator();
// 统计支持数
while(it.hasNext()) {
Map.Entry<Integer, Set<String>> entry = it.next();
Iterator<Set<String>> kit = candFreqKItemSet.iterator();
while(kit.hasNext()) {
Set<String> kSet = kit.next();
Set<String> set = new HashSet<String>();
set.addAll(kSet);
set.removeAll(entry.getValue()); // 候选频繁k-项集与事务数据库中元素做差元算
if(set.isEmpty()) { // 如果拷贝set为空,支持数加1
if(candFreqKItemSetMap.get(kSet) == null) {
Integer value = 1;
candFreqKItemSetMap.put(kSet, value);
}
else {
Integer value = 1+candFreqKItemSetMap.get(kSet);
candFreqKItemSetMap.put(kSet, value);
}
}
}
}
// 计算支持度,生成频繁k-项集,并返回
return support(candFreqKItemSetMap);
}

/**
* 根据候选频繁k-项集,得到频繁k-项集
*
* @param candFreqKItemSetMap 候选k项集(包含支持计数)
*/
public Map<Set<String>, Float> support(Map<Set<String>, Integer> candFreqKItemSetMap) {
Map<Set<String>, Float> freqKItemSetMap = new HashMap<Set<String>, Float>();
Iterator<Map.Entry<Set<String>, Integer>> it = candFreqKItemSetMap.entrySet().iterator();
while(it.hasNext()) {
Map.Entry<Set<String>, Integer> entry = it.next();
// 计算支持度
Float supportRate = new Float(entry.getValue().toString())/new Float(txDatabaseCount);
if(supportRate<minSup) { // 如果不满足最小支持度,删除
it.remove();
}
else {
freqKItemSetMap.put(entry.getKey(), supportRate);
}
}
return freqKItemSetMap;
}

/**
* 挖掘全部频繁项集
*/
public void mineFreqItemSet() {
// 计算频繁1-项集
Set<Set<String>> freqKItemSet = this.getFreq1ItemSet().keySet();
freqItemSet.put(1, freqKItemSet);
// 计算频繁k-项集(k>1)
int k = 2;
while(true) {
Map<Set<String>, Float> freqKItemSetMap = this.getFreqKItemSet(k, freqKItemSet);
if(!freqKItemSetMap.isEmpty()) {
this.freqItemSet.put(k, freqKItemSetMap.keySet());
freqKItemSet = freqKItemSetMap.keySet();
}
else {
break;
}
k++;
}
}

/**
* <P>挖掘频繁关联规则
* <P>首先挖掘出全部的频繁项集,在此基础上挖掘频繁关联规则
*/
public void mineAssociationRules() {
freqItemSet.remove(1); // 删除频繁1-项集
Iterator<Map.Entry<Integer, Set<Set<String>>>> it = freqItemSet.entrySet().iterator();
while(it.hasNext()) {
Map.Entry<Integer, Set<Set<String>>> entry = it.next();
for(Set<String> itemSet : entry.getValue()) {
// 对每个频繁项集进行关联规则的挖掘
mine(itemSet);
}
}
}

/**
* 对从频繁项集集合freqItemSet中每迭代出一个频繁项集元素,执行一次关联规则的挖掘
* @param itemSet 频繁项集集合freqItemSet中的一个频繁项集元素
*/
public void mine(Set<String> itemSet) {
int n = itemSet.size()/2; // 根据集合的对称性,只需要得到一半的真子集
for(int i=1; i<=n; i++) {
// 得到频繁项集元素itemSet的作为条件的真子集集合
Set<Set<String>> properSubset = ProperSubsetCombination.getProperSubset(i, itemSet);
// 对条件的真子集集合中的每个条件项集,获取到对应的结论项集,从而进一步挖掘频繁关联规则
for(Set<String> conditionSet : properSubset) {
Set<String> conclusionSet = new HashSet<String>();
conclusionSet.addAll(itemSet);
conclusionSet.removeAll(conditionSet); // 删除条件中存在的频繁项
confide(conditionSet, conclusionSet); // 调用计算置信度的方法,并且挖掘出频繁关联规则
}
}
}

/**
* 对得到的一个条件项集和对应的结论项集,计算该关联规则的支持计数,从而根据置信度判断是否是频繁关联规则
* @param conditionSet 条件频繁项集
* @param conclusionSet 结论频繁项集
*/
public void confide(Set<String> conditionSet, Set<String> conclusionSet) {
// 扫描事务数据库
Iterator<Map.Entry<Integer, Set<String>>> it = txDatabase.entrySet().iterator();
// 统计关联规则支持计数
int conditionToConclusionCnt = 0; // 关联规则(条件项集推出结论项集)计数
int conclusionToConditionCnt = 0; // 关联规则(结论项集推出条件项集)计数
int supCnt = 0; // 关联规则支持计数
while(it.hasNext()) {
Map.Entry<Integer, Set<String>> entry = it.next();
Set<String> txSet = entry.getValue();
Set<String> set1 = new HashSet<String>();
Set<String> set2 = new HashSet<String>();
set1.addAll(conditionSet);

set1.removeAll(txSet); // 集合差运算:set-txSet
if(set1.isEmpty()) { // 如果set为空,说明事务数据库中包含条件频繁项conditionSet
// 计数
conditionToConclusionCnt++;
}
set2.addAll(conclusionSet);
set2.removeAll(txSet); // 集合差运算:set-txSet
if(set2.isEmpty()) { // 如果set为空,说明事务数据库中包含结论频繁项conclusionSet
// 计数
conclusionToConditionCnt++;

}
if(set1.isEmpty() && set2.isEmpty()) {
supCnt++;
}
}
// 计算置信度
Float conditionToConclusionConf = new Float(supCnt)/new Float(conditionToConclusionCnt);
if(conditionToConclusionConf>=minConf) {
if(assiciationRules.get(conditionSet) == null) { // 如果不存在以该条件频繁项集为条件的关联规则
Set<Set<String>> conclusionSetSet = new HashSet<Set<String>>();
conclusionSetSet.add(conclusionSet);
assiciationRules.put(conditionSet, conclusionSetSet);
}
else {
assiciationRules.get(conditionSet).add(conclusionSet);
}
}
Float conclusionToConditionConf = new Float(supCnt)/new Float(conclusionToConditionCnt);
if(conclusionToConditionConf>=minConf) {
if(assiciationRules.get(conclusionSet) == null) { // 如果不存在以该结论频繁项集为条件的关联规则
Set<Set<String>> conclusionSetSet = new HashSet<Set<String>>();
conclusionSetSet.add(conditionSet);
assiciationRules.put(conclusionSet, conclusionSetSet);
}
else {
assiciationRules.get(conclusionSet).add(conditionSet);
}
}
}

/**
* 经过挖掘得到的频繁项集Map
*
* @return 挖掘得到的频繁项集集合
*/
public Map<Integer, Set<Set<String>>> getFreqItemSet() {
return freqItemSet;
}

/**
* 获取挖掘到的全部的频繁关联规则的集合
* @return 频繁关联规则集合
*/
public Map<Set<String>, Set<Set<String>>> getAssiciationRules() {
return assiciationRules;
}
}

(二)辅助类

ProperSubsetCombination类是一个辅助类,在挖掘频繁关联规则的过程中,用于生成一个频繁项集元素的非空真子集,实现代码如下:

package org.shirdrn.datamining.association;
import java.util.BitSet;
import java.util.HashSet;
import java.util.Set;

/**
* <B>求频繁项集元素(集合)的非空真子集集合</B>
* <P>从一个集合(大小为n)中取出m(m属于2~n/2的闭区间)个元素的组合实现类,获取非空真子集的集合
*
* @author shirdrn
* @date 2009/07/22 22:56:23
* @msn shirdrn#hotmail.com(#→@)
* @qq 187071722
*/
public class ProperSubsetCombination {

private static String[] array;
private static BitSet startBitSet; // 比特集合起始状态
private static BitSet endBitSet; // 比特集合终止状态,用来控制循环
private static Set<Set<String>> properSubset; // 真子集集合

/**
* 计算得到一个集合的非空真子集集合
*
* @param n 真子集的大小
* @param itemSet 一个频繁项集元素
* @return 非空真子集集合
*/
public static Set<Set<String>> getProperSubset(int n, Set<String> itemSet) {
String[] array = new String[itemSet.size()];
ProperSubsetCombination.array = itemSet.toArray(array);
properSubset = new HashSet<Set<String>>();
startBitSet = new BitSet();
endBitSet = new BitSet();

// 初始化startBitSet,左侧占满1
for (int i=0; i<n; i++) {
startBitSet.set(i, true);
}

// 初始化endBit,右侧占满1
for (int i=array.length-1; i>=array.length-n; i--) {
endBitSet.set(i, true);
}

// 根据起始startBitSet,将一个组合加入到真子集集合中
get(startBitSet);

while(!startBitSet.equals(endBitSet)) {
int zeroCount = 0; // 统计遇到10后,左边0的个数
int oneCount = 0; // 统计遇到10后,左边1的个数
int pos = 0; // 记录当前遇到10的索引位置

// 遍历startBitSet来确定10出现的位置
for (int i=0; i<array.length; i++) {
if (!startBitSet.get(i)) {
zeroCount++;
}
if (startBitSet.get(i) && !startBitSet.get(i+1)) {
pos = i;
oneCount = i - zeroCount;
// 将10变为01
startBitSet.set(i, false);
startBitSet.set(i+1, true);
break;
}
}
// 将遇到10后,左侧的1全部移动到最左侧
int counter = Math.min(zeroCount, oneCount);
int startIndex = 0;
int endIndex = 0;
if(pos>1 && counter>0) {
pos--;
endIndex = pos;
for (int i=0; i<counter; i++) {
startBitSet.set(startIndex, true);
startBitSet.set(endIndex, false);
startIndex = i+1;
pos--;
if(pos>0) {
endIndex = pos;
}
}
}
get(startBitSet);
}
return properSubset;
}

/**
* 根据一次移位操作得到的startBitSet,得到一个真子集
* @param bitSet
*/
private static void get(BitSet bitSet) {
Set<String> set = new HashSet<String>();
for(int i=0; i<array.length; i++) {
if(bitSet.get(i)) {
set.add(array[i]);
}
}
properSubset.add(set);
}
}

测试用例

对上述Apriori算法的实现进行了简单的测试,测试用例如下所示:

package org.shirdrn.datamining.association;

import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.TreeSet;

import org.shirdrn.datamining.association.AprioriAlgorithm;

import junit.framework.TestCase;

/**
* <B>Apriori算法测试类</B>
*
* @author shirdrn
* @date 2009/07/22 22:56:23
* @msn shirdrn#hotmail.com(#→@)
* @qq 187071722
*/
public class TestAprioriAlgorithm extends TestCase {

private AprioriAlgorithm apriori;
private Map<Integer, Set<String>> txDatabase;
private Float minSup = new Float("0.50");
private Float minConf = new Float("0.70");

@Override
protected void setUp() throws Exception {
create(); // 构造事务数据库
apriori = new AprioriAlgorithm(txDatabase, minSup, minConf);
}

/**
* 构造模拟事务数据库txDatabase
*/
public void create() {
txDatabase = new HashMap<Integer, Set<String>>();
Set<String> set1 = new TreeSet<String>();
set1.add("A");
set1.add("B");
set1.add("C");
set1.add("E");
txDatabase.put(1, set1);
Set<String> set2 = new TreeSet<String>();
set2.add("A");
set2.add("B");
set2.add("C");
txDatabase.put(2, set2);
Set<String> set3 = new TreeSet<String>();
set3.add("C");
set3.add("D");
txDatabase.put(3, set3);
Set<String> set4 = new TreeSet<String>();
set4.add("A");
set4.add("B");
set4.add("E");
txDatabase.put(4, set4);
}

/**
* 测试挖掘频繁1-项集
*/
public void testFreq1ItemSet() {
System.out.println("挖掘频繁1-项集 : " + apriori.getFreq1ItemSet());
}

/**
* 测试aprioriGen方法,生成候选频繁项集
*/
public void testAprioriGen() {
System.out.println(
"候选频繁2-项集 : " +
this.apriori.aprioriGen(1, this.apriori.getFreq1ItemSet().keySet())
);
}

/**
* 测试挖掘频繁2-项集
*/
public void testGetFreq2ItemSet() {
System.out.println(
"挖掘频繁2-项集 :" +
this.apriori.getFreqKItemSet(2, this.apriori.getFreq1ItemSet().keySet())
);
}

/**
* 测试挖掘频繁3-项集
*/
public void testGetFreq3ItemSet() {
System.out.println(
"挖掘频繁3-项集 :" +
this.apriori.getFreqKItemSet(
3,
this.apriori.getFreqKItemSet(2, this.apriori.getFreq1ItemSet().keySet()).keySet()
)
);
}

/**
* 测试挖掘全部频繁项集
*/
public void testGetFreqItemSet() {
this.apriori.mineFreqItemSet(); // 挖掘频繁项集
System.out.println("挖掘频繁项集 :" + this.apriori.getFreqItemSet());
}

/**
* 测试挖掘全部频繁关联规则
*/
public void testMineAssociationRules() {
this.apriori.mineFreqItemSet(); // 挖掘频繁项集
this.apriori.mineAssociationRules();
System.out.println("挖掘频繁关联规则 :" + this.apriori.getAssiciationRules());
}
}

测试结果:

挖掘频繁1-项集 : {[E]=0.5, [A]=0.75, [B]=0.75, [C]=0.75}
候选频繁2-项集 : [[E, C], [A, B], [B, C], [A, C], [E, B], [E, A]]
挖掘频繁2-项集 :{[A, B]=0.75, [B, C]=0.5, [A, C]=0.5, [E, B]=0.5, [E, A]=0.5}
挖掘频繁3-项集 :{[E, A, B]=0.5, [A, B, C]=0.5}
挖掘频繁项集 :{1=[[E], [A], [B], [C]], 2=[[A, B], [B, C], [A, C], [E, B], [E, A]], 3=[[E, A, B], [A, B, C]]}
挖掘频繁关联规则 :{[E]=[[A], [B], [A, B]], [A]=[[B]], [B]=[[A]], [B, C]=[[A]], [A, C]=[[B]], [E, B]=[[A]], [E, A]=[[B]]}

从测试结果看到,使用Apriori算法挖掘得到的全部频繁项集为:

{1=[[E], [A], [B], [C]], 2=[[A, B], [B, C], [A, C], [E, B], [E, A]], 3=[[E, A, B], [A, B, C]]}

使用Apriori算法挖掘得到的全部频繁关联规则为:

{E}→{A}、{E}→{B}、{E}→{A,B}、{A}→{B}、{B}→{A}、{B,C}→{A}、{A,C}→{B}、{B,E}→{A}、{A,E}→{B}。

Ⅵ 设c是apriori算法产生的ck中的一个候选项集.在剪枝步,需要检查多少个长度为

2 FAA算法思想
2.1 链表数组定义及生成算法。链表数组定义:数组为n个指针的一维数组P[n],对应数据库中的频繁项I1,I2,…,In,对应数组长度n为数据库中频繁项的数量。结点为事务结点,分为事务域、计数域和指针域。事务域是以频繁项为后缀的事务编码。计数域是该事务编码的数量,指针域是指向下一结点的指针。
编码方法:设数据库中有n个频繁项I1,I2,…,In。事务t的编码就是长度为n的0、1位串。在t中出现的项,其相应位置用1表示,否则填0。例如,有四个频繁项a,b,c,d。那么,一个包含a和c的事务就被映射为1010。
链表数组的构造过程如下:(1)扫描事务数据库,产生所有频繁1-项集及支持度计数,依据支持度计数降序排列,生成FI-List。(2)再次扫描数据库,将每条记录中不满足最小支持度计数的项删除,并将剩余项按照FI-List重新排序。设形成的新序列为{m1,m2,…,mn},依次取出序列中的前k(1≤k≤n)项组成子序列{m1,m2,…,mk},对每个子序列进行编码并建立一个与之对应的事务结点,并按照子序列中最后一项追加到P[n]中相应链上。

Ⅶ 急求用C实现的Apriori算法的 代码

http://www.csc.liv.ac.uk/~frans/Notes/KDD/AssocRuleMine/apriori.html

.h
====================================
/*----------------------------------------------------------------------
File : apriori.h
Contents: apriori algorithm for finding frequent item sets
(specialized version for FIMI 2003 workshop)
Author : Christian Borgelt
History : 15.08.2003 file created from normal apriori.c
16.08.2003 parameter for transaction filtering added
18.08.2003 dynamic filtering decision based on times added
21.08.2003 transaction sort changed to heapsort
20.09.2003 output file made optional
----------------------------------------------------------------------*/
/*
Modified by : Frédéric Flouvat
Modifications : store the positive and negative border into an
an input trie for ABS
process stastical informations on dataset to stop
the apriori classical iterations
Author : Frédéric Flouvat
----------------------------------------------------------------------*/
#ifndef APRIRORI_H
#define APRIRORI_H

#include <iostream>
using namespace std;
#define MAXIMAL

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <time.h>
#include <assert.h>

#include "tract.h"
#include "istree.h"
#include "Application.h"

/*----------------------------------------------------------------------
Preprocessor Definitions
----------------------------------------------------------------------*/
#define PRGNAME "fim/apriori"
#define DESCRIPTION "frequent item sets miner for FIMI 2003"
#define VERSION "version 1.7 (2003.12.02) " \
"(c) 2003 Christian Borgelt"

/* --- error codes --- */
#define E_OPTION (-5) /* unknown option */
#define E_OPTARG (-6) /* missing option argument */
#define E_ARGCNT (-7) /* too few/many arguments */
#define E_SUPP (-8) /* invalid minimum support */
#define E_NOTAS (-9) /* no items or transactions */
#define E_UNKNOWN (-18) /* unknown error */

#ifndef QUIET /* if not quiet version */
#define MSG(x) x /* print messages */
#else /* if quiet version */
#define MSG(x) /* suppress messages */
#endif

#define SEC_SINCE(t) ((clock()-(t)) /(double)CLOCKS_PER_SEC)
#define RECCNT(s) (tfs_reccnt(is_tfscan(s)) \
+ ((tfs_delim(is_tfscan(s)) == TFS_REC) ? 0 : 1))
#define BUFFER(s) tfs_buf(is_tfscan(s))

/*----------------------------------------------------------------------
Constants
----------------------------------------------------------------------*/
#ifndef QUIET /* if not quiet version */

/* --- error messages --- */
static const char *errmsgs[] = {
/* E_NONE 0 */ "no error\n",
/* E_NOMEM -1 */ "not enough memory\n",
/* E_FOPEN -2 */ "cannot open file %s\n",
/* E_FREAD -3 */ "read error on file %s\n",
/* E_FWRITE -4 */ "write error on file %s\n",
/* E_OPTION -5 */ "unknown option -%c\n",
/* E_OPTARG -6 */ "missing option argument\n",
/* E_ARGCNT -7 */ "wrong number of arguments\n",
/* E_SUPP -8 */ "invalid minimal support %d\n",
/* E_NOTAS -9 */ "no items or transactions to work on\n",
/* -10 to -15 */ NULL, NULL, NULL, NULL, NULL, NULL,
/* E_ITEMEXP -16 */ "file %s, record %d: item expected\n",
/* E_DUPITEM -17 */ "file %s, record %d: plicate item %s\n",
/* E_UNKNOWN -18 */ "unknown error\n"
};
#endif

/*----------------------------------------------------------------------
Global Variables
----------------------------------------------------------------------*/
#ifndef QUIET
static char *prgname; /* program name for error messages */
#endif
static ITEMSET *itemset = NULL; /* item set */
static TASET *taset = NULL; /* transaction set */
static TATREE *tatree = NULL; /* transaction tree */
static ISTREE *istree = NULL; /* item set tree */
static FILE *in = NULL; /* input file */
static FILE *out = NULL; /* output file */

extern "C" TATREE * apriori( char*fn_in, char*fn_out, int supp, int & level,
Trie * bdPapriori, Trie * bdn, set<Element> * relist, double ratioNfC, double & eps, int ismax,
vector< unsigned int > * stat, int & maxBdP, bool & generatedFk, bool verbose ) ;

#endif

.c
============================================
/*----------------------------------------------------------------------
File : apriori.c
Contents: apriori algorithm for finding frequent item sets
(specialized version for FIMI 2003 workshop)
Author : Christian Borgelt
History : 15.08.2003 file created from normal apriori.c
16.08.2003 parameter for transaction filtering added
18.08.2003 dynamic filtering decision based on times added
21.08.2003 transaction sort changed to heapsort
20.09.2003 output file made optional
----------------------------------------------------------------------*/
/*
Modified by : Frédéric Flouvat
Modifications : store the positive and negative border into an
an input trie for ABS
process stastical informations on dataset to stop
the apriori classical iterations
Author : Frédéric Flouvat
----------------------------------------------------------------------*/

#include "apriori.h"

/*----------------------------------------------------------------------
Main Functions
----------------------------------------------------------------------*/

static void error (int code, ...)
{ /* --- print an error message */
#ifndef QUIET /* if not quiet version */
va_list args; /* list of variable arguments */
const char *msg; /* error message */

assert(prgname); /* check the program name */
if (code < E_UNKNOWN) code = E_UNKNOWN;
if (code < 0) { /* if to report an error, */
msg = errmsgs[-code]; /* get the error message */
if (!msg) msg = errmsgs[-E_UNKNOWN];
fprintf(stderr, "\n%s: ", prgname);
va_start(args, code); /* get variable arguments */
vfprintf(stderr, msg, args);/* print error message */
va_end(args); /* end argument evaluation */
}
#endif
#ifndef NDEBUG /* if debug version */
if (istree) ist_delete(istree);
if (tatree) tat_delete(tatree);
if (taset) tas_delete(taset, 0);
if (itemset) is_delete(itemset);
if (in) fclose(in); /* clean up memory */
if (out) fclose(out); /* and close files */
#endif
exit(code); /* abort the program */
} /* error() */

/*--------------------------------------------------------------------*/

TATREE * apriori( char*fn_in, char*fn_out, int supp, int & level, Trie * bdPapriori,
Trie * bdn , set<Element> * relist , double ratioNfC, double & eps,int ismax,
vector< unsigned int > * stat, int & maxBdP, bool & generatedFk, bool verbose )
{
int i, k, n; /* loop variables, counters */
int tacnt = 0; /* number of transactions */
int max = 0; /* maximum transaction size */
int empty = 1; /* number of empty item sets */
int *map, *set; /* identifier map, item set */
char *usage; /* flag vector for item usage */
clock_t t, tt, tc, x; /* timer for measurements */

double actNfC = 1 ;
double avgNfC = 0 ;
int nbgen = 0 ;
int nbfreq = 0 ;
level = 1 ;
bool endApriori = false ; // boolean to stop the initial classial apriori approach
int bdnsize = 0 ; // number of itemsets found infrequent

/* --- create item set and transaction set --- */
itemset = is_create(); /* create an item set and */
if (!itemset) error(E_NOMEM); /* set the special characters */
taset = tas_create(itemset); /* create a transaction set */
if (!taset) error(E_NOMEM); /* to store the transactions */
if( verbose ) MSG(fprintf(stderr, "\n")); /* terminate the startup message */

/* --- read transactions --- */
if( verbose )MSG(fprintf(stderr, "reading %s ... ", fn_in));
t = clock(); /* start the timer and */
in = fopen(fn_in, "r"); /* open the input file */
if (!in) error(E_FOPEN, fn_in);
for (tacnt = 0; 1; tacnt++) { /* transaction read loop */
k = is_read(itemset, in); /* read the next transaction */
if (k < 0) error(k, fn_in, RECCNT(itemset), BUFFER(itemset));
if (k > 0) break; /* check for error and end of file */
k = is_tsize(itemset); /* update the maximal */
if (k > max) max = k; /* transaction size */
if (taset && (tas_add(taset, NULL, 0) != 0))
error(E_NOMEM); /* add the loaded transaction */
} /* to the transaction set */
fclose(in); in = NULL; /* close the input file */
n = is_cnt(itemset); /* get the number of items */
if( verbose ) MSG(fprintf(stderr, "[%d item(s),", n));
if( verbose ) MSG(fprintf(stderr, " %d transaction(s)] done ", tacnt));
if( verbose ) MSG(fprintf(stderr, "[%.2fs].\n", SEC_SINCE(t)));

/* --- sort and recode items --- */
if( verbose ) MSG(fprintf(stderr, "sorting and recoding items ... "));
t = clock(); /* start the timer */
map = (int*)malloc(is_cnt(itemset) *sizeof(int));
if (!map) error(E_NOMEM); /* create an item identifier map */
n = is_recode(itemset, supp, 2, map); /* 2: sorting mode */
tas_recode(taset, map, n); /* recode the loaded transactions */
max = tas_max(taset); /* get the new maximal t.a. size */

// use in the other part of the implementation to have the corresponding
// identifiant to an internal id
stat->reserve( n+2 ) ;
stat->push_back( 0 ) ;
for(int j= 0; j< n ; j++ )
{
stat->push_back( 0 ) ;
relist->insert( Element( atoi( is_name( itemset, j ) ) ,j) );
}

if( verbose ) MSG(fprintf(stderr, "[%d item(s)] ", n));
if( verbose ) MSG(fprintf(stderr, "done [%.2fs].\n", SEC_SINCE(t)));

/* --- create a transaction tree --- */
if( verbose ) MSG(fprintf(stderr, "creating transaction tree ... "));
t = clock(); /* start the timer */
tatree = tat_create(taset,1); /* create a transaction tree */
if (!tatree) error(E_NOMEM); /* (compactify transactions) */
tt = clock() -t; /* note the construction time */
if( verbose ) MSG(fprintf(stderr, "done [%.2fs].\n", SEC_SINCE(t)));

/* --- create an item set tree --- */
if( verbose ) MSG(fprintf(stderr, "checking subsets of size 1"));
t = clock(); tc = 0; /* start the timer and */
istree = ist_create(n, supp); /* create an item set tree */
if (!istree) error(E_NOMEM);
for (k = n; --k >= 0; ) /* set single item frequencies */
ist_setcnt(istree, k, is_getfrq(itemset, k));
ist_settac(istree, tacnt); /* set the number of transactions */
usage = (char*)malloc(n *sizeof(char));
if (!usage) error(E_NOMEM); /* create a item usage vector */

/* --- check item subsets --- */
while (ist_height(istree) < max && ( ( ismax == -1 && endApriori == false )
|| ist_height(istree) < ismax )
)
{
nbgen = 0 ;
nbfreq = 0 ;

level ++ ;

i = ist_check(istree,usage);/* check current item usage */

if (i < max) max = i; /* update the maximum set size */
if (ist_height(istree) >= i) break;

k = ist_addlvl(istree, nbgen); /* while max. height is not reached, */

if (k < 0) error(E_NOMEM); /* add a level to the item set tree */
if (k != 0) break; /* if no level was added, abort */
if( verbose ) MSG(fprintf(stderr, " %d", ist_height(istree)));
if ((i < n) /* check item usage on current level */
&& (i *(double)tt < 0.1 *n *tc)) {
n = i; x = clock(); /* if items were removed and */
tas_filter(taset, usage); /* the counting time is long enough, */
tat_delete(tatree); /* remove unnecessary items */
tatree = tat_create(taset, 1);
if (!tatree) error(E_NOMEM);
tt = clock() -x; /* rebuild the transaction tree and */
} /* note the new construction time */
x = clock(); /* start the timer */

ist_countx(istree, tatree, nbfreq, istree->supp ); /* count the transaction tree */

tc = clock() -x; /* in the item set tree */

actNfC = 1-double(nbfreq)/double(nbgen) ;
avgNfC = avgNfC + actNfC ;

if( verbose )
{
cout<<" \t Fk : "<<nbfreq<<" Ck : "<<nbgen<<" NFk/Ck "<<actNfC<<" avg NFk/Ck "<<avgNfC/(level-1)<<endl;
}

bdnsize += nbgen - nbfreq ;

if( level >=4 && ( bdnsize / nbgen < 1.5 ) && ( bdnsize > 100 ) )
{
if( actNfC < ratioNfC )
{
eps = 0 ;
endApriori = true ;
}
else if( actNfC > 0.25 )
endApriori = true ;

}

} /* and note the new counting time */
if( verbose ) MSG(fprintf(stderr, " done [%.2fs].\n", SEC_SINCE(t)));

/* --- filter item sets --- */
t = clock(); /* start the timer */
#ifdef MAXIMAL /* filter maximal item sets */
if( verbose ) MSG(fprintf(stderr, "filtering maximal item sets ... "));

if( ratioNfC == 0 || nbgen < k+1 || ist_height(istree)>= max )
ist_filter2(istree, IST_MAXFRQ, 0);
else
ist_filter2(istree, IST_MAXFRQ, bdn);

if( verbose ) MSG(fprintf(stderr, " done [%.2fs].\n", SEC_SINCE(t)));
empty = (n <= 0) ? 1 : 0; /* check whether the empty item set */
#endif /* is maximal */
#ifdef CLOSED /* filter closed item sets */
if( verbose ) MSG(fprintf(stderr, "filtering closed item sets ... "));
ist_filter(istree, IST_CLOSED);
if( verbose ) MSG(fprintf(stderr, " done [%.2fs].\n", SEC_SINCE(t)));
for (k = n; --k >= 0; ) /* check for an item in all t.a. */
if (is_getfrq(itemset, k) == tacnt) break;
empty = (k <= 0) ? 1 : 0; /* check whether the empty item set */
#endif /* is closed */

/* --- print item sets --- */
for (i = ist_height(istree); --i >= 0; )
map[i] = 0; /* clear the item set counters */
if( verbose ) MSG(fprintf(stderr, "writing %s ... ", (fn_out) ? fn_out : "<none>"));
t = clock(); /* start the timer and */
if (fn_out) { /* if an output file is given, */
out = fopen(fn_out, "w"); /* open the output file */
if (!out) error(E_FOPEN, fn_out);
if (empty) fprintf(out, " (%d)\n", tacnt);
} /* report empty item set */
ist_init(istree); /* init. the item set extraction */
set = is_tract(itemset); /* get the transaction buffer */
for (n = empty; 1; n++) { /* extract item sets from the tree */

k = ist_set(istree, set, &supp);

if (k <= 0) break; /* get the next frequent item set */
map[k-1]++; /* count the item set */
if (fn_out) { /* if an output file is given */
for (i = 0; i < k; i++) { /* traverse the items */
fputs(is_name(itemset, set[i]), out);
fputc(' ', out); /* print the name of the next item */
} /* followed by a separator */
fprintf(out, "(%d)\n", supp);
} /* print the item set's support */
else
{
short unsigned * is = new short unsigned[k] ;

for (i = 0; i < k; i++) /* traverse the items */
{
is[i] = set[i] ;
}
if( k < level || nbgen < k+1 || ist_height(istree)>= max )
{
bdPapriori->insert(is, k ,supp ) ;

(*stat)[ 0 ] ++;
(*stat)[ k+1 ]++;

if( maxBdP < k )
maxBdP = k ;

}
else
{
generatedFk = true ;

}

delete[] is;

}
}
if (fn_out) { /* if an output file is given */
if (fflush(out) != 0) error(E_FWRITE, fn_out);
if (out != stdout) fclose(out);
out = NULL; /* close the output file */
}
if( verbose ) MSG(fprintf(stderr, "[%d set(s)] done ", n));
if( verbose ) MSG(fprintf(stderr, "[%.2fs].\n", SEC_SINCE(t)));

/* --- print item set statistics --- */
k = ist_height(istree); /* find last nonzero counter */
if ((k > 0) && (map[k-1] <= 0)) k--;
if( verbose ){
printf("%d\n", empty); /* print the numbers of item sets */
for (i = 0; i < k; i++) printf("%d\n", map[i]);
}

/* --- clean up --- */
#ifndef NDEBUG /* if this is a debug version */
free(usage); /* delete the item usage vector */
free(map); /* and the identifier map */
ist_delete(istree); /* delete the item set tree, */

if (taset) tas_delete(taset, 0); /* the transaction set, */
is_delete(itemset); /* and the item set */
#endif

return tatree ;

}

Ⅷ 用C实现apriori基本算法的代码

求代码~~

Ⅸ 求MapRece实现Apriori代码

Apriori,主体分两步走:
a. 根据 原始数据 得到1 - k项集,再根据support(支持度)得到频繁1项集,频繁2项集,频繁3项集...... 一直到频繁k项集,这一步是运算量最大的,也是hadoop集群的瓶颈。
b. 根据 置信度 confidence ,得到所有强规则。
因为 b 步骤太简单,为了省事,我没写在算法里,算法里只求出了所有频繁集。而这一步骤也分为两步:
a. 迭代得到K项集,具体迭代方法就是将上一次迭代的结果k-1项集和1项集进行组合,从而得到K项集。
b. 根据支持度,得到频繁K项集,不断迭代a,b步骤,直到K为最大为止。

Ⅹ apriori算法 怎么处理连续值

Apriori算法流程
1. 扫描数据库,生成候选1项集和频繁1项集。
2. 从2项集开始循环,由频繁k-1项集生成频繁频繁k项集。
2.1 频繁k-1项集生成2项子集,这里的2项指的生成的子集中有两个k-1项集。使如有3个2项频繁集{a, b}{b, c}{c, f},则它所有的2项子集为{{a, b}{b, c}}{{a, b}{e, f}}{{b, c}{c, f}}
2.2 对由2.1生成的2项子集中的两个项集根据上面所述的定理 i 进行连接,生成k项集。
2.3 对k项集中的每个项集根据如上所述的定理 ii 进行计算,舍弃掉子集不是频繁项集即不在频繁k-1项集中的项集。
2.4 扫描数据库,计算2.3步中过滤后的k项集的支持度,舍弃掉支持度小于阈值的项集,生成频繁k项集。
3. 当当前生成的频繁k项集中只有一个项集时循环结束。

阅读全文

与apriori算法c语言相关的资料

热点内容
什么软件可以修改pdf文件 浏览:865
命令行截图软件 浏览:732
程序员加班多 浏览:123
android设置view的背景 浏览:684
u盘加密工具哪个好 浏览:571
php生成html模板引擎 浏览:26
如何设置app封杀 浏览:823
手机将照片弄成压缩包 浏览:221
卡联购卡盟官网源码 浏览:867
网页弄成pdf 浏览:223
dos的删除命令 浏览:309
区块链的加密物联网传输 浏览:571
如何卸载桌面布局已定的app 浏览:678
vs重置命令 浏览:613
如何学会学习python 浏览:227
程序员钉钉 浏览:758
gcc编译器生成目标文件 浏览:157
怎么改服务器ip地址吗 浏览:56
cmd输入命令断开连接 浏览:911
二线大厂程序员员工年薪 浏览:988