导航:首页 > 源码编译 > 银行家算法并发程度

银行家算法并发程度

发布时间:2022-07-02 05:21:21

‘壹’ 操作系统银行家算法实验,求高手指导!!!急!!!

很难吗·?

‘贰’ 进程同步及银行家算法的模拟实现 有会的大侠们帮帮忙吧 这个要求实在是太多 不太懂 答的好的追100


银行家算法=-- -

1. 安全状态: 在某时刻系统中所有进程可以排列一个安全序列:,刚称此时,系统是安全的.
所谓安全序列是指对于P2,都有它所需要剩余资源数量不大于系统掌握的剩余的空间资源与所有Pi(j<i)所占的资源之和.
2.不安全状态可能产生死锁.
目前状态 最大需求 尚需
P1 3 9 6
P2 5 10 5
P3 2 4 2

在每一次进程中申请的资源,判定一下,若实际分配的话,之后系统是否安全.
3.银行家算法的思路:
1),进程一开始向系统提出最大需求量.
2),进程每次提出新的需求(分期贷款)都统计是否超出它事先提出的最大需求量.
3),若正常,则判断该进程所需剩余剩余量(包括本次申请)是否超出系统所掌握的
剩余资源量,若不超出,则分配,否则等待.
4.银行家算法的数据结构.
1),系统剩余资源量A[n],其中A[n]表示第I类资源剩余量.
2),各进程最大需求量,B[m][n],其中B[j][i]表示进程j对i
类资源最大需求.
3),已分配资源量C[m][n],其中C[j][i]表示系统j程已得到的第i资源的数量.
4),剩余需求量.D[m][n],其中D[j][i]对第i资源尚需的数目.
5.银行家算法流程:当某时刻,某进程时,提出新的资源申请,系统作以下操作:
1),判定E[n]是否大于D[j][n],若大于,表示出错.
2),判定E[n]是否大于系统剩余量A[n],若大于,则该进程等待.
3),若以上两步没有问题,尝试分配,即各变量作调整.
4),按照安全性推测算法,判断,分配过后,系统是否安全,若安全,则实际分配,否则,撤消分配,让进程等待.
6."安全性检测"算法
1),先定义两个变量,用来表示推算过程的数据.
F[n]=A[n],表示推算过程中,系统中剩余资源量的变化.
J[n]=False表示推算过程中各进程是否假设"已完成"
2),流程:
在"剩余"的进程中(在推算)过程中,一些进程假设已完成,查找D[j][n]<=F[n]的进程,找到后令J[j]=True
(假设该进程完成),F[n]+D[j][n](该进程所占资源释放),如此循环执行.
若最后,所有的F[n]=True(在推算过程中,所有进程均可以完成),则表示(分配过后)系统是安全的,否则系统是不安全的.

#include "malloc.h"
#include "stdio.h"
#define alloclen sizeof(struct allocation)
#define maxlen sizeof(struct max)
#define avalen sizeof(struct available)
#define needlen sizeof(struct need)
#define finilen sizeof(struct finish)
#define pathlen sizeof(struct path)
struct allocation
{
int value;
struct allocation *next;
};
struct max
{
int value;
struct max *next;
};
struct available
{
int value;
struct available *next;
};
struct need
{
int value;
struct need *next;
};
struct path
{
int value;
struct path *next;
};
struct finish
{
int stat;
struct finish *next;
};
int main()
{
int row,colum,status=0,i,j,t,temp,processtest;
struct allocation *allochead,*alloc1,*alloc2,*alloctemp;
struct max *maxhead,*maxium1,*maxium2,*maxtemp;
struct available *avahead,*available1,*available2,*availabletemp,*workhead,*work1,*work2,*worktemp,*worktemp1;
struct need *needhead,*need1,*need2,*needtemp;
struct finish *finihead,*finish1,*finish2,*finishtemp;
struct path *pathhead,*path1,*path2,*pathtemp;
char c;
printf("\nPlease enter the type of sources the system has:\n");
scanf("%d",&colum);
printf("Please enter the number of processes now in the memory:\n");
scanf("%d",&row);
printf("Please enter the allocation array:\n");
for(i=0;i<row;i++)
{
printf("The allocation for process p%d:\n",i);
for (j=0;j<colum;j++)
{
printf("The type %c system resource allocated:\n",'A'+j);
if(status==0)
{
allochead=alloc1=alloc2=(struct allocation*)malloc(alloclen);
alloc1->next=alloc2->next=NULL;
scanf("%d",&allochead->value);
status++;
}
else
{
alloc2=(struct allocation *)malloc(alloclen);
scanf("%d,%d",&alloc2->value);
if(status==1)
{
allochead->next=alloc2;
status++;
}
alloc1->next=alloc2;
alloc1=alloc2;
}
}
}
alloc2->next=NULL;
status=0;
printf("Please enter the max array:\n");
for(i=0;i<row;i++)
{
printf("The max needed from process p%d:\n",i);
for (j=0;j<colum;j++)
{
printf("The type %c maxium system resource may needed:\n",'A'+j);
if(status==0)
{
maxhead=maxium1=maxium2=(struct max*)malloc(maxlen);
maxium1->next=maxium2->next=NULL;
scanf("%d",&maxium1->value);
status++;
}
else
{
maxium2=(struct max *)malloc(maxlen);
scanf("%d,%d",&maxium2->value);
if(status==1)
{
maxhead->next=maxium2;
status++;
}
maxium1->next=maxium2;
maxium1=maxium2;
}
}
}
maxium2->next=NULL;
status=0;
printf("Please enter the available array now exists in the system:\n");
for (j=0;j<colum;j++)
{
printf("The type %c available system resource number:\n",'A'+j);
if(status==0)
{
avahead=available1=available2=(struct available*)malloc(avalen);
workhead=work1=work2=(struct available*)malloc(avalen);
available1->next=available2->next=NULL;
work1->next=work2->next=NULL;
scanf("%d",&available1->value);
work1->value=available1->value;
status++;
}
else
{
available2=(struct available*)malloc(avalen);
work2=(struct available*)malloc(avalen);
scanf("%d,%d",&available2->value);
work2->value=available2->value;
if(status==1)
{
avahead->next=available2;
workhead->next=work2;
status++;
}
available1->next=available2;
available1=available2;
work1->next=work2;
work1=work2;
}
}
available2->next=NULL;
work2->next=NULL;
status=0;
alloctemp=allochead;
maxtemp=maxhead;
for(i=0;i<row;i++)
for (j=0;j<colum;j++)
{
if(status==0)
{
needhead=need1=need2=(struct need*)malloc(needlen);
need1->next=need2->next=NULL;
need1->value=maxtemp->value-alloctemp->value;
status++;
}
else
{
need2=(struct need *)malloc(needlen);
need2->value=(maxtemp->value)-(alloctemp->value);
if(status==1)
{
needhead->next=need2;
status++;
}
need1->next=need2;
need1=need2;
}
maxtemp=maxtemp->next;
alloctemp=alloctemp->next;
}
need2->next=NULL;
status=0;
for(i=0;i<row;i++)
{
if(status==0)
{
finihead=finish1=finish2=(struct finish*)malloc(finilen);
finish1->next=finish2->next=NULL;
finish1->stat=0;
status++;
}
else
{
finish2=(struct finish*)malloc(finilen);
finish2->stat=0;
if(status==1)
{
finihead->next=finish2;
status++;
}
finish1->next=finish2;
finish1=finish2;
}
}
finish2->next=NULL; /*Initialization compleated*/
status=0;
processtest=0;
for(temp=0;temp<row;temp++)
{
alloctemp=allochead;
needtemp=needhead;
finishtemp=finihead;
worktemp=workhead;
for(i=0;i<row;i++)
{
worktemp1=worktemp;
if(finishtemp->stat==0)
{
for(j=0;j<colum;j++,needtemp=needtemp->next,worktemp=worktemp->next)
if(needtemp->value<=worktemp->value)
processtest++;
if(processtest==colum)
{
for(j=0;j<colum;j++)
{
worktemp1->value+=alloctemp->value;
worktemp1=worktemp1->next;
alloctemp=alloctemp->next;
}
if(status==0)
{
pathhead=path1=path2=(struct path*)malloc(pathlen);
path1->next=path2->next=NULL;
path1->value=i;
status++;
}
else
{
path2=(struct path*)malloc(pathlen);
path2->value=i;
if(status==1)
{
pathhead->next=path2;
status++;
}
path1->next=path2;
path1=path2;
}
finishtemp->stat=1;
}
else
{
for(t=0;t<colum;t++)
alloctemp=alloctemp->next;
finishtemp->stat=0;
}
}
else
for(t=0;t<colum;t++)
{
needtemp=needtemp->next;
alloctemp=alloctemp->next;
}
processtest=0;
worktemp=workhead;
finishtemp=finishtemp->next;
}
}
path2->next=NULL;
finishtemp=finihead;
for(temp=0;temp<row;temp++)
{
if(finishtemp->value==0)
{
printf("\nWARNING,the system is in nonsafe status!\n");
exit(0);
}
finishtemp=finishtemp->next;
}
printf("\nThe system is in safe status!\n");
printf("\nThe safe sequence is: \n");
do
{
printf("p%d ",pathhead->value);
}
while(pathhead=pathhead->next);
}

‘叁’ 银行家算法假定系统资源总量

按照3-6-1-2-4-5的顺序分配。则Q已经运行完,P占6个资源,R占3个资源,剩余2个资源。
如果资源数量为10个,系统会死锁。因为按照如上的顺序分配,P还需要2个资源,R还需要3个资源,但是剩余资源为1个,系统将死锁。

‘肆’ 操作系统题目,好的追加高分,感谢大虾

http://tieba..com/f?kz=588380474

http://blog.163.com/mqt_signature/blog/static/1049595722009429104343122/

或者看看这个,可是你需要的

《操作系统--银行家算法》
课程设计报告

1 课程设计目的 …………………………………………………… 1
2 课程设计的要求 ………………………………………………… 1
3 课程设计题目描述 ……………………………………………… 2
4 课程设计之银行家算法原理 …………………………………… 2
5 源程序结构分析及代码实现 …………………………………… 4
6 课程设计总结 …………………………………………………… 25
一、课程设计的目的
操作系统是计算机系统的核心系统软件,它负责控制和管理整个系统的资源并组织用户协调使用这些资源,使计算机高效的工作。《操作系统课程设计》是《操作系统》理论课的必要补充,是复习和检验所学课程的重要手段,本课程设计的目的是综合应用学生所学知识,通过实验环节,加深学生对操作系统基本原理和工作过程的理解,提高学生独立分析问题、解决问题的能力,增强学生的动手能力。
二、课程设计的要求
1.分析设计内容,给出解决方案(要说明设计实现的原理,采用的数据结构)。
2.画出程序的基本结构框图和流程图。
3.对程序的每一部分要有详细的设计分析说明。
4.源代码格式要规范。
5.设计合适的测试用例,对得到的运行结果要有分析。
6.设计中遇到的问题,设计的心得体会。
7.按期提交完整的程序代码、可执行程序和课程设计报告。

三、课程设计题目描述
银行家算法是一种最有代表性的避免死锁的算法。
要解释银行家算法,必须先解释操作系统安全状态和不安全状态。
安全状态:如果存在一个由系统中所有进程构成的安全序列P1,…,Pn,则系统处于安全状态。安全状态一定是没有死锁发生。
不安全状态:不存在一个安全序列。不安全状态不一定导致死锁。
那么什么是安全序列呢?
安全序列:一个进程序列{P1,…,Pn}是安全的,如果对于每一个进程Pi(1≤i≤n),它以后尚需要的资源量不超过系统当前剩余资源量与所有进程Pj (j < i )当前占有资源量之和。
银行家算法:
我们可以把操作系统看作是银行家,操作系统管理的资源相当于银行家管理的资金,进程向操作系统请求分配资源相当于用户向银行家贷款。操作系统按照银行家制定的规则为进程分配资源,当进程首次申请资源时,要测试该进程对资源的最大需求量,如果系统现存的资源可以满足它的最大需求量则按当前的申请量分配资源,否则就推迟分配。当进程在执行中继续申请资源时,先测试该进程已占用的资源数与本次申请的资源数之和是否超过了该进程对资源的最大需求量。若超过则拒绝分配资源,若没有超过则再测试系统现存的资源能否满足该进程尚需的最大资源量,若能满足则按当前的申请量分配资源,否则也要推迟分配。

四、课程设计之银行家算法原理
1.银行家算法的思路
先对用户提出的请求进行合法性检查,即检查请求的是不大于需要的,是否不大于可利用的。若请求合法,则进行试分配。最后对试分配后的状态调用安全性检查算法进行安全性检查。若安全,则分配,否则,不分配,恢复原来状态,拒绝申请。

2.银行家算法中用到的主要数据结构
可利用资源向量 int Available[j] j为资源的种类。
最大需求矩阵 int Max[i][j] i为进程的数量。
分配矩阵 int Allocation[i][j]
需求矩阵 int need[i][j]= Max[i][j]- Allocation[i][j]
申请各类资源数量 int Request i[j] i进程申请j资源的数量
工作向量 int Work[x] int Finish[y]

3.银行家算法bank()
进程i发出请求申请k个j资源,Request i[j]=k
(1)检查申请量是否不大于需求量:Request i[j]<=need[i,j],若条件不符重新输入,不允许申请大于需求量。
(2)检查申请量是否小于系统中的可利用资源数量:Request i[j]<=available[i,j],若条件不符就申请失败,阻塞该进程,用goto语句跳转到重新申请资源。
(3)若以上两个条件都满足,则系统试探着将资源分配给申请的进程,并修改下面数据结构中的数值:
Available[i,j]= Available[i,j]- Request i[j];
Allocation[i][j]= Allocation[i][j]+ Request i[j];
need[i][j]= need[i][j]- Request i[j];
(4)试分配后,执行安全性检查,调用safe()函数检查此次资源分配后系统是否处于安全状态。若安全,才正式将资源分配给进程;否则本次试探分配作废,恢复原来的资源分配状态,让该进程等待。
(5)用do{…}while 循环语句实现输入字符y/n判断是否继续进行资源申请。

4.安全性检查算法(safe()函数)
(1)设置两个向量:
工作向量Work,它表示系统可提供给进程继续运行所需的各类资源数目,在执行安全性算法开始时,Work= Available。
Finish,它表示系统是否有足够的资源分配给进程,使之运行完成。开始时先做Finish[i]=0;当有足够的资源分配给进程时,再令Finish[i]=1。

(2)在进程中查找符合以下条件的进程:
条件1:Finish[i]=0;
条件2:need[i][j]<=Work[j]
若找到,则执行步骤(3)否则,执行步骤(4)

(3)当进程获得资源后,可顺利执行,直至完成,并释放出分配给它的资源,故应执行:
Work[j]= Work[j]+ Allocation[i][j];
Finish[i]=1;
goto step 2;

(4)如果所有的Finish[i]=1都满足,则表示系统处于安全状态,否则,处于不安全状态。

五、源程序结构分析及代码实现

1.程序结构

程序共有以下五个部分:

(1).初始化chushihua():用于程序开始进行初始化输入数据:进程数量、资源种类、各种资源可利用数量、各进程的各种资源已分配数量、各进程对各类资源最大需求数等。
(2).当前安全性检查safe():用于判断当前状态安全性,根据不同地方的调用提示处理不同。
(3).银行家算法bank():进行银行家算法模拟实现的模块,调用其他各个模块进行银行家算法模拟过程。
(4).显示当前状态show():显示当前资源分配详细情况,包括:各种资源的总数量(all)、系统目前各种资源可用的数量、各进程已经得到的资源数量、各进程还需要的资源量。
(5).主程序main()
逐个调用初始化、显示状态、安全性检查、银行家算法函数,使程序有序的进行。

2.数据结构
程序使用的全局变量:
const int x=10,y=10; //定义常量
int Available[x]; //各种资源可利用的数量
int Allocation[y][y]; //各进程当前已分配的资源数量
int Max[y][y]; //各进程对各类资源的最大需求数
int Need[y][y]; //还需求矩阵
int Request[x]; //申请各类资源的数量
int Work[x]; //工作向量,表系统可提供给进程运行所需各类资源数量
int Finish[y]; //表系统是否有足够的资源分配给进程,0为否,1为是
int p[y]; //存储安全序列
int i,j; //全局变量,主要用于循环语句中
int n,m; //n为进程的数量,m为资源种类数
int l=0,counter=0;

3.函数声明
void chushihua(); //系统初始化函数
void safe(); //安全性算法函数
void bank(); //银行家算法函数
void show (); //输出当前资源分配情况

4.主函数main()
int main()
{
cout<<…… //显示程序开始提示信息
chushihua(); //初始化函数调用
cout<<endl<<endl;
showdata(); //输出初始化后的状态
//===判断当前状态的安全性===
safe(); //安全性算法函数调用
if (l<n){
cout<<"\n当前状态不安全,无法申请,程序退出!!!!!"<<endl;
cout<<endl;
system("pause");
sign(); //调用签名函数
return 0; // break;
}
else{
int i; //局部变量
l=0;
cout<<"\n安全的状态!!!"<<endl;
cout<<"安全序列为: ";
cout<<endl<<"进程"<<"("<<p[0]<<")"; //输出安全序列,考虑显示格式,先输出第一个
for (i=1; i<n; i++){
cout<<"==>>"<<"进程"<<"("<<p[i]<<")";
}
for (i=0; i<n; i++) Finish[i]=0; //所有进程置为未分配状态
cout<<endl<<endl;
}
bank(); //银行家算法函数调用
return 0;
}

5. 操作系统银行家算法流程图:

2.源程序代码:
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

//定义全局变量
const int x=10,y=10; //常量,便于修改
int Available[x]; //各资源可利用的数量
int Allocation[y][y]; //各进程当前已分配的资源数量
int Max[y][y]; //各进程对各类资源的最大需求数
int Need[y][y]; //尚需多少资源
int Request[x]; //申请多少资源
int Work[x]; //工作向量,表示系统可提供给进程继续运行所需的各类资源数量
int Finish[y]; //表示系统是否有足够的资源分配给进程,1为是
int p[y]; //存储安全序列
int i,j; //i表示进程,j表示资源
int n,m; //n为进程i的数量,m为资源j种类数
int l=0; //l用来记录有几个进程是Finish[i]=1的,当l=n是说明系统状态是安全的
int counter=0;

//函数声明
void chushihua(); //初始化函数
void safe(); //安全性算法
void show(); //函数show,输出当前状态
void bank(); //银行家算法
void jieshu(); //结束函数

void chushihua()
{
cout<<"输入进程的数量: ";//从此开始输入有关数据
cin>>n;
cout<<"输入资源种类数: ";
cin>>m;
cout<<endl<<"输入各种资源当前可用的数量( "<<m<<" 种): "<<endl;
for (j=0; j<m; j++)
{
cout<<"输入资源 "<<j<<" 可利用的数量Available["<<j<<"]: ";
cin>>Available[j]; //输入数字的过程...
Work[j]=Available[j]; //初始化Work[j],它的初始值就是当前可用的资源数
}

cout<<endl<<"输入各进程当前已分配的资源数量Allocation["<<n<<"]["<<m<<"]: "<<endl;
for (i=0; i<n; i++)
{
for (j=0; j<m; j++)
{
cout<<" 输入进程 "<<i<<" 当前已分配的资源 "<<j<<" 数量: ";
cin>>Allocation[i][j];
}
cout<<endl;
Finish[i]=0;//初始化Finish[i]
}

cout<<endl<<"输入各进程对各类资源的最大需求Max["<<n<<"]["<<m<<"]: "<<endl;
for (i=0; i<n; i++)
{
for (j=0; j<m; j++)
{
cout<<" 输入进程 "<<i<<" 对资源 "<<j<<" 的最大需求数: ";
cin>>Max[i][j];
if(Max[i][j]>=Allocation[i][j]) //若最大需求大于已分配,则计算需求量
Need[i][j] = Max[i][j]-Allocation[i][j];
else
Need[i][j]=0;//Max小于已分配的时候,此类资源已足够不需再申请
}
cout<<endl;
}
cout<<endl<<"初始化完成"<<endl;
}

//安全性算法函数
void safe()
{
l=0;
for (i=0; i<n;i++)
{ //i++
if (Finish[i]==0)
{ //逐个查找Finish[i]==0的进程 条件一
counter=0; //记数器

for (j=0; j<m; j++)
{
if (Work[j]>=Need[i][j]) counter=counter+1;//可用大于需求,记数
}

if(counter==m) //i进程的每类资源都符合Work[j]>=Need[i][j] 条件二
{
p[l]=i; //存储安全序列
Finish[i]=1; //i进程标志为可分配
for (j=0; j<m;j++)
Work[j]=Work[j]+Allocation[i][j]; //释放资源
l=l+1; //记数,现在有L个进程是安全的,当L=N时说明满足安全序列
i= -1; //从第一个进程开始继续寻找满足条件一二的进程
}
}
}
}

//显示当前状态函数
void show() //函数show,输出当前资源分配情况
{
int i,j; //局部变量
int All[y]; //各种资源的总数量
int L1; //局部变量L1

cout<<"当前的状态为:"<<endl;
cout<<"各种资源的总数量:"<<endl;
for (j=0;j<m;j++)
{
cout<<" 资源"<<j<<": ";
All[j]=Available[j]; //总数量=可用的+已分配的
for (i=0;i<n;i++) All[j]+=Allocation[i][j];

cout<<All[j]<<" ";
}

cout<<endl<<"当前各种资源可用的量为(available):"<<endl;
for (j=0;j<m;j++)
cout<<" 资源"<<j<<": "<<Available[j]<<" ";

cout<<endl<<"各进程已经得到的资源量(allocation): "<<endl;
for(i=0;i<=m;i++)
{
for (j=i;j<m;j++) cout<<" 资源"<<j;
cout<<endl;
for(L1=0;L1<n;L1++)
{
cout<<"进程"<<L1<<":";
for (j=i;j<m;j++) cout<<Allocation[L1][j]<<" ";
cout<<endl;
}
}

cout<<endl<<"各进程还需要的资源量(need):"<<endl;
for(i=0;i<=m;i++)
{
for (j=i;j<m;j++) cout<<" 资源"<<j;
cout<<endl;
for(L1=0;L1<n;L1++)
{
cout<<"进程"<<L1<<":";
for (j=i;j<m;j++) cout<<Need[L1][j]<<" ";
cout<<endl;
}
}
}

//银行家算法函数
void bank()
{
cout<<endl<<"进程申请分配资源:"<<endl;

int k=0; //用于输入进程编号
bool r=false; // 初值为假,输入Y继续申请则置为真
do{//输入请求
cout<<"输入申请资源的进程(0-"<<n-1<<"): ";
cin>>k;
cout<<endl;
while(k>n-1) //输入错误处理
{
cout<<endl<<"输入错误,重新输入:"<<endl;
cout<<endl<<"输入申请资源的进程(0--"<<n-1<<"): ";
cin>>k;
cout<<endl;
}
cout<<endl<<"输入该进程申请各类资源的数量: "<<endl;
for (j=0; j<m; j++)
{
do{ //do……while 循环判断申请输入的情况
cout<<"进程 "<<k<<" 申请资源["<<j<<"]的数量:";
cin>>Request[j];
cout<<endl;
if(Request[j]>Need[k][j]){ //申请大于需求量时出错,提示重新输入(贷款数目不允许超过需求数目)
cout<<"申请大于需要量!"<<endl;
cout<<"申请的资源"<<j<<"的数量为"<<Request[j]<<",大于进程"<<k<<"对该资源需求量"<<Need[k][j]<<"。"<<endl;
cout<<"重新输入!"<<endl;
}
else //先判断是否申请大于需求量,再判断是否申请大于可利用量
if(Request[j]>Available[j]){ //申请大于可利用量, 应该阻塞等待?…… ???
cout<<"\n没有那么多资源,目前可利用资源"<<j<<"数量为"<<Available[j]<<",本次申请不成功,进程等待!"<<endl;
Finish[k]=0; //该进程等待
goto ppp; //goto语句 跳转,结束本次申请
}
}while(Request[j]>Need[k][j]); //Request[j]>Available[j]||
}

//改变Avilable、Allocation、Need的值
for (j=0; j<m; j++) {
Available[j] = Available[j]-Request[j];
Allocation[k][j] = Allocation[k][j]+Request[j];
Need[k][j] = Need[k][j]-Request[j];
Work[j] = Available[j];
}
//判断当前状态的安全性
safe(); //调用安全性算法函数
if (l<n)
{
l=0;
cout<<"\n试分配后,状态不安全,所以不予分配!恢复原状态"<<endl;
//恢复数据
for (j=0; j<m; j++)
{
Available[j] = Available[j]+Request[j];
Allocation[k][j] = Allocation[k][j]-Request[j];
Need[k][j] = Need[k][j]+Request[j];
Work[j] = Available[j];
}
for (i=0; i<n; i++)
Finish[i]=0; //进程置为未分配状态
}
else
{
l=0;
cout<<"\n申请资源成功!!!"<<endl;

for(j=0;j<m;j++)
{
if(Need[k][j]==0);
else { //有一种资源还没全部申请到,则该进程不可执行,不能释放拥有的资源
l=1; //置l为1,作为判断标志
break;
}
}
if(l!=1){ //进程可以执行,则释放该进程的所有资源
for (j=0;j<m;j++){
Available[j]=Available[j]+Allocation[k][j];
Allocation[k][j]=0;
}
cout<<"该进程已得到所有需求资源,执行后将释放其所有拥有资源!"<<endl;
}
l=0; //归零

cout<<"\n安全的状态!"<<endl;
cout<<"安全序列为: ";
cout<<endl<<"进程"<<"("<<p[0]<<")"; //输出安全序列,考虑显示格式,先输出第一个
Finish[0]=0;
for (i=1; i<n; i++){
cout<<"==>>"<<"进程"<<"("<<p[i]<<")";
Finish[i]=0; //所有进程置为未分配状态
}
cout<<endl<<endl;
}
show(); //显示当前状态
ppp: //申请大于可利用量, 应该阻塞等待,结束本次资源申请,GOTO 语句跳转至此
cout<<endl<<"是否继续申请资源(y/n) ?";
char* b=new char; //输入y/n,判断是否继续申请 <<endl
cin>>b;
cout<<endl;
cout<<"-------------------------------------------"<<endl<<endl;
cout<<endl;
if(*b=='y'||*b=='Y')
r=true;
else{
r=false; //输入非 Y 则令 R =false
jieshu(); //调用结束函数
}
} while (r==true);
}

//结束函数
void jieshu()
{
cout<<endl<<endl;
cout<<"\t\t 演示计算完毕"<<endl;
cout<<endl<<endl;
}

//主函数
int main()
{
cout<<endl<<endl<<"\t\t\t\t模拟银行家算法"<<endl<<endl;
chushihua(); //初始化函数调用
cout<<endl;
show(); //输出当前状态
safe(); //判断当前状态的安全性
if (l<n) //l在safe中是用来记录安全的进程的个数的
{
cout<<"\n当前状态不安全,拒绝申请!"<<endl;
cout<<endl;
return 0;
}
else
{
int i; //局部变量
l=0;
cout<<endl<<"\n当前的状态是安全的!安全序列为:"<<endl;
cout<<"进程"<<"("<<p[0]<<")"; //输出安全序列
for (i=1; i<n; i++) cout<<"->>"<<"进程"<<"("<<p[i]<<")";
for (i=0; i<n; i++) Finish[i]=0; //所有进程置为未分配状态
cout<<endl;
}

bank(); //调用银行家算法函数
cout<<"\t\t 演示计算完毕"<<endl;
return 0;
}

运行结果:
1.初始化结果
2.检测系统资源分配是否安全结果:

六、课程设计的总结
操作系统的基本特征是并发与共享。系统允许多个进程并发执行,并且共享系统的软、硬件资源。为了最大限度的利用计算机系统的资源,操作系统应采用动态分配的策略,但是这样就容易因资源不足,分配不当而引起“死锁”。而我本次课程设计就是得用银行家算法来避免“死锁”。银行家算法就是一个分配资源的过程,使分配的序列不会产生死锁。此算法的中心思想是:按该法分配资源时,每次分配后总存在着一个进程,如果让它单独运行下去,必然可以获得它所需要的全部资源,也就是说,它能结束,而它结束后可以归还这类资源以满足其他申请者的需要。
本次程序就是按照上面的思路展开的。但是因为时间上的仓促,本课程设计的存在着以下不足:一、不能实现并发操作,即当总资源同时满足几个进程所需要的资源数时,这些进程不能同时进行,只能一一按进程顺序执行。二、扫描进程顺序单一,只能按进程到来的顺序(即编号)来扫描,从而产生的安全顺序只能是在这个顺序的基础上产生的,而其实安全顺序是有多个的。三、对进程数和资源数进行的数量进行了限制,都只能最多有十个。四、运行程序后,界面较差,进程数,所需要资源数,已分配资源数,能用资源数,不能一目了然。
这次课程设计时间上虽说仓促点,但是我依然学到了很多的实用性知识。除了更深的了解这个算法,而且对C语言进行了复习,而且其过程中有很多的知识点都不记得了,所以在此感谢在此过程中帮助过我的老师和同学。
最后的感悟就是:只要你亲自动手,你就能学到知识。
再次感谢帮助过我的老师和同学!

‘伍’ 计算机408有多难

408的全称是“408计算机专业基础综合”,是计算机专业/软件工程等专业的统考科目。与其他统考科目不同,计算机408比绝大多数学校的自主命题都要难很多。

计算机专业基础综合考试,考试代码是408,总共涉及四门专业课的考察,分别是数据结构、计算机组成原理、操作系统和计算机网络。

试卷内容结构:

对于408的难度,一个很明显的事实就是,采用408作为考试科目的学校,分数线都不高(相对不高)

但是,随着普及,408难度的降低可能是一种趋势,毕竟考研是一场选拔性考试,主要目的是筛选考生,而不是难倒考生。而重新归来的408统考,可能也会争取成为受众更广的统考科目。

考试内容主要围绕TCP/IP协议层次的具体展开,包括以下内容:物理层、数据链路层、网络层、传输层、应用层。

计算机网络这门课的特点是:在考研专业课中所占分数最少,但是涉及到的具体的知识点最多。

考生复习时要注意按照层进行知识点的复习和总结。对于每一层,重点把握这一层的协议有哪些、引入这些协议的原因、涉及到哪些重要算法、算法的内容、每一层和上下层之间的关系、每一层用到的硬件设备及作用等,也就是说,学习完一层时一定要用系统的方法将具体的知识点串连在一起,不要局限于孤立地理解和掌握每个细节的知识点。

这四门专业课之间有一定的内在联系,数据结构和组成原理是操作系统的先修课程,计算机网络相对来说比较独立,或者说不需要先修课程。

内容的交叉有一些,主要表现在组成原理和操作系统这两门专业课之间,二者都包含了存储系统和输入/输出系统的内容,如:内存管理的各种页面置换算法、虚拟存储器等。

如果不是跨专业考生,也就是说这些专业课以前都系统的学习过,那么复习时可以不按顺序。但如果是初学者,必须先学习完数据结构和组成原理后再学习操作系统,否则有些概念和原理难以理解。

四门课的复习时间应该合理分配,重点放在数据结构和组成原理上,尤其数据结构更要多花一些时间;操作系统和计算机网络的很多知识点需要在理解的基础上进行记忆,相对来说容易一些。当然难易程度是相对的,具体情况也要因人而异,灵活安排。

‘陆’ C编程完成银行家算法的进程调度及同步模拟的实现

#include<stdio.h>
voidrukou(intjinchenggeshu,intziyuangeshu)
{
inti,j,k=0;
intzanyong[100][100];
intxuqiuzuida[100][100];
intxuyaoziyuangeshu[100][100];
intmeizhongziyuangeshu[100];
intmeizhongzuyuanshengyugeshu[100];
intjieguo[100];
intshifouanquan=0;
intkongshu;
intgaibianshuju;
intyongyouziyuanjishu;
for(i=0;i<jinchenggeshu;i++)
for(j=0;j<ziyuangeshu;j++)
{
printf(" 请输入第%d进程现在占用第%d种资源的个数:",i+1,j+1);
scanf("%d",&zanyong[i][j]);
}
for(i=0;i<jinchenggeshu;i++)
for(j=0;j<ziyuangeshu;j++)
{
printf(" 请输入第%d进程现在所需最大第%d种资源的个数:",i+1,j+1);
scanf("%d",&xuqiuzuida[i][j]);
}
for(i=0;i<ziyuangeshu;i++)
{
printf(" 请输入第%d种资源的个数:",i+1);
scanf("%d",&meizhongziyuangeshu[i]);
}
printf("如果有输入错误想改变 ");
gaibian:printf("想改变占用的数据请输入1 ");
printf("想改变最大资源需求量的数据请输入2 ");
printf("想改变资源中的数据请输入3 ");
printf("退出改变数据请输入4 ");
scanf("%d",&gaibianshuju);
if(gaibianshuju==1)
{
printf("请输入改变哪个进程中的数据:");
scanf("%d",&i);
printf("请输入改变哪种资源中的数据:");
scanf("%d",&j);
printf("请输入新数据:");
scanf("%d",&zanyong[i][j]);
gotogaibian;
}
elseif(gaibianshuju==2)
{
printf("请输入改变哪个进程中的数据:");
scanf("%d",&i);
printf("请输入改变哪种资源中的数据:");
scanf("%d",&j);
printf("请输入新数据:");
scanf("%d",&xuyaoziyuangeshu[i][j]);
gotogaibian;
}
elseif(gaibianshuju==3)
{
printf("请输入改变哪种资源中的数据:");
scanf("%d",&j);
printf("请输入新数据:");
scanf("%d",&meizhongziyuangeshu[j]);
gotogaibian;
}
elseif(gaibianshuju==4);
else{
printf("您选择的无效,请从新选择 :");
gotogaibian;
}
for(i=0;i<jinchenggeshu;i++)
for(j=0;j<ziyuangeshu;j++)
xuyaoziyuangeshu[i][j]=xuqiuzuida[i][j]-zanyong[i][j];
for(j=0;j<ziyuangeshu;j++)
{
yongyouziyuanjishu=0;
for(i=0;i<jinchenggeshu;i++)
yongyouziyuanjishu+=zanyong[i][j];
meizhongzuyuanshengyugeshu[j]=meizhongziyuangeshu[j]-yongyouziyuanjishu;
}
while(1)
{
shifouanquan++;
for(i=0;i<jinchenggeshu;i++)
{
if(zanyong[i][0]!=-1)
{
kongshu=0;
for(j=0;j<ziyuangeshu;j++)
if(meizhongzuyuanshengyugeshu[j]>=xuyaoziyuangeshu[i][j])
kongshu+=1;
if(kongshu==ziyuangeshu)
{
for(j=0;j<ziyuangeshu;j++)
meizhongzuyuanshengyugeshu[j]+=zanyong[i][j];
zanyong[i][0]=-1;
jieguo[k]=i+1;
k++;
}
}
}
if(k==jinchenggeshu)
{
printf("T0时刻是安全状态,安全序列为:");
for(i=0;i<jinchenggeshu;i++)
printf("%d",jieguo[i]);
break;
}
if(shifouanquan>k)
{
printf("T0时刻是不安全状态!");
break;
}
}
}
intmain()
{
intjinchenggeshu,ziyuangeshu;
printf("请输入进程个数:");
scanf("%d",&jinchenggeshu);
printf("请输入资源种类数:");
scanf("%d",&ziyuangeshu);
rukou(jinchenggeshu,ziyuangeshu);
return0;
}

‘柒’ 网络操作系统习题求解

1. 19+2+15=36min 19+2=21min
2. 程序,数据,进程控制块PCB三部分组成。 PCB是进程存在的唯一标志
3. CPU时间
4. 需要互斥执行的程序段
5. p p
6. 进程拥有此信号量
7. 信箱头 信箱体
8. 低级 高级
9. 产生死锁的4个必要条件是互斥、非剥夺、部分分配和 循环等待
10.资源有序分配策略
11. 安全状态 不安全状态
12. 线程的内核对象 线程堆栈
13. 产生(New),可执行(Runnable),死亡(Dead),停滞(Blocked)
14. 进程获取到所需资源时
15. D
16. 可执行
17. 1
18. 执行条件得到满足
19. 指令
20. 进程间的通信
21. 任何一个进程都可以申请进入临界区
22. 就绪态
23. 10

‘捌’ 有三个线程 需要的资源个数是2 3 4 问 最少给多少个资源 才不会发生死锁

按照你的做法,如果这时候系统给进程1一个资源,给进程2一个资源,
那样系统就会死锁.而你们老师说的就是正确的,因为无论系统把那一个
资源给任意一个进程,任意一个进程都会完成并释放资源.

‘玖’ 1.考虑某一系统,它有4类资源R1,R2,R3,R4,有5个并发进程P0,P1,P2,P3,P4,按照银行家算法回答下列问题。

P0->P2->P3->P1->P4

阅读全文

与银行家算法并发程度相关的资料

热点内容
dos的删除命令 浏览:307
区块链的加密物联网传输 浏览:568
如何卸载桌面布局已定的app 浏览:675
vs重置命令 浏览:611
如何学会学习python 浏览:222
程序员钉钉 浏览:756
gcc编译器生成目标文件 浏览:156
怎么改服务器ip地址吗 浏览:55
cmd输入命令断开连接 浏览:911
二线大厂程序员员工年薪 浏览:987
程序员能从事导弹行业吗 浏览:938
林园炒股指标源码 浏览:468
pdf页面间距 浏览:66
vi命令实训操作 浏览:973
传说古代洪水肆虐谁奉帝尧的命令 浏览:693
如何卸载爱思app 浏览:43
安卓app如何不显示图标 浏览:527
桌面云服务器组建配置 浏览:926
济宁织梦源码怎么跳转到qq 浏览:293
西安java培训 浏览:300