导航:首页 > 源码编译 > 遗传算法收敛性分析

遗传算法收敛性分析

发布时间:2022-07-04 01:58:58

‘壹’ 遗传算法有收敛性分析吗有的话怎么分析呢

神经网络的设计要用到遗传算法,遗传算法在神经网络中的应用主要反映在3个方面:网络的学习,网络的结构设计,网络的分析。 1.遗传算法在网络学习中的应用 在神经网络中,遗传算法可用于网络的学习。这时,它在...

‘贰’ 请教各位,matlab遗传算法运行结果分析,收敛吗

同楼上,采取最优保存策略,也就是每次迭代的最优个体保存好,不随便进行交叉、变异操作,即便进行这些操作,也只在产生的新个体比原个体更优秀时才替换原个体。
当然,即便这样还会造成不收敛,即每次迭代的最有结果都一样,不往好的方向进化,那么这时候就要查看下选择算子、交叉操作、变异操作有没有问题了。

‘叁’ 遗传算法的收敛性问题

是算子有问题,交叉的方法都是比较简单的,但对于某些情况可能并不好用,也就是说算法本身无法体现出优胜劣汰的规则,可能因此导致无法收敛。

收敛数列令为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|an-A|<b,则数列存在极限A,数列被称为收敛。非收敛的数列被称作“发散”(divergence)数列。

可见收敛不是指数值越来越小,而是指与极限值的距离(即差的绝对值)越来越小,只要你的目标函数是压缩映射,那么使用遗传算法就一定可以计算出全局收敛的近似值。

(3)遗传算法收敛性分析扩展阅读:

由于遗传算法不能直接处理问题空间的参数,因此必须通过编码将要求解的问题表示成遗传空间的染色体或者个体。这一转换操作就叫做编码,也可以称作(问题的)表示(representation)。

遗传算法在搜索进化过程中一般不需要其他外部信息,仅用评估函数来评估个体或解的优劣,并作为以后遗传操作的依据。由于遗传算法中,适应度函数要比较排序并在此基础上计算选择概率,所以适应度函数的值要取正值。由此可见,在不少场合,将目标函数映射成求最大值形式且函数值非负的适应度函数是必要的。

‘肆’ 遗传算法的优缺点

优点:

1、遗传算法是以决策变量的编码作为运算对象,可以直接对集合、序列、矩阵、树、图等结构对象进行操作。这样的方式一方面有助于模拟生物的基因、染色体和遗传进化的过程,方便遗传操作算子的运用。

另一方面也使得遗传算法具有广泛的应用领域,如函数优化、生产调度、自动控制、图像处理、机器学习、数据挖掘等领域。

2、遗传算法直接以目标函数值作为搜索信息。它仅仅使用适应度函数值来度量个体的优良程度,不涉及目标函数值求导求微分的过程。因为在现实中很多目标函数是很难求导的,甚至是不存在导数的,所以这一点也使得遗传算法显示出高度的优越性。

3、遗传算法具有群体搜索的特性。它的搜索过程是从一个具有多个个体的初始群体P(0)开始的,一方面可以有效地避免搜索一些不必搜索的点。

另一方面由于传统的单点搜索方法在对多峰分布的搜索空间进行搜索时很容易陷入局部某个单峰的极值点,而遗传算法的群体搜索特性却可以避免这样的问题,因而可以体现出遗传算法的并行化和较好的全局搜索性。

4、遗传算法基于概率规则,而不是确定性规则。这使得搜索更为灵活,参数对其搜索效果的影响也尽可能的小。

5、遗传算法具有可扩展性,易于与其他技术混合使用。以上几点便是遗传算法作为优化算法所具备的优点。

缺点:

1、遗传算法在进行编码时容易出现不规范不准确的问题。

2、由于单一的遗传算法编码不能全面将优化问题的约束表示出来,因此需要考虑对不可行解采用阈值,进而增加了工作量和求解时间。

3、遗传算法效率通常低于其他传统的优化方法。

4、遗传算法容易出现过早收敛的问题。

(4)遗传算法收敛性分析扩展阅读

遗传算法的机理相对复杂,在Matlab中已经由封装好的工具箱命令,通过调用就能够十分方便的使用遗传算法。

函数ga:[x, fval,reason]= ga(@fitnessfun, nvars, options)x是最优解,fval是最优值,@fitnessness是目标函数,nvars是自变量个数,options是其他属性设置。系统默认求最小值,所以在求最大值时应在写函数文档时加负号。

为了设置options,需要用到下面这个函数:options=gaoptimset('PropertyName1', 'PropertyValue1', 'PropertyName2', 'PropertyValue2','PropertyName3', 'PropertyValue3', ...)通过这个函数就能够实现对部分遗传算法的参数的设置。

‘伍’ 遗传算法的数学基础的目录

第2版前言
前言
绪论
0.1 遗传算法是一种仿生优化算法
0.2 遗传算法的发展与现状
0.3 遗传算法的基础理论研究
第1章 遗传算法的几何理论
1.1 遗传算法的基本概念
1.2 遗传机制与遗传算法
1.3 遗传机制的几何表示
1.4 杂交算子的几何性质
1.5 遗传机制的过程分析
1.6 遗传算法的几何解释
第2章 遗传算法的马氏链模型
2.1 马尔可夫链的定义及性质
2.2 标准遗传算法的马氏链模型
2.3 改进遗传算法的马氏链模型
2.4 优胜劣汰遗传算法的马氏链模型
2.5 等价类遗传算法的马氏链模型
2.6 遗传算法的马氏决策模型
第3章 遗传算法收敛性的一般理论
3.l 遗传算法收敛的定义及性质
3.2 遗传算法概率收敛定理
3.3 抽象遗传算法的概率收敛定理
3.4 遗传算法的几乎处处收敛定理
3.5 遗传算法的渐近收敛定理
3.6 遗传算法的停时计算问题
参考文献

‘陆’ 遗传算法为什么会早熟收敛

变异程度设置太小
参考函数里的极值概念
你在一段连续函数里寻找最大的一个值,如果你搜索的范围越小,你所找到的最大值是整段函数的最大值的可能性就越小
遗传算法跟搜索算法其实差不多意思 你变异越少 等于你搜索范围越小 局限在某个集合之内 这就叫早熟收敛

‘柒’ 遗传算法具体应用

1、函数优化

函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数和凹函数、低维函数和高维函数、单峰函数和多峰函数等。

2、组合优化

随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。

此外,GA也在生产调度问题、自动控制、机器人学、图象处理、人工生命、遗传编码和机器学习等方面获得了广泛的运用。

3、车间调度

车间调度问题是一个典型的NP-Hard问题,遗传算法作为一种经典的智能算法广泛用于车间调度中,很多学者都致力于用遗传算法解决车间调度问题,现今也取得了十分丰硕的成果。

从最初的传统车间调度(JSP)问题到柔性作业车间调度问题(FJSP),遗传算法都有优异的表现,在很多算例中都得到了最优或近优解。


(7)遗传算法收敛性分析扩展阅读:

遗传算法的缺点

1、编码不规范及编码存在表示的不准确性。

2、单一的遗传算法编码不能全面地将优化问题的约束表示出来。考虑约束的一个方法就是对不可行解采用阈值,这样,计算的时间必然增加。

3、遗传算法通常的效率比其他传统的优化方法低。

4、遗传算法容易过早收敛。

5、遗传算法对算法的精度、可行度、计算复杂性等方面,还没有有效的定量分析方法。

‘捌’ 遗传算法的优缺点

1、早熟。这是最大的缺点,即算法对新空间的探索能力是有限的,也容易收敛到局部最优解。
2、大量计算。涉及到大量个体的计算,当问题复杂时,计算时间是个问题。
3、处理规模小。目前对于维数较高的问题,还是很难处理和优化的。
4、难于处理非线性约束。对非线性约束的处理,大部分算法都是添加惩罚因子,这是一笔不小的开支。
5、稳定性差。因为算法属于随机类算法,需要多次运算,结果的可靠性差,不能稳定的得到解。
大致这些,lz可查阅相关专业书籍!

‘玖’ 遗传算法求解

遗传算法在很多领域都得到应用;从神经网络研究的角度上考虑,最关心的是遗传算法在神经网络的应用。在遗传算法应用中,应先明确其特点和关键问题,才能对这种算法深入了解,灵活应用,以及进一步研究开发。

一、遗传算法的特点

1.遗传算法从问题解的中集开始嫂索,而不是从单个解开始。

这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,复盖面大,利于全局择优。

2.遗传算法求解时使用特定问题的信息极少,容易形成通用算法程序。

由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,故几乎可处理任何问题。

3.遗传算法有极强的容错能力

遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。

4.遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。

这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的复盖。

5.遗传算法具有隐含的并行性

遗传算法的基础理论是图式定理。它的有关内容如下:

(1)图式(Schema)概念

一个基因串用符号集{0,1,*}表示,则称为一个因式;其中*可以是0或1。例如:H=1x x 0 x x是一个图式。

(2)图式的阶和长度

图式中0和1的个数称为图式的阶,并用0(H)表示。图式中第1位数字和最后位数字间的距离称为图式的长度,并用δ(H)表示。对于图式H=1x x0x x,有0(H)=2,δ(H)=4。

(3)Holland图式定理

低阶,短长度的图式在群体遗传过程中将会按指数规律增加。当群体的大小为n时,每代处理的图式数目为0(n3)。

遗传算法这种处理能力称为隐含并行性(Implicit Parallelism)。它说明遗传算法其内在具有并行处理的特质。

二、遗传算法的应用关键

遗传算法在应用中最关键的问题有如下3个

1.串的编码方式

这本质是问题编码。一般把问题的各种参数用二进制编码,构成子串;然后把子串拼接构成“染色体”串。串长度及编码形式对算法收敛影响极大。

2.适应函数的确定

适应函数(fitness function)也称对象函数(object function),这是问题求解品质的测量函数;往往也称为问题的“环境”。一般可以把问题的模型函数作为对象函数;但有时需要另行构造。

3.遗传算法自身参数设定

遗传算法自身参数有3个,即群体大小n、交叉概率Pc和变异概率Pm。

群体大小n太小时难以求出最优解,太大则增长收敛时间。一般n=30-160。交叉概率Pc太小时难以向前搜索,太大则容易破坏高适应值的结构。一般取Pc=0.25-0.75。变异概率Pm太小时难以产生新的基因结构,太大使遗传算法成了单纯的随机搜索。一般取Pm=0.01—0.2。

三、遗传算法在神经网络中的应用

遗传算法在神经网络中的应用主要反映在3个方面:网络的学习,网络的结构设计,网络的分析。

1.遗传算法在网络学习中的应用

在神经网络中,遗传算法可用于网络的学习。这时,它在两个方面起作用

(1)学习规则的优化

用遗传算法对神经网络学习规则实现自动优化,从而提高学习速率。

(2)网络权系数的优化

用遗传算法的全局优化及隐含并行性的特点提高权系数优化速度。

2.遗传算法在网络设计中的应用

用遗传算法设计一个优秀的神经网络结构,首先是要解决网络结构的编码问题;然后才能以选择、交叉、变异操作得出最优结构。编码方法主要有下列3种:

(1)直接编码法

这是把神经网络结构直接用二进制串表示,在遗传算法中,“染色体”实质上和神经网络是一种映射关系。通过对“染色体”的优化就实现了对网络的优化。

(2)参数化编码法

参数化编码采用的编码较为抽象,编码包括网络层数、每层神经元数、各层互连方式等信息。一般对进化后的优化“染色体”进行分析,然后产生网络的结构。

(3)繁衍生长法

这种方法不是在“染色体”中直接编码神经网络的结构,而是把一些简单的生长语法规则编码入“染色体”中;然后,由遗传算法对这些生长语法规则不断进行改变,最后生成适合所解的问题的神经网络。这种方法与自然界生物地生长进化相一致。

3.遗传算法在网络分析中的应用

遗传算法可用于分析神经网络。神经网络由于有分布存储等特点,一般难以从其拓扑结构直接理解其功能。遗传算法可对神经网络进行功能分析,性质分析,状态分析。

遗传算法虽然可以在多种领域都有实际应用,并且也展示了它潜力和宽广前景;但是,遗传算法还有大量的问题需要研究,目前也还有各种不足。首先,在变量多,取值范围大或无给定范围时,收敛速度下降;其次,可找到最优解附近,但无法精确确定最扰解位置;最后,遗传算法的参数选择尚未有定量方法。对遗传算法,还需要进一步研究其数学基础理论;还需要在理论上证明它与其它优化技术的优劣及原因;还需研究硬件化的遗传算法;以及遗传算法的通用编程和形式等。

‘拾’ 如何让遗传算法解旅行商问题快速收敛

想要快速收敛的话可以直接减小每一步的半径,但是更容易被局部峰值困住,可以通过选取几个差距较大的初始点多次运行来提高精确度。
最根本的解决方法还是提高计算适应度等步骤的效率。

阅读全文

与遗传算法收敛性分析相关的资料

热点内容
喷油螺杆制冷压缩机 浏览:581
python员工信息登记表 浏览:377
高中美术pdf 浏览:161
java实现排列 浏览:513
javavector的用法 浏览:982
osi实现加密的三层 浏览:233
大众宝来原厂中控如何安装app 浏览:916
linux内核根文件系统 浏览:243
3d的命令面板不见了 浏览:526
武汉理工大学服务器ip地址 浏览:149
亚马逊云服务器登录 浏览:525
安卓手机如何进行文件处理 浏览:71
mysql执行系统命令 浏览:930
php支持curlhttps 浏览:143
新预算法责任 浏览:444
服务器如何处理5万人同时在线 浏览:251
哈夫曼编码数据压缩 浏览:428
锁定服务器是什么意思 浏览:385
场景检测算法 浏览:617
解压手机软件触屏 浏览:352