A. 启发式算法的介绍
启发式算法(heuristic algorithm)是相对于最优化算法提出的。一个问题的最优算法求得该问题每个实例的最优解。启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算时间和空间)下给出待解决组合优化问题每一个实例的一个可行解,该可行解与最优解的偏离程度一般不能被预计。
B. 谁能详细介绍一下启发式算法的原理或者方法
整数规划一般是不容易得到最优解的。启发式算法可以在合理的计算时间内得到较解。局域搜索启发式算法应用广泛。局域搜索的一般步骤如下: 从一个初始可行解出发 找出相邻的可行解 从相邻的可行解中找出更好的可行解 地,局域搜索启发式算法会得到一个局部最优解,而这个局部最优解有时就是全局。算法的好与坏都决定于步骤 3。 1.1 模拟退火方法 相邻元素是随机选择的,选上的概率为pn , pn= 1∑。移动的决策取n∈ N标成本和退火概率: c(y)?c(x)??py(x)?eTc(y)φ c(x) pxy= ? ?py(x)?Ct温度梯度是根据一定的规则选择的,比如T (t) =T t() = Calog t或, a π 1。
C. 什么是启发式算法(转)
启发式方法(试探法)是一种帮你寻求答案的技术,但它给出的答案是具有偶然性的(subjecttochance),因为启发式方法仅仅告诉你该如何去找,而没有告诉你要找什么。它并不告诉你该如何直接从A点到达B点,它甚至可能连A点和B点在哪里都不知道。实际上,启发式方法是穿着小丑儿外套的算法:它的结果不太好预测,也更有趣,但不会给你什么30
天无效退款的保证。
驾驶汽车到达某人的家,写成算法是这样的:沿167
号高速公路往南行至Puyallup;从SouthHillMall出口出来后往山上开4.5
英里;在一个杂物店旁边的红绿灯路口右转,接着在第一个路口左转;从左边褐色大房子的车道进去,就是NorthCedar路714号。
用启发式方法来描述则可能是这样:找出上一次我们寄给你的信,照着信上面的寄出地址开车到这个镇;到了之后你问一下我们的房子在哪里。这里每个人都认识我们——肯定有人会很愿意帮助你的;如果你找不到人,那就找个公共电话亭给我们打电话,我们会出来接你。
从上面的启发式算法的解释可以看出,启发式算法的难点是建立符合实际问题的一系列启发式规则。启发式算法的优点在于它比盲目型的搜索法要高效,一个经过仔细设计的启发函数,往往在很快的时间内就可得到一个搜索问题的最优解,对于NP问题,亦可在多项式时间内得到一个较优解。
D. 元启发式算法和启发式算法有什么区别
启发式算法与元启发式算法对区别在于是否存在“随机因素”。 对一个同样的问题,启发式算法(heuristics)只要给定了一个输入,那么算法执行的步骤就固定下来了,输出也因此固定,多次运算结果保持一致。
而元启发式算法(meta-heuristics)里面包括了随机因素,如GA中的交叉因子,模拟退火中的metropolis准则,这些随机因素也使得算法有一定概率跳出局部最优解而去尝试全局最优解,因此元启发式算法在固定的输入下,而输出是不固定的。
启发式算法(Heuristic Algorigthm)是一种基于直观或经验构造的算法,在可接受的花费(指计算时间、计算空间等)给出待解决优化问题的每一实例的一个可行解,该可行解与与最优解的偏离程度一般不可以事先预计。
启发式算法是一种技术,这种算法可以在可接受的计算费用内找到最好的解,但不一定能保证所得到解的可行性及最优性,甚至大多数情况下无法阐述所得解与最优解之间的近似程度。
元启发式算法(MetaHeuristic Algorigthm)是启发式算法的改进,它是随机算法与局部搜索算法相结合的产物,常见的启发式算法包括遗传算法、模拟退火算法、禁忌搜索算法及神经网络算法等。
新兴的元启发式算法有、粒子群优化算法、差分进化算法,蚁群优化算法、萤火虫算法、布谷鸟算法、和声搜索算法、差分进化算法、随机蛙跳算法、细菌觅食算法、蝙蝠算法的算法等。
E. 启发式策略包括哪些具体的问题解决策略
启发式策略包括如下一些具体的问题解决策略:
1,搜索策略。
2,目的——手段分析。
3,爬山法。
4,逆向推理法。
5,类似法。
6,其它的一些方法。启发法(heuristics,源自古希腊语εὑρίσκω)依据有限的知识在短时间内找到问题解决方案。由此不完整的信息就容易带来思维偏差或者说产生心理学误区。
也称作捷思,就是我们大脑中的思维捷径,但是它会出现偏差。启发式即凭借个体已有的知识经验,采取较少的操作来解决问题的方法。
除通用的问题解决的手段一目的分析策略(正向工作法)外,还包含许多具体的策略,如目标递进策略(指向性分析法)、目标递归策略,爬山法等。策略适宜与否,决定问题解决的成败。其具体应用,依赖于问题本身的性质和内容以及个体已有的知识经验。
F. 什么是启发式算法
大自然是神奇的,它造就了很多巧妙的手段和运行机制。受大自然的启发,人们从大自然的运行规律中找到了许多解决实际问题的方法。对于那些受大自然的运行规律或者面向具体问题的经验、规则启发出来的方法,人们常常称之为启发式算法(Heuristic Algorithm)。现在的启发式算法也不是全部来自然的规律,也有来自人类积累的工作经验。 驾驶汽车到达某人的家,写成算法是这样的:沿167 号高速公路往南行至阳谷;从阳谷高速出口出来后往山上开4.5 英里;在一个杂物店旁边的红绿灯路口右转,接着在第一个路口左转;从左边褐色大房子的车道进去,就是某人的家。 启发式方法来描述则可能是这样:找出上一次我们寄给你的信,照着信上面的寄出地址开车到这个镇;到了之后你问一下我们的房子在哪里。这里每个人都认识我们——肯定有人会很愿意帮助你的;如果你找不到人,那就找个公共电话亭给我们打电话,我们会出来接你。
G. 启发式算法的概括内容
计算机科学的两大基础目标,就是发现可证明其执行效率良好且可得最佳解或次佳解的算法。而启发式算法则试图一次提供一或全部目标。 例如它常能发现很不错的解,但也没办法证明它不会得到较坏的解;它通常可在合理时间解出答案,但也没办法知道它是否每次都可以这样的速度求解。
有时候人们会发现在某些特殊情况下,启发式算法会得到很坏的答案或效率极差,然而造成那些特殊情况的数据组合,也许永远不会在现实世界出现。因此现实世界中启发式算法常用来解决问题。启发式算法处理许多实际问题时通常可以在合理时间内得到不错的答案。
有一类的通用启发式策略称为元启发式算法(metaheuristic),通常使用乱数搜寻技巧。他们可以应用在非常广泛的问题上,但不能保证效率。
近年来随着智能计算领域的发展,出现了一类被称为超启发式算法(Hyper-Heuristic Algorithm)的新算法类型。最近几年,智能计算领域的着名国际会议(GECCO 2009, CEC 2010,PPSN 2010)[1]分别举办了专门针对超启发式算法的workshop或session。从GECCO 2011开始,超启发式算法的相关研究正式成为该会议的一个领域(self* search-new frontier track)。国际智能计算领域的两大着名期刊Journal of Heuristics和Evolutionary Computation也在2010年和2012年分别安排了专刊,着重介绍与超启发式算法有关的研究进展。
H. 物流信息系统中“启发式算法”的概念是什么
1、启发式算法是一种能在可接受的费用内寻找最好的解的技术,但不一定能保证所得解的可行性和最优性,甚至在多数情况下,无法阐述所得解同最优解的近似程度。
2、 解决实际的问题,要建模型,在求解。求解要选择算法,只有我们对各种算法的优缺点都很熟悉后才能根据实际问题选出有效的算法。
I. 对 启发式算法的理解
启发式算法是一种能在可接受的费用内寻找最好的解的技术,但不一定能保证所得解的可行性和最优性,甚至在多数情况下,无法阐述所得解同最优解的近似程度
J. 元启发式算法的算法原理
1. 从一个或多个候选解开始作为初始值(pop(t))。
2. 根据初始值计算目标函数值
3. 基于已获得的信息,通过个体变异、组合等方法不断更新候选解域。
4. 新的候选解域进入下一轮迭代(pop(t+1))
如下图:
例如它常能发现很不错的解,但也没办法证明它不会得到较坏的解;它通常可在合理时间解出答案,但也没办法知道它是否每次都可以这样的速度求解。有时候人们会发现在某些特殊情况下,启发式算法会得到很坏的答案或效率极差,然而造成那些特殊情况的数据结构,也许永远不会在现实世界出现。因此现实世界中启发式算法常用来解决问题。启发式算法处理许多实际问题时通常可以在合理时间内得到不错的答案。有一类的通用启发式策略称为元启发式算法(metaheuristic algorithm) ,通常使用乱数搜寻技巧。他们可以应用在非常广泛的问题上,但不能保证效率。