导航:首页 > 源码编译 > 向量坐标相加的运算法则

向量坐标相加的运算法则

发布时间:2022-08-26 12:40:25

❶ 向量相加怎么计算,向量a(x1,y1)+向量b(x2,y2)=

若ab都是起于坐标原点,c是他们的和,用三角形法则可知;

c=(x1+x2,y1+y2);

所以向量相加,就是坐标相加。

在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为一组基底。a为平面直角坐标系内的任意向量,以坐标原点O为起点P为终点作向量a。

由平面向量基本定理可知,有且只有一对实数(x,y),使得a=xi+yj,因此把实数对(x,y)叫做向量a的坐标,记作a=(x,y)。这就是向量a的坐标表示。其中(x,y)就是点 的坐标。向量a称为点P的位置向量。

(1)向量坐标相加的运算法则扩展阅读

坐标系解向量加减法:

在直角坐标系里面,定义原点为向量的起点。两个向量和与差的坐标分别等于这两个向量相应坐标的和与差若向量的表示为(x,y)形式:

A(X1,Y1) B(X2,Y2),则A + B=(X1+X2,Y1+Y2),A - B=(X1-X2,Y1-Y2)

向量的加减就是向量对应分量的加减,类似于物理的正交分解。

❷ 向量的加减乘除怎么算

1、向量的加法:满足平行四边形法则和三角形法则,即

(2)向量坐标相加的运算法则扩展阅读:

一、向量加法的运算律:

1、交换律:a+b=b+a;

2、结合律:(a+b)+c=a+(b+c)。

3、加减变换律:a+(-b)=a-b

4、向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。

二、向量的数乘规律:

1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)²≠a²·b²。

2、向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c。

参考资料来源:网络--向量





❸ 向量加法

向量加法的运算律:

交换律:a+b=b+a

结合律:(a+b)+c=a+(b+c)

在直角坐标系里面,定义原点为向量的起点,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差若向量的表示为(x,y)形式,A(X1,Y1) B(X2,Y2),则A+B=(X1+X2,Y1+Y2)。

(3)向量坐标相加的运算法则扩展阅读:

一、减法运算

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

OA-OB=BA.即“共同起点,指向被减”

a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)

加减变换律:a+(-b)=a-b

二、各种图形定则解决向量加减法

1、三角形定则解决向量减法的方法:将各个向量依次首尾顺次相接,结果为第一个向量的起点指向最后一个向量的终点。

2、平行四边形定则解决向量加法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果为公共起点的对角线。

3、平行四边形定则解决向量减法的方法:将两个向量平移至公共起点,以向量的两条边作平行四边形,结果由减向量的终点指向被减向量的终点。

❹ 向量的加法运算

1、向量的加法:满足平行四边形法则和三角形法则,即

2、向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0OA-OB=BA.即“共同起点,指向被减”,例如:a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。

3、向量的乘法:实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0,方向任意。当a=0时,对于任意实数λ,都有λa=0。

4、向量的除法:a÷k=|a|/k*a的单位向量。即结果为原向量的长度缩小k倍后的向量,方向不变。

(4)向量坐标相加的运算法则扩展阅读:

一、向量加法的运算律:

1、交换律:a+b=b+a;

2、结合律:(a+b)+c=a+(b+c)。

3、加减变换律:a+(-b)=a-b

4、向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。

二、向量的数乘规律:

1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)²≠a²·b²。

2、向量的数量积不满足消去律,即:由a·b=a·c(a≠0),推不出b=c。

❺ 两个向量的坐标相加遵循什么运算法则

若向量a=(x1,y1),b=(x2,y2),则向量a+b=(x1+x2,y1+y2)

❻ 向量坐标加法公式是

已知a=(x1,y1),b=(x2,y2),则
a+b=(x1i+y1j)+(x2i+y2j)
=(x1+x2)i+(y1+y2)j

a+b=(x1+x2,y1+y2)。
同理可得
a-b=(x1-x2,y1-y2)。
这就是说,
两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。

❼ 高中数学向量坐标的加减乘除

设a=(x,y),b=(x',y')。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:
交换律:a+b=b+a;
结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0
AB-AC=CB. 即“共同起点,指向被减”
a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣•∣a∣。
当λ>0时,λa与a同方向;
当λ<0时,λa与a反方向;
当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;
当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律
结合律:(λa)•b=λ(a•b)=(a•λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.
数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.
数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π
定义:两个向量的数量积(内积、点积)是一个数量,记作a•b。若a、b不共线,则a•b=|a|•|b|•cos〈a,b〉;若a、b共线,则a•b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a•b=x•x'+y•y'。
向量的数量积的运算律
a•b=b•a(交换律);
(λa)•b=λ(a•b)(关于数乘法的结合律);
(a+b)•c=a•c+b•c(分配律);
向量的数量积的性质
a•a=|a|的平方。
a⊥b 〈=〉a•b=0。
|a•b|≤|a|•|b|。
向量的数量积与实数运算的主要不同点
1、向量的数量积不满足结合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。
2、向量的数量积不满足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。
3、|a•b|≠|a|•|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。

4、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。
向量的向量积性质:
∣a×b∣是以a和b为边的平行四边形面积。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量积运算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量没有除法,“向量AB/向量CD”是没有意义的。

向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
① 当且仅当a、b反向时,左边取等号;
② 当且仅当a、b同向时,右边取等号。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
① 当且仅当a、b同向时,左边取等号;
② 当且仅当a、b反向时,右边取等号。

定比分点

定比分点公式(向量P1P=λ•向量PP2)
设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ•向量PP2,λ叫做点P分有向线段P1P2所成的比。
若P1(x1,y1),P2(x2,y2),P(x,y),则有
OP=(OP1+λOP2)(1+λ);(定比分点向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分点坐标公式)
我们把上面的式子叫做有向线段P1P2的定比分点公式
三点共线定理
若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线
三角形重心判断式
在△ABC中,若GA +GB +GC=O,则G为△ABC的重心
[编辑本段]向量共线的重要条件
若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。
a//b的重要条件是 xy'-x'y=0。
零向量0平行于任何向量。
[编辑本段]向量垂直的充要条件
a⊥b的充要条件是 a•b=0。
a⊥b的充要条件是 xx'+yy'=0。
零向量0垂直于任何向量.

❽ 坐标向量相加公式

坐标向量相加公式:已知a=(x1,y1),b=(x2,y2),则a+b=(x1i+y1j)+(x2i+y2j)=(x1+x2)i+(y1+y2)j,即 a+b=(x1+x2,y1+y2)。同理可得a-b=(x1-x2,y1-y2)。这就是说,两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。

❾ 向量坐标的加法减法乘法的运算法则

解应为一个数。根据向量乘法原则,向量与向量相乘得到一个数,数与向量相乘仍为向量,向量相加减也为向量,最后向量与向量相乘为数。

❿ 向量的加减乘除运算法则是什么

向量的减法:如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0OA-OB=BA.即“共同起点,指向被减”,例如:a=(x1,y1),b=(x2,y2) ,则a-b=(x1-x2,y1-y2)。

向量的乘法:实数λ和向量a的叉乘乘积是一个向量,记作λa,且|λa|=|λ|*|a|。当λ>0时,λa的方向与a的方向相同。



向量加法的运算律:

1、交换律:a+b=b+a;

2、结合律:(a+b)+c=a+(b+c)。

3、加减变换律:a+(-b)=a-b

4、向量的加减乘(向量没有除法)运算满足实数加减乘运算法则。

阅读全文

与向量坐标相加的运算法则相关的资料

热点内容
python解释器里如何换行 浏览:410
python编写格式 浏览:574
用python做出来的软件 浏览:469
服务器指示灯代表什么 浏览:702
做一个单片机销售需要知识 浏览:777
怎样去连接加密wifi 浏览:682
有什么app自带拍摄模板的 浏览:435
登录相亲网为什么要下载app呢 浏览:545
加密货币和主权货币撮合 浏览:683
哪里能学app 浏览:445
spline怎么看源码 浏览:18
桂妃app哪里下载 浏览:236
android代码格式化快捷键 浏览:829
如何判断服务器的硬盘 浏览:654
云服务器挑选顺序 浏览:887
卡银家平台源码 浏览:417
怎么样设置服务器的ip地址 浏览:900
泡沫APP在哪里下载 浏览:937
简述高级语言进行编译全过程 浏览:39
管家婆辉煌2加密狗挪到另一台电脑 浏览:760