导航:首页 > 源码编译 > 暴力速算法大全

暴力速算法大全

发布时间:2022-08-27 08:20:07

㈠ 求速算技巧

速算技巧:列式,当数据较大时,运算难度大,把a、b都看成两位数,进行两位数乘法,在选项一定的情况下,可以保证精度。两位数乘速算时,遵循口算速算法则,可以很快得答案。

1、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;

2、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。

3、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。

4、在乘法或者除法中使用”截位法“时,若答案需要有N位精度,则计算过程的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决定。

(1)暴力速算法大全扩展阅读:

注意事项

1、两个分数作比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别仅仅大一点,这时候使用“直除法”、“化同法”经常很难比较出大小关系,而使用“差分法”却可以很好地解决这样的问题。

2、在满足“适用形式”的两个分数中,我们定义分子与分母都比较大的分数叫“大分数”,分子与分母都比较小的分数叫“小分数”,而这两个分数的分子、分母分别做差得到的新的分数我们定义为“差分数”。

㈡ 口算速算的方法

1.速算之凑整先算。
【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。

例:298+304+196+502

【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。

【解答】:原式=(298+502)+(304+196)=800+500=1300

2.速算之带符号搬家。
【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。

例:464-545+836-455

【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。

思考:4.75÷0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?

3.速算之拆数凑整。
【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。

例:998+1413+9989

【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和。

【解答】:
原式=(998+2)+1400+(11+9989)=1000+1400+10000=12400

例:73.15×9.9

【分析】:把9.9看作10减0.1的差,然后用乘法分配率可简化运算。

【解答】:
原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185

4.速算之等值变化。
【点拨】:等值变化是小学数学中重要的思想方法。做加法时候,常常利用这样的恒等变形:一个加数增加,另一个加数就要减少同一个数,它们的和才不变。而减法中,是被减数和减数同时增加或减少相同的数,差才不变。
例:1234-798

【分析】:把798看作800,减去800后,再在所得差里加上多减去的2.

【解答】:原式==1234-800+2=436。

5.速算之去括号法。
【点拨】:在加减混合运算中,括号前面是“加号或乘号”,则去括号时,括号里的运算符号不变;如果括号前面是“减号或除号”,则去括号时,括号里的运算符号都要改变。

例题:(4.8×7.5×8.1)÷(2.4×2.5×2.7)

【分析】:首先根据“去括号原则”把括号去掉,然后根据“在同级运算中每个数可带着它前边的符号‘搬家’”进行简算。

【解答】:原式=4.8×7.5×8.1÷2.4÷2.5÷2.7
=(4.8÷2.4)×(7.5÷2.5)×(8.1÷2.7)
=2×3×3
=18

6.速算之同尾先减。
【点拨】:在减法计算时,若减数和被减数的尾数相同,先用被减数减去尾数相同的减数,能使计算简便。

【分析】:算式中第二个减数256与被减数2356的尾数相同,可以交换两个数的位置,让2356先减256

7.速算之提取公因数
【点拨】:乘法分配率的反应用,出错率比较高,一般包括三种类型。

㈢ 加减乘除法速算技巧

加减乘除法速算技巧的操作,这个可以根据一定的运算定律来进行计算的,因为运用到比较简便的运算定律,可以快速并且直接地计算出结果

㈣ 数学速算技巧都有哪些方法

1.十几乘十几:

口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?

解:1×1=1

2+4=6

2×4=8

12×14=168

注:个位相乘,不够两位数要用0占位。

2.头相同,尾互补(尾相加等于10):

口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?

解:2+1=3

2×3=6

3×7=21

23×27=621

注:个位相乘,不够两位数要用0占位。

3.第一个乘数互补,另一个乘数数字相同:

口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?

解:3+1=4

4×4=16

7×4=28

37×44=1628

注:个位相乘,不够两位数要用0占位。

4.几十一乘几十一:

口诀:头乘头,头加头,尾乘尾。

例:21×41=?

解:2×4=8

2+4=6

1×1=1

21×41=861

5.11乘任意数:

口诀:首尾不动下落,中间之和下拉。

例:11×23125=?

解:2+3=5

3+1=4

1+2=3

2+5=7

2和5分别在首尾

11×23125=254375

注:和满十要进一。

拓展资料

数学速算法是指利用数与数之间的特殊关系进行较快的加减乘除运算的计算方法。数学速算法分为金华速算、魏德武速算、史丰收速算以及古人创造的“袖里吞金”四大类速算方法。

在数学中,算式(suàn shì)是指在进行数(或代数式)的计算时所列出的式子,包括数(或代替数的字母)和运算符号(四则运算、乘方、开方、阶乘、排列组合等)两部分。按照计算方法的不同,算式一般分为横式和竖式两种。与表达式不同,表达式是将同类型的数据(如常量、变量、函数等),用运算符号按一定的规则连接起来的、有意义的式子。

㈤ 速算巧算法

一、30以内的两个两位数乘积的心算速算 1、两个因数都在20以内 任意两个20以内的两个两位数的积,都可以将其中一个因数的”尾数”移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如: 11×11=120+1×1=121 12×13=150+2×3=156 13×13=160+3×3=169 14×16=200+4×6=224 16×18=240+6×8=288 2、两个因数分别在10至20和20至30之间 对于任意这样两个因数的积,都可以将较小的一个因数的“尾数”的2倍移加到另一个因数上,然后补一个0,再加上两“尾数”的积。例如: 22×14=300+2×4=308 23×13=290+3×3=299 26×17=400+6×7=442 28×14=360+8×4=392 29×13=350+9×3=377 3、两个因数都在20至30之间 对于任意这样两个因数的积,都可以将其中一个因数的“尾数”移加到另一个因数上求积,然后再加上两“尾数”的积。例如: 22×21=23×20+2×1=462 24×22=26×20+4×2=528 23×23=26×20+3×3=529 21×28=29×20+1×8=588 29×23=32×20+9×3=667 掌握此法后,30以内两个因数的积,都可以用心算快速求出结果。 二、大于70的两个两位数乘积的心算速算 对于任意这样两个因数的积,都可以用其中的一个因数将另一个因数补成100求积,再加上100分别与这两个因数差的积。例如: 99×99=98×100+1×1=9801 97×98=95×100+3×2=9506 93×94=87×100+7×6=8742 88×93=81×100+12×7=8184 84×89=73×100+16×11=7476 78×79=57×100+22×21=6162 75×75=50×100+25×25=5625 掌握上述两方法后,30以内两个因数的积和大于70的两个两位数的积,都可以用心算快速求出结果。 三、大于50小于70的两个两位数乘积的心算速算 对于任意这样两个因数的积,都可以将较小一个因数大于50的部分移加到另一个因数上求积,然后再加上这两个因数分别与50差的积。(运用一个因数乘以50等于将这个因数平分后乘以100)例如: 51×51=26×100+1×1=2601 53×59=31×100+3×9=3127 54×62=33×100+4×12=3348 56×66=36×100+6×16=3696 66×66=41×100+16×16=4356 四、大于30小于50的两个两位数乘积的心算速算 对于任意这样两个因数的积,都可以用较小一个因数将另一个因数补成50求积,然后再加上50分别与这两个因数差的积。(运用一个因数乘以50等于将这个因数平分后乘以100)例如: 49×49=24×100+1×1=2401 46×48=22×100+4×2=2208 44×42=18×100+6×8=1848 37×47=17×100+13×3=1739 32×46=14×100+18×4=1472 五、乘法口算速算法 乘法口算速算法是一种简便的,极易被掌握的乘法心算速算法,是将传统算法改为补整法,例如:49×47可改为50×46+1×3=2303, 98×94可改为 100×92+2×6=9212;移尾法,例如:51×53可改为50×54+1×3=2703, 31×32可改为30×33+1×2=992;补商法,例如:84×24可改为100×20+4×4=2016等等,下面逐个介绍,并注意一个因数乘以50等于将这个因数平分后乘以100。 1、补整法 任意两个因数的积,都可以用其中的一个因数将另一个因数补成“整数”求积,然后再加上这个“整数”分别与这两个因数差的积。例如: 19×19=18×20+1×1=361 27×28=25×30+3×2=756 46×48=44×50+4×2=2208 94×99=93×100+6×1=9306 87×98=85×100+13×2=8526 38×48=36×50+12×2=1824 补整法比较适用于首接近尾之和不小于10的乘法,特别适用于两个因数都略小于20、30、50、100的乘法。 2、移尾法 任意两个因数的积,都可以将其中一个因数的”尾数”移加到另一个因数上求积,然后再加上这两个因数分别与这个“整数”差的积。例如: 14×12=16×10+4×2=168 22×23=25×20+2×3=506 55×51=56×50+5×1=2805 62×54=66×50+12×4=3348 43×37=50×30+13×7=1591 112×103=115×100+12×3=11536 移尾法比较适用于首接近尾之和不大于10的乘法,特别适用于两个因数都略大于10、20、30、50、100的乘法。 3、补商法 令A、B、C、D为待定数字,则任意两个因数的积都可以表示成: AB×CD=(AB+A×D/C)×C0+B×D 补商法特别适用于C能整除A×D的乘法。例如: 23×13=29×10+3×3=299 33×12=39×10+3×2=396 46×11=50×10+6×1=506 28×77=30×70+8×7=2156 82×55=90×50+2×5=4510 81×24=97×20+1×4=1944 76×36=90×30+6×6=2736 当C不能整除A×D时,AB可加A×D/C的整数部分运算,余几就在原结果上再加几十。例如: 84×65=90×60+40+4×5=5460 73×32=77×30+20+3×2=2336 掌握此法后,130以内两个因数的积,基本上都可以用心算快速求出结果。 六、接近100的两个数乘积的心算速算技巧 对于计算任意两个大于90的两位数的乘积及任意两个小于110的三位数的乘积,运用巧妙的算速方法,人人都可以做到准确、快速、达到心算一口清。 1、两个都小于11 0的三位数的乘积 对于任意两个小于11 0的三位数的乘积,其积必定是五位数,且左边三位数总是等于其中一个因数加上另一个因数的“尾数”,右边两位数总是等于两“尾数”的积。例如: 108×109=11772。左边三位数等于108+9=117,右边两位数等于8×9=72,同理: 105×107=11342 104×109=11336 102×103=10506,右边两位数等于2×3=6,因为是两位,所以应写成06,同理: 101×109=11009 103×103=10609 2、任意两个大于90的两位数的乘积 对于任意两个大于90的两位数的乘积,其积必定是四位数,且左边两位数总是等于80加上两个因数的“尾数”,右边两位数总是等于100分别与这两个因数差的积。例如: 91×92=8372,左边两位数等于80+1+2=83,右边两位数等于(100-91)×(100-92)=72,同理: 93×93=8649 94×94=8836 95×96=9120 99×98=9702,右边两位数等于1×2=2,因为是两位,所以应写成02,同理: 99×99=9801 97×97=940950道常见的速算题:1)1.5x1.3x4=7.8
2)2.7+3.1=5.8
3)2.9+3.2=6.1
4)21-4.4-5.6=11
5)17x12=204
6)25x5=125
7)4.8x2.1=14.4
8)2.5x30=75
9)7.8+6.5+2.2=16.5
10)15x0.5=7.5
11)3.5/14=0.25
12)9.3x0.25x4=9.3
13)13+5.2=18.2
14)28+33+23=84
15)10+11+9=30
16)84/30=2.8
17)2.5x12=30
18)12.53-1.35=1.18
19)0.8x2.5=2
20)10-7.3+2.5=5.2
21)1.35x2=2.7
22)0.47+0.34=0.81
23)4.6x5=23
24)5.4/18=0.3
25)2.99+0.65=3.64
26)1.6-0.54=1.06
27)4-0.04=3.06
28)3.5x4=14
29)1/0.125=8
30)6.25x5=31.25
31)61-1.25=59.75
32)4cm= 0.04 m
33)32m= 320 dm
34)153-98=55
35)32.6+19.9=53.5
36)0.5x101-0.5=50
37)40x0.25=10
38)9000/72=125
39)13.6+2.8.6.4=22.8
40)5.4/18=3
41)240x1.5=3
42)240x1.5=360
43)1.25x0.7x8=7
44)80/0.5=40
45)5.2-0.5=4.7
46)0.8x12=9.6
47)1-0.19=0.81
48)0.49+0.22=0.71
49)2.1/30=0.07
50)25/0.5=50
参考资料: http://wenku..com/view/db91037da26925c52cc5bf2a.html

㈥ 速算技巧

速算技巧:列式,当数据较大时,运算难度大,把a、b都看成两位数,进行两位数乘法,在选项一定的情况下,可以保证精度。两位数乘速算时,遵循口算速算法则,可以很快得答案。

1、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;

2、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。

3、某些比较复杂的分数,需要计算分数的“倒数”的首位来判定答案。

4、在乘法或者除法中使用”截位法“时,若答案需要有N位精度,则计算过程的数据需要有N+1位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决定。

(6)暴力速算法大全扩展阅读:

加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀,本位相加(针对进位数)减加补,前位相加多加一,就可以彻底解决任意位数从高位数到低位数的加法速算问题。

例如:67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀,本位相减(针对借位数)加减补,前位相减多减一,就可以彻底解决任意位数从高位数到低位数的减法速算问题。

例如:67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。

㈦ 速算口诀是什么呢

速算口诀是:

1、十几乘十几:

口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?

解:1×1=1

2+4=6

2×4=8

12×14=168

注:个位相乘,不够两位数要用0占位。

2、头相同,尾互补(尾相加等于10):

口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?

解:2+1=3

2×3=6

3×7=21

23×27=621

注:个位相乘,不够两位数要用0占位。

3、第一个乘数互补,另一个乘数数字相同:

口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?

解:3+1=4

4×4=16

7×4=28

37×44=1628

注:个位相乘,不够两位数要用0占位。

4、几十一乘几十一:

口诀:头乘头,头加头,尾乘尾。

例:21×41=?

解:2×4=8

2+4=6

1×1=1

21×41=861

5、11乘任意数:

口诀:首尾不动下落,中间之和下拉。

例:11×23125=?

解:2+3=5

3+1=4

1+2=3

2+5=7

2和5分别在首尾

11×23125=254375

注:和满十要进一。

6、十几乘任意数:

口诀:第二乘数首位不动向下落,第一因数的个位乘以第二因数后面每一个数字,加下一位数,再向下落。

例:13×326=?

解:13个位是3

3×3+2=11

3×2+6=12

3×6=18

13×326=4238

注:和满十要进一。

速算方法与技巧:凑整法、变化法、特征法、常用数据法等。

1、凑整法:根据运算定律和运算性质,把算式中能凑成整数(特别是整十数、整百数等)的部分合并或拆开,然后求得结果。

例如:68×98

=68×(100-2)

=68×100-68×2

=6800-136

=6664

2、变化法:适当转变运算方法,即以加代减,以减代加,以乘代除,以除代乘;或改变运算顺序,或利用约分、加减进行化简等。

例如:4.7×0.25+7.3÷4

=(4.7+7.3)×0.25

=3

例如:3÷4-0.5÷0.7-0.3÷0.4+5÷7

=(3÷4-0.3÷0.4)+(5÷7-0.5÷0.7)

=0

例如:3.25×0.8×0.125÷(0.1253)

=1

3、特性法:利用“0”与“1”在运算中的特性,进行简便运算。

例如:(1.9-1.9×0.9)÷(3.8-2.8)

=(1.9×(1-0.9)÷1

=0.19

4、常用数据法:常用的数据方法:使用一些常用数据,通过等价的数字扭曲使计算简单。

常用数据如:25×4=100;125×8=1000;=0.25=25%;=0.75=75%;=0.8=80%;=0.04=4%等等。

㈧ 一分钟速算口诀表谁有

1、十几乘十几:

口诀:头乘头,尾加尾,尾乘尾。

例:12×14=?

解: 1×1=1

2+4=6

2×4=8

12×14=168

注:个位相乘,不够两位数要用0占位。

2、头相同,尾互补(尾相加等于10):

口诀:一个头加1后,头乘头,尾乘尾。

例:23×27=?

解:2+1=3

2×3=6

3×7=21

23×27=621

注:个位相乘,不够两位数要用0占位。

3、第一个乘数互补,另一个乘数数字相同:

口诀:一个头加1后,头乘头,尾乘尾。

例:37×44=?

解:3+1=4

4×4=16

7×4=28

37×44=1628

注:个位相乘,不够两位数要用0占位。

4、几十一乘几十一:

口诀:头乘头,头加头,尾乘尾。

例:21×41=?

解:2×4=8

2+4=6

1×1=1

21×41=861

(8)暴力速算法大全扩展阅读:

一分钟速算提示:

“直除法”是指在比较或者计算较复杂分数时,通过“直接相除”的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。“直除法”在资料分析的速算当中有非常广泛的用途,并且由于其“方式简单”而具有“极易操作”性。

“直除法”从题型上一般包括两种形式:

一、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;

二、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。

㈨ 速算技巧口诀是什么

速算技巧:列式,当数据较大时,运算难度大,把a、b都看成两位数,进行两位数乘法,在选项一定的情况下,可以保证精度。两位数乘速算时,遵循口算速算法则,可以很快得答案。


1、比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数;


2、计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案。



(9)暴力速算法大全扩展阅读:

加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀,本位相加(针对进位数)减加补,前位相加多加一,就可以彻底解决任意位数从高位数到低位数的加法速算问题。

例如:67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

算嬗数(a+b-10)×c+(d-c)×a适用于一因数的二位数之和接近等于“10”,另一因数的二位数之差接近等于“0”的任意二位数乘法速算

㈩ 数学十大速算技巧

学习数学离不开计算,学生的计算能力是最基本的数学能力。那么你知道学好数学速算的 方法 有哪些吗?下面我给你分享数学十大速算技巧,欢迎阅读。

数学十大速算技巧
一、充分利用五大定律

教师要扎实开展好现行教材 四年级数学 下册中计算的五大运算定律的教学(加法交换律、加法结合律、乘法交换律、乘法结合律、乘法分配律),引导学生弄清来龙去脉,不让一个学生掉队,训练每个学生能自觉运用简便办法,能针对不同题型灵活选择简便方法正确而快捷地进行计算。

二、巧妙运用“首同末合十”

利用“首同末合十”的方法来训练。“首同末合十”法是两个两位数,它们的十位数相同,而个位数相加的和是10。利用“首同末合十”的两个两位数相乘,积的右边的两位数正好是个位数的乘积,积的左面的数正好是十位上的数乘以比它大1的积,合并起来就是它们的乘积。例如,54×56=3024,81×89=7209。

三、留心“左右两数合并法”

任意的两位数乘上99或任意的三位数乘上999的速算法叫做“左右两数合并法”。

1.任意两位数乘上99的巧算方法是,将这个任意的两位数减去1,作为积的左面的两位数字,再将100减去这个任意两位数的差作为积的右边两位数,合并起来就是它们的积。例如,62×99=6138,48×99=4752。

2.任意三位数乘上999的巧算方法,就是将这个任意的三位数减去1,作为积的左面的三位数字,再将1000减去这个任意三位数的差作为积的右边的三位数字,合并起来就是它们的积。例如,781×999=780219,396×999=395604。

四、利用分数与除法的关系来巧算

在一个只有二级运算的题里,按顺序计算需要多步计算,利用乘除法的关系进行计算就会简便。比如,

24÷18×36÷12=(24÷18)×(36÷12)=24/18×36/12=4。

五、利用扩大缩小的规律进行简算

有些除法计算题直接计算比较繁琐,而且容易算错,利用“扩缩规律”进行合理的变形可以找到简便的解决方法。比如,

7÷25=(7×4)÷(25×4)=28÷100=0.28,

24÷125=(24×8)÷(125×8)=192÷1000=0.192。

六、数字颠倒的两、三位数减法巧算

形如73与37、185与581等的数称为“数字颠倒”的两、三位数,巧算方法为:

1.数字颠倒的两位数减法,可用两位数字中的大数减去小数,再乘以9,积就是它们的差。如73-37=(7-3)×9=36,82-28=(8-2)×9=54。

2.数字颠倒的三位数减法,可用三位数中最大数减去最小数,再乘以9,乘积分两边,中间填上9,就是它们的差。比如,581-158=(8-1)×9=63,所以851-158=693。

七、用“添零加半”的方法巧算

一个数乘上15的速算方法叫做“添零加半”。比如,26×15将26后面添0得260,再加上260的一半130,即260+130=390,所以26×15=360。

八、利用拆和法进行巧算

有些计算题,乍看起来都与运算定律没有关系,但经过变形后,直接地应用运算定律来进行计算。

九、用“两边拉中间加”的方法速算

任何数同11相乘,只要把原数的个位移到积的个位的位置,最高位移到积的最高位的位置,中间的数分别是个位上的数加十位上的数的和就是十位,十位上的数加百位上的和就是百位……如果相加的数的和满十要向前一位数进1。比如,124×11=1364,568×11=6248。

十、用“十加个减法”速算

“十加个减法”就是任何两位数加上9的和,可以把这个两位数变成十位加1个位减1的数,即36+9=45,17+9=26。这种计算技巧适合低年级的小学生。

很多学生计算结果不正确是由于马虎、粗心等不良习惯造成的。培养学生良好计算习惯时,教师要讲究训练形式,激发学生计算兴趣,寓教于乐,采用多样化形式训练。如用游戏、竞赛、卡片、小黑板视算、听算、限时口算、自编计算题、小 故事 等多种形式训练,教师要有耐心,有恒心,要统一办法与要求,要坚持不懈,抓到底。教师要引导学生养成良好的审题习惯、书写习惯和检验习惯。
魏德武速算
加法速算:计算任意位数的加法速算,方法很简单学习者只要熟记一种加法速算通用口诀 ——“本位相加(针对进位数) 减加补,前位相加多加一 ”就可以彻底解决任意位数从高位数到低位数的加法速算问题。

例如:(1),67+48=(6+5)×10+(7-2)=115,(2)758+496=(7+5)×100+(5-0)×10+8-4=1254即可。

减法速算:计算任意位数的减法速算方法也同样是用一种减法速算通用口诀 ——“本位相减(针对借位数) 加减补,前位相减多减一 ”就可以彻底解决任意位数从高位数到低位数的减法速算问题。

例如:(1),67-48=(6-5)×10+(7+2)=19,(2),758-496=(7-5)×100+(5+1)×10+8-6=262即可。

乘法速算:乘法速算通用公式:ab×cd=(a+1)×c×100+b×d+魏氏速算嬗数×10。

速算嬗数|=(a-c)×d+(b+d-10)×c,,

速算嬗数‖=(a+b-10)×c+(d-c)×a,

速算嬗数Ⅲ=a×d-‘b’(补数)×c 。 更是独秀一枝,无与伦比。

(1),用第一种速算嬗数=(a-c)×d+(b+d-10)×c,适用于首同尾任意的任意二位数乘法速算。

比如 :26×28, 47×48,87×84-----等等,其嬗数一目了然分别等于“8”,“20 ”和“8”即可。

(2), 用第二种速算嬗数=(a+b-10)×c+(d-c)×a适用于一因数的二位数之和接近等于“10”,另一因数的二位数之差接近等于“0”的任意二位数乘法速算 ,

比如 :28×67, 47×98, 73×88----等等 ,其嬗数也同样可以一目了然分别等于“2”,“5 ”和“0”即可。(3), 用第三种速算嬗数=a×d-‘b’(补数)×c 适用于任意二位数的乘法速算。

猜你喜欢:
1. 国考行测之十大速算技巧

3. 行测资料分析速解技巧

4. 高中数学速算技巧

5. 数学速算的方法

阅读全文

与暴力速算法大全相关的资料

热点内容
登录相亲网为什么要下载app呢 浏览:545
加密货币和主权货币撮合 浏览:683
哪里能学app 浏览:445
spline怎么看源码 浏览:18
桂妃app哪里下载 浏览:236
android代码格式化快捷键 浏览:829
如何判断服务器的硬盘 浏览:654
云服务器挑选顺序 浏览:887
卡银家平台源码 浏览:417
怎么样设置服务器的ip地址 浏览:900
泡沫APP在哪里下载 浏览:937
简述高级语言进行编译全过程 浏览:39
管家婆辉煌2加密狗挪到另一台电脑 浏览:760
摩托车在哪里app看考题 浏览:356
苹果5app在哪里设置 浏览:737
如何查看服务器的磁盘使用 浏览:165
python蒙特卡洛模型投点图 浏览:331
安卓手机属于什么接口 浏览:742
微信群推广网站源码 浏览:764
九江离鹰潭源码 浏览:719