导航:首页 > 源码编译 > 一位数乘以多个九的速算法

一位数乘以多个九的速算法

发布时间:2022-09-25 10:24:19

❶ 谁有多位数相乘的心算口诀或方法

由速算大师史丰收经过10年钻研发明的快速计算法,是直接凭大脑进行运算的方法,又称为快速心算、快速脑算。这套方法打破人类几千年从低位算起的传统方法,运用进位规律,总结26句口诀,由高位算起,再配合指算,加快计算速度,能瞬间运算出正确结果,协助人类开发脑力,加强思维、分析、判断和解决问题的能力,是当代应用数学的一大创举。

这一套计算法,1990年由国家正式命名为“史丰收速算法”,现已编入中国九年制义务教育《现代小学数学》课本。联合国教科文组织誉之为教育科学史上的奇迹,应向全世界推广。
史丰收速算法的主要特点如下:

⊙从高位算起,由左至右
⊙不用计算工具
⊙不列计算程序
⊙看见算式直接报出正确答案
⊙可以运用在多位数据的加减乘除以及乘方、开方、三角函数、对数等数学运算上

演练实例一

速 算 法 演 练 实 例
Example of Rapid Calculation in Practice
○史丰收速算法易学易用,算法是从高位数算起,记着史教授总结了的26句口诀(这些口诀不需死背,而是合乎科学规律,相互连系),用来表示一位数乘多位数的进位规律,掌握了这些口诀和一些具体法则,就能快速进行加、减、乘、除、乘方、开方、分数、函数、对数…等运算。

□本文针对乘法举例说明
○速算法和传统乘法一样,均需逐位地处理乘数的每位数字,我们把被乘数中正在处理的那个数位称为“本位”,而从本位右侧第一位到最末位所表示的数称“后位数”。本位被乘以后,只取乘积的个位数,此即“本个”,而本位的后位数与乘数相乘后要进位的数就是“后进”。
○乘积的每位数是由“本个加后进”和的个位数即--

□本位积=(本个十后进)之和的个位数
○那么我们演算时要由左而右地逐位求本个与后进,然后相加再取其个位数。现在,就以右例具体说明演算时的思维活动。
(例题) 被乘数首位前补0,列出算式:
0847536×2=1695072
乘数为2的进位规律是“2满5进1”
0×2本个0,后位8,后进1,得1
8×2本个6,后位4,不进,得6
4×2本个8,后位7,满5进1,
8十1得9
7×2本个4,后位5,满5进1,
4十1得5
5×2本个0,后位3不进,得0
3×2本个6,后位6,满5进1,
6十1得7
6×2本个2,无后位,得2

在此我们只举最简单的例子供读者参考,至于乘3、4……至乘9也均有一定的进位规律,限于篇幅,在此未能一一罗列。
“史丰收速算法”即以这些进位规律为基础,逐步发展而成,只要运用熟练,举凡加减乘除四则多位数运算,均可达到快速准确的目的。
>>演练实例二
□掌握诀窍 人脑胜电脑

史丰收速算法并不复杂,比传统计算法更易学、更快速、更准确,史丰收教授说一般人只要用心学习一个月,即可掌握窍门。
对于会计师、经贸人员、科学家们而言,可以提高计算速度,增加工作效益;对学童而言、可以开发智力、活用头脑、帮助数理能力的增强。

参考资料:http://shifengshou.com/gb/htm/what_shifengshou.htm

❷ 一位数乘任何数的速算方法拜托各位了 3Q

一位数乘任何数的速算方法分几种,分5以下,5,5以上。 5最典型,好像235×5看成0.5那么就是235的一半117.5乘以10就是1175 小于5的,223×1不用说=223,乘以2就是2个223,以上223+223=446,乘以4就是2个446,乘以3就是446+223=669 大于5的,乘以6就是5个223+1个223=1175+223 乘以7就是5个223+446=1175+446 乘以8就是10个223-2个223=2230-446 乘以9,就是10个223减去1个223=2230-223 乘以5可以结合心算。

❸ 口算80×9可以先算几个几乘九得几个几是几

竖式乘法80×9计算
参考思路:先将两乘数末位对齐,然后分别使用第二个乘数,由末位起对每一位数依次乘上一个乘数,最后将所计算结果累加即为乘积,如果乘数为小数可先将其扩大相应的倍数,最后乘积在缩小相应的倍数;
解题过程:

步骤一:9×80=720

根据以上步骤结果相加积为720

存疑请追问,满意请采纳

❹ 多位数乘一位数速算方法

乘数为2时,满5进1;乘数为3时,超3进1,超6进2;乘数为4时,满25进1,满50进2,满75进3;乘数为5时,满2进1,满4进2,满6进3,满8进4;乘数为6时,超16进1,超3进2,满5进3,超6进4,超83进5;乘数为7时,超142857进1;

超285714进2,超428571进3,超571428进4,超714285进5,超857142进6;乘数为8时,满125进1,满25进2,满375进3,满5进4,满625进5,满75进6,满875进7;乘数为9时,超1进1,超2进2……超几进几。

(4)一位数乘以多个九的速算法扩展阅读:

比如:931684乘以2这道题,在做的时候,先给被乘数前面加个0,然后依次从最高位算起。另外,要注意一点,当被乘数的首位大于或等于5时,积的首位是1,如果小于5,积的首位是0(忽略不写)。像这道题被乘数是9,因此积的首位就是1。

接下来的每一位积,都是由被乘数的这一位数乘以2所得出的个位数,再加上后一位所进的数。

再举个例子,因为可以更加详细地说明,这种多位数乘法的速算方法是如何运用的。以5839042乘以8为例吧,8的速算法是乘数为8时,满125进1,满25进2,满375进3,满5进4,满625进5,满75进6,满875进7。

❺ 多位数乘法的快速计算方法有哪些

多位数乘法的快速计算方法如下:

1、 十几乘十几:口诀:头乘头,尾加尾,尾乘尾。例:12×14=?解: 1×1=12+4=62×4=812×14=168注:个位相乘,不够两位数要用0占位。

2、 头相同,尾互补(尾相加等于10):口诀:一个头加1后,头乘头,尾乘尾。例:23×27=?解:2+1=32×3=63×7=2123×27=621注:个位相乘,不够两位数要用0占位。

3、 第一个乘数互补,另一个乘数数字相同:口诀:一个头加1后,头乘头,尾乘尾。例:37×44=?解:3+1=44×4=167×4=2837×44=1628注:个位相乘,不够两位数要用0占位。

4、 几十一乘几十一:口诀:头乘头,头加头,尾乘尾。例:21×41=?解:2×4=82+4=61×1=121×41=861

5、 11乘任意数:口诀:首尾不动下落,中间之和下拉。例:11×23125=?解:2+3=53+1=41+2=32+5=72和5分别在首尾11×23125=254375注:和满十要进一。

(5)一位数乘以多个九的速算法扩展阅读

乘法原理:

如果因变量f与自变量x1,x2,x3,….xn之间存在直接正比关系并且每个自变量存在质的不同,缺少任何一个自变量因变量f就失去其意义,则为乘法。

在概率论中,一个事件,出现结果需要分n个步骤,第1个步骤包括M1个不同的结果,第2个步骤包括M2个不同的结果,……,第n个步骤包括Mn个不同的结果。那么这个事件可能出现N=M1×M2×M3×……×Mn个不同的结果。

设 A是 m×n 的矩阵。

可以通过证明 Ax=0 和A'Ax=0 两个n元齐次方程同解证得 r(A'A)=r(A)

1、Ax=0 肯定是 A'Ax=0 的解,好理解。

2、A'Ax=0 → x'A'Ax=0 → (Ax)' Ax=0 →Ax=0

故两个方程是同解的。

同理可得 r(AA')=r(A')

另外 有 r(A)=r(A')

所以综上 r(A)=r(A')=r(AA')=r(A'A)

❻ 乘法巧算速算方法

1、一位数乘法法则整数乘法低位起,一位数乘法一次积。

个位数乘得若干一,积的末位对个位。

计算准确对好位,乘法口诀是根据。

2、两位数乘法法则整数乘法低位起,两位数乘法两次积。

个位数乘得若干一,积的末位对个位。

十位数乘得若干十,积的末位对十位。

计算准确对好位,两次乘积加一起。


1、多位数乘法法则整数乘法低位起,几位数乘法几次积。

个位数乘得若干一,积的末位对个位。

十位数乘得若干十,积的末位对十位。

百位数乘得若干百,积的末位对百位计算准确对好位,几次乘积加一起。

2、因数末尾有0的乘法法则因数末尾若有0,写在后面先不乘,乘完积补上0,有几个0写几个0。

(6)一位数乘以多个九的速算法扩展阅读

乘法的计算法则:

(1)数位对齐,从右边起,依次用第二个因数每位上的数去乘第一个因数,乘到哪一位,得数的末尾就和第二个因数的哪一位对齐;

(2)然后把几次乘得的数加起来。

(整数末尾有0的乘法:可以先把0前面的数相乘,然后看各因数的末尾一共有几个0,就在乘得的数的末尾添写几个0)

❼ 多位数乘一位数的计算方法

多位数乘一位数的计算方法是从个位算起,用一位数依次乘多位数的每一位,哪一位上乘得的积满几十,就要向前一位进几。当遇到中间或末尾有0的多位数乘一位数时,我们可以利用0的特殊性质进行计算。

下面我们来学习多位数乘一位数中间或末尾有0的计算方法。

0的特殊性质:0乘任何数都得0。

1.在中间有0的多位数乘一位数的计算中忽略0的特殊性质。



2.在中间有0的多位数乘一位数的计算中遇到满十或满几十需要进位时,忘记进位或加进位数。

末尾有0的多位数乘一位数通常有两种计算方法。


(一位数对齐多位数的0) (一位数对齐多位数的0前面的数)

由上我们可以看出,末尾有0的多位数乘一位数的简便计算方法是一位数对齐多位数的0前面的数,先用一位数去乘多位数的0前面的数,再看多位数的末尾有几个0就在结果后面添几个0。

在计算中间或末尾有0的多位数乘一位数时,我们要注意观察数字的特点,利用0的特殊性质找到简便的计算方法。中间有0的多位数乘一位数要注意0乘任何数都得0的特殊性,不能忘记进位或加进位数;末尾有0的多位数乘一位数要注意不能忘记在积的末尾添0。

不管多位数乘以一位数,还是多位数乘以多位数,只要在计算的过程中,你能够认真仔细的算好每一步相信一定都会100%的准确。

❽ 一位数乘多位数乘法法则

依据多位数乘一位数计算方法可得:
从个位乘起,用一位数依次乘多位数的每一位,哪一位上乘得的积满几十,就要向前一位进几,
故答案为:个,依次,每一,前一位.

❾ 数学速算方法及分析方法

小学数学速算 方法 有哪些?小学数学是一些简单的数学知识方法,孩子在学习的时候只要掌握好知识点就可以了。下面我给大家整理了关于数学速算方法及分析方法,希望对你有帮助!

数学速算方法

1数学速算的方法

小学数学是一些简单的数学知识方法,孩子在学习的时候只要掌握好知识点就可以了。对于新的知识接受,一定要让孩子在学校认真听讲,跟着老师的思路走,做好笔记,即使有不懂的地方也要及时的请教老师或者同学。

数学成绩决定孩子的理科综合能力,影响到理化生等多学科的成绩,小学阶段适时进行奥数训练,更有助于孩子初中理科成绩的提升。不要让我们的孩子进入初中后因为数学影响总排名,进而影响到中考成绩!掌握良好的速算技巧,是让孩子们在最短的时间内,学好速算的关键之处,所以,家长要善于引导孩子们发现和使用速算技巧,并且多多将这些技巧进行验证,让这些技巧好好为孩子服务。

2方法一:指算法

个位数比十位数大1乘以9的运算方法:前面因数的个位数是几,就把第几个手指弯回来,弯指左边有几个手指,则表示乘积的百位数是几。弯指读0,则表示乘积的十位数是0,弯指右边有几个手指,则表示乘积的个位数是几。口诀:个位是几弯回几,弯指左边是百位,弯指读0为十位,弯指右边是个位。例:34×9=306;

个位数比十位数大任意数乘以9的运算方法:凡是个位数比十位数大任意数乘以9时,仍是前面因数的个位数是几,将第几个手指弯回来,弯回来的手指不读数,作为乘积的十位数与个位数的分界线。前面因数的十位数是几,从左边起数过几个手指,则表示乘积的百位数就是几,弯指左边减去百位数,还剩几个手指,则表示乘积的十位数是几,弯指的右边有几个手指,则表示乘积的个位数是几。口诀:个位是几弯回几,原十位数为百位。左边减去百位数,剩余手指为十位。弯指作为分界线,弯指右边是个位。

3方法二:两位数加两位数的进位加法

口诀:加9要减1,加8要减2,加7要减3,加6要减4,加5要减5,加4要减6,加3要减7,加2要减8,加1要减9。(注:口决中的加几都是说个位上的数)例:26+38=64 解 :加8要减2,谁减2?26上的6减2。38里十位上的3要进4。(注:后一个两位数上的十位怎么进位,是1我进2,是2我进3,是3我进4,依次类推。那朝什么地方进位呢,进在第二个两位数上十位上。如本次是3我进4,就是这两个两位数里的2+4=6。)这里的26+38=64就是6-2=4写在个位上,是3进4加2就等于6写在十位上。再如42+29=71。就用加9要减1这句

口决,2-1=1,把1写在个位上,是2我进3,4+3=7,把7写在十位上即得71。两位数加两位数不进位的加法,就直接写得数就行,如25+34=59,个位加个位写在等号后的个位上5+4=9,十位加十位写在十位上即可2+3=5,即59。不必列竖式计算。本办法学会了百试百灵,比计算器还快。

4方法三:乘法速算方法

个位前的数字加1乘自己的积的末尾添上个位上的数字的积。如:56×54 5+1=6,6×5=30,在30的末尾添上个位上的数4与6的积24,得到3024,这样56×54=3024。再如:61×69 (6+1)×6=42,1×9=9,当个位上的数相乘的积是一位数时,仍要占两位,故在9的前面还应添一个0。故61×69=4209。练习:98×92 75×75 29×21;

十位相同,个位数字和不为10的两位数乘两位数的速算方法。用一个数加上另一个数的个位上的数,乘以由十位上的数字组成的整十数,再加上个位上两个数的积。例如:53×54=(53+4)×50+3×4=57×50+12=2850+12=2862练习:85×84 67×68 31×38

数学分析方法

1数学分析方法

对于考数学与应用数学专业研究生的学生来说,数学分析是必考科目,由于这门专业课内容多、难点也多,怎么在有限的时间内复习好这门课程、做好充分的准备取得好成绩呢?

2数学分析方法

首先要想一想自己到底对数学有没有兴趣,无论你是不是数学专业的,兴趣是最好的老师。此外要对自己要有信心,数学的本质就很抽象,但那也是人类的智慧。数学是崇高的。

首先学习数学分析。推荐看数学分析卓里奇写的书,可以去买一本看看。想轻松点的可以先看微积分学教程,菲赫金哥尔茨的书。书里题目多,证明严谨。不可急着看后面的,后面与前面可是有很多的联系。

在学数学分析同时可以附带看代数。先看张禾端的高等代数,基本没有难度。抽象代数看高等近世代数Rotman。还有本书代数学引论,俄罗斯柯斯特利金的,可以当作参考,这本书后面可能有点难度,里面涉及内容也比较多。

最重要的是坚持与思考,不可以一会看书的前面,一会儿看书的后面,该休息时还是要休息的,书里的题目都很好,大师写得能不好吗?一定要好好思考,也做点题目。建议一年半学习,然后有了这些基础,可以向数学的王国更高层出发了。

3数学分析方法

知识掌握过程中的三种不良习惯:忽略理解,死记硬背:认为只要记住公式、定理就万事大吉,而忽略了知识导出过程的理解,既造成提取应用知识的困难,更一次又一次地失去了对知识推导过程中孕含的思想方法的吸取。如三角公式“常记常忘,屡记不会”的根本原因就在于此,进而也谈不上用三角变换解题的自觉性了。

注重结论,轻视过程:数学命题的特点是条件和结论之间紧密相联的因果关系,不注意条件的掌握,常会导致错误的结果,甚至是正确的结果、错误的过程。如学习中看不出何时需讨论、如何讨论。原因之一在于数学知识的前提条件模糊(如指对数函数的单调性,不等式的性质,等比数列求和公式,最值定理等知识)

忽略及时复习和强化理解:“温故而知新”这一浅显的道理谁都懂,但在学习过程中持之以恒地应用者不多。由于在老师的精心诱导教诲下,每节课的内容好像都“懂”,因此也就舍不得花八至十分钟的“宝贵”时间回顾当天的旧知。殊不知课上的“懂”是师生共同参与努力的结果,要想自己“会”,必须有一个“内化”的过程,而这个过程必须从课内延伸到课外。切记从“懂”到“会”必须有一个自身“领悟”的过程,这是谁也无法取缔的过程。

忽视解题过程的规范化,只追求答案:数学解题的过程是一个化归与转化的过程,当然离不开规范严谨的推理与判断。解题中跳跃太大、乱写字母、徒手作图,如此态度对待稍难的问题,是难以产生正确答案的。我们说解题过程的规范不只是规范书写,更主要是规范“思考方法”,同学们应该学会不断调控自己的思维过程,力争使解题尽善尽美。

解决问题过程中的四种不良心态

缺乏对已学习过的典型题目及典型方法的积累:部分同学做了大量的习题,但收效甚微,效果不佳。究其原因,是迫于压力为完成任务而被动做题,缺乏必要的 总结 和积累。在积累的基础上增强“题性”、“题感”,逐步形成“模块”,不断吸取其中的智育营养,方可感悟出隐藏于模式中的数学思想方法。这就是从量的积累到质的变化的过程,只有靠“积累—消化—吸收”才能“升华”。

4数学分析方法

整理每章知识点:把书上每章、每节的内容先过一遍,然后根据自己的实际情况,标记下不懂的地方、老师上课强调过的重点和自己觉得重要的内容(包括一些重要的不等式、缩放技巧等等),整理成笔记。

整理课本习题:整理完知识点过后,就得回归到题上,每节的课后题以及每章最后的总复习题,花时间逐个做一遍(这个也看所考学校的难度和对自己的要求),同样,把不会的和容易出错的标记、并整理成笔记。

整理 考研 真题:整理知识点和课本题目都是为了考上报考院校的研究生,所以第三部分就是整理你想要考学校的这一章节的历年真题,这个至关重要,因为一切都是为了最后的考卷做准备。

当系统的复习各个章节后,把所有笔记整合到一起,接下来就是查漏补缺,不懂的可以向老师或同学请教,两本教材时刻得拿出来翻阅。



数学速算方法及分析方法相关 文章 :

★ 数学速算技巧数学解题技巧

★ 数学二年级教学方法与措施与学重点简便运算归类方法

★ 小学数学快速提高计算能力学习技巧

★ 公考资料分析十大速算技巧

★ 小学六年级学生提高数学成绩的八个方法

★ 小学二年级数学学习方法指导

★ 做小学数学作业实用的简便运算方法

★ 小升初数学8种简便计算方法归类与复习方法

★ 高中数学简化运算技巧

阅读全文

与一位数乘以多个九的速算法相关的资料

热点内容
涡旋式压缩机无油 浏览:727
企业网搭建及应用pdf 浏览:744
symanteclinux 浏览:876
程序员朋友化妆改造 浏览:493
应用被加密但不知道密码 浏览:586
百度云黑马android 浏览:773
java格式化long 浏览:893
汽车如何加密文档 浏览:625
公司理财第9版pdf 浏览:524
微信个人表情在文件夹 浏览:833
加密狗密码监控 浏览:437
重载发生在编译时 浏览:417
怎么用app买东西 浏览:532
ug后处理多坐标宏命令 浏览:34
性教育pdf 浏览:863
解释方式编译方式名词解释 浏览:851
wrf编译出现module 浏览:616
插入算法最基础代码 浏览:27
powermill和ug编程 浏览:843
vf命令按钮 浏览:283