导航:首页 > 源码编译 > 62的源码补码

62的源码补码

发布时间:2022-09-25 11:05:32

Ⅰ 负数的补码是它反码加1,什么意思就—62反=(11000001)2 -62补=(11000010)2解释下~

-62的原码是10111110,其反码就是除去符号位不变(就是第一位,1表示的是负数,0表示的正数,如+62的原码是00111110),之后的每一位取反,为11000001;进而在反码的基础上加1,为11000010。注意是二进制,满2进一位。
对于0的反码补码和原码稍微特殊些,有+0和-0之分,详细的可以网络下。

Ⅱ 原码、反码、补码

请我给你的详解:原码、补码和反码

(1)原码表示法

原码表示法是机器数的一种简单的表示法。其符号位用0表示正号,用:表示负号,数值一般用二进制形式表示。设有一数为x,则原码表示可记作〔x〕原。

例如,X1= +1010110

X2= 一1001010

其原码记作:

〔X1〕原=[+1010110]原=01010110

〔X2〕原=[-1001010]原=11001010

原码表示数的范围与二进制位数有关。当用8位二进制来表示小数原码时,其表示范围:

最大值为0.1111111,其真值约为(0.99)10

最小值为1.1111111,其真值约为(一0.99)10

当用8位二进制来表示整数原码时,其表示范围:

最大值为01111111,其真值为(127)10

最小值为11111111,其真值为(-127)10

在原码表示法中,对0有两种表示形式:

〔+0〕原=00000000

[-0] 原=10000000

(2)补码表示法

机器数的补码可由原码得到。如果机器数是正数,则该机器数的补码与原码一样;如果机器数是负数,则该机器数的补码是对它的原码(除符号位外)各位取反,并在未位加1而得到的。设有一数X,则X的补码表示记作〔X〕补。

例如,[X1]=+1010110

[X2]= 一1001010

[X1]原=01010110

[X1]补=01010110

即 [X1]原=[X1]补=01010110

[X2] 原= 11001010

[X2] 补=10110101+1=10110110

补码表示数的范围与二进制位数有关。当采用8位二进制表示时,小数补码的表示范围:

最大为0.1111111,其真值为(0.99)10

最小为1.0000000,其真值为(一1)10

采用8位二进制表示时,整数补码的表示范围:

最大为01111111,其真值为(127)10

最小为10000000,其真值为(一128)10

在补码表示法中,0只有一种表示形式:

[+0]补=00000000

[+0]补=11111111+1=00000000(由于受设备字长的限制,最后的进位丢失)

所以有[+0]补=[+0]补=00000000

(3)反码表示法

机器数的反码可由原码得到。如果机器数是正数,则该机器数的反码与原码一样;如果机器数是负数,则该机器数的反码是对它的原码(符号位除外)各位取反而得到的。设有一数X,则X的反码表示记作〔X〕反。

例如:X1= +1010110

X2= 一1001010

〔X1〕原=01010110

[X1]反=〔X1〕原=01010110

[X2]原=11001010

[X2]反=10110101

反码通常作为求补过程的中间形式,即在一个负数的反码的未位上加1,就得到了该负数的补码。

例1. 已知[X]原=10011010,求[X]补。

分析如下:

由[X]原求[X]补的原则是:若机器数为正数,则[X]原=[X]补;若机器数为负数,则该机器数的补码可对它的原码(符号位除外)所有位求反,再在未位加1而得到。现给定的机器数为负数,故有[X]补=[X]原十1,即

[X]原=10011010

[X]反=11100101

十) 1

[X]补=11100110

例2. 已知[X]补=11100110,求〔X〕原。

分析如下:

对于机器数为正数,则〔X〕原=〔X〕补

对于机器数为负数,则有〔X〕原=〔〔X〕补〕补

现给定的为负数,故有:

〔X〕补=11100110

〔〔X〕补〕反=10011001

十) 1

〔〔X〕补〕补=10011010=〔X〕原

或者说:

数在计算机中是以二进制形式表示的。
数分为有符号数和无符号数。
原码、反码、补码都是有符号定点数的表示方法。
一个有符号定点数的最高位为符号位,0是正,1是副。

以下都以8位整数为例,

原码就是这个数本身的二进制形式。
例如
0000001 就是+1
1000001 就是-1

正数的反码和补码都是和原码相同。

负数的反码是将其原码除符号位之外的各位求反
[-3]反=[10000011]反=11111100
负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。
[-3]补=[10000011]补=11111101
一个数和它的补码是可逆的。

为什么要设立补码呢?

第一是为了能让计算机执行减法:
[a-b]补=a补+(-b)补

第二个原因是为了统一正0和负0
正零:00000000
负零:10000000
这两个数其实都是0,但他们的原码却有不同的表示。
但是他们的补码是一样的,都是00000000
特别注意,如果+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!)
[10000000]补
=[10000000]反+1
=11111111+1
=(1)00000000
=00000000(最高位溢出了,符号位变成了0)

有人会问
10000000这个补码表示的哪个数的补码呢?
其实这是一个规定,这个数表示的是-128
所以n位补码能表示的范围是
-2^(n-1)到2^(n-1)-1
比n位原码能表示的数多一个

又例:
1011
原码:01011
反码:01011 //正数时,反码=原码
补码:01011 //正数时,补码=原码

-1011
原码:11011
反码:10100 //负数时,反码为原码取反
补码:10101 //负数时,补码为原码取反+1

0.1101
原码:0.1101
反码:0.1101 //正数时,反码=原码
补码:0.1101 //正数时,补码=原码

-0.1101
原码:1.1101
反码:1.0010 //负数时,反码为原码取反
补码:1.0011 //负数时,补码为原码取反+1

在计算机内,定点数有3种表示法:原码、反码和补码

所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。

反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。

补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。

假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为:
00000000 00000000 00000000 00000101
5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。
现在想知道,-5在计算机中如何表示?
在计算机中,负数以其正值的补码形式表达。
什么叫补码呢?这得从原码,反码说起。

原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。
比如 00000000 00000000 00000000 00000101 是 5的 原码。
反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。
取反操作指:原为1,得0;原为0,得1。(1变0; 0变1)
比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。
称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。
反码是相互的,所以也可称:
11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。
补码:反码加1称为补码。
也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。
比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。
那么,补码为:
11111111 11111111 11111111 11111010 1 = 11111111 11111111 11111111 11111011
所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。转换为十六进制:0xFFFFFFFB。

再举一例,我们来看整数-1在计算机中如何表示。
假设这也是一个int类型,那么:
1、先取1的原码:00000000 00000000 00000000 00000001
2、得反码: 11111111 11111111 11111111 11111110
3、得补码: 11111111 11111111 11111111 11111111

正数的原码,补码,反码都相同,都等于它本身
负数的补码是:符号位为1,其余各位求反,末位加1
反码是:符号位为1,其余各位求反,但末位不加1
也就是说,反码末位加上1就是补码

1100110011 原
1011001100 反 除符号位,按位取反
1011001101 补 除符号位,按位取反再加1

正数的原反补是一样的
在计算机中,数据是以补码的形式存储的:
在n位的机器数中,最高位为符号位,该位为零表示为正,为1表示为负;
其余n-1位为数值位,各位的值可为0或1。

当真值为正时:原码、反码、补码数值位完全相同;
当真值为负时: 原码的数值位保持原样,
反码的数值位是原码数值位的各位取反,
补码则是反码的最低位加一。
注意符号位不变。
如:若机器数是16位:
十进制数 17 的原码、反码与补码均为: 0000000000010001
十进制数-17 的原码、反码与补码分别为:1000000000010001、1111111111101110、1111111111101111

Ⅲ 求 62的八位原码的步骤

写出二进制每位上基数,个位是1,高位是低位乘以2,写8位为止
128,64,32,16,8,4,2,1 用这组数从高到低将62凑出来,用到的下面写1,没用到的写0
__0,_0,_1,_1,1,1,1,0
62=32+30=32+16+14=32+16+8+4+2
所以62D=00111110B

Ⅳ 真值为-62的补码是什么

负数的补码等于 对应正数的求补运算 ,假设你这个 -62 是十进制
62D 0011 1110B 取反 1100 0001 +1得到 1100 0010
1100 0010 就是 -62的补码了

Ⅳ 写出下列各数的原码、补码和反码表示

求原码、反码和补码,并不难,首先要弄清楚的是你需要多少空间来存储这些数据。使用1字节,还是2字节。
还有就是为什么要学补码。
首先来说明为什么学补码?原因很简单,就是为了不在计算机中使用减法。或者说通过补码的表示,将减法变成加相反数的运算。
所以,这就说明了为什么说正数的反码、补码和原码相同,而偏偏要求负数的反码和补码。
下面求[0.1011]
的原码、反码及补码。
假若使用1字节,那么[0.1011]的小数位1011,不足7位,需要补齐,为1011000,最高位为符号位,所以
原码01011000
反码01011000
补码01011000
[-10110]不足7位,补齐为[-0010110],最高位为符号位,负数为1,所以
原码:10010110
反码:11101001
符号位不动,其他位取反
补码:11101010
反码加1

Ⅵ 十进制的原码、补码

十进制-67的原码是01000011、反码是10111100和补码是10111101。

转换规则:

1、负整数的原码为二进制前面加符号位;

-67=1000011(二进制)=11000011(原码)

2、负整数的反码=原码各位取反(除了符号位外);

11000011(原码)=10111100(反码)

3、负整数的补码=负整数的反码+00000001;

10111100(反码)=10111101(补码)

(6)62的源码补码扩展阅读:

已知一个数的补码,求原码的操作其实就是对该补码再求补码:

⑴如果补码的符号位为“0”,表示是一个正数,其原码就是补码。

⑵如果补码的符号位为“1”,表示是一个负数,那么求给定的这个补码的补码就是要求的原码。

例:已知一个补码为11111001,则原码是10000111(-7)。

因为符号位为“1”,表示是一个负数,所以该位不变,仍为“1”。

其余七位1111001取反后为0000110;再加1,所以是10000111。

Ⅶ 字长为8位时,求(-62)10的原码,反码和补码

(-62)10的原码:10111110

反码:11000001

补码:11000010

原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示:+0和-0),其余位表示数值的大小。

(7)62的源码补码扩展阅读

原码是有符号数的最简单的编码方式,便于输入输出,但作为代码加减运算时较为复杂。一个字长为n的机器数能表示不同的数字的个数是固定的2^n个,n=8时2^n=256;用来表示有符号数,数的范围就是 -2^(n-1)-1 ~ 2^(n-1)-1,n=8时,这个范围就是 -127 ~ +127。

但是在不需要考虑数的正负时,就不需要用一位来表示符号位,n位机器数全部用来表示是数值,这时表示数的范围就是0~2^n-1,n=8时这个范围就是0~255.没有符号位的数,称为无符号数。

Ⅷ 什么是格雷码和补码 62

格雷码规则是使相邻的二个数码之间仅有一个二进制位不同。

十进制数 01,2,3,4,5,6,7,8,9 对应的格雷码依次是:
0000,0001,0011,0010,0110,0111,0101,0100,1100,1101
---------------------------
补码规则:正数的补码与其原码相同;负数的补码是在其反码的末位加1。(原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小)。例如字长8位, [+62]补码=[+62]原码=01100010

阅读全文

与62的源码补码相关的资料

热点内容
苹果解压专家账号 浏览:840
度晓晓app为什么关闲 浏览:226
net文件是伪编译码吗 浏览:147
伴随矩阵的matlab编程 浏览:61
单片机和h桥是什么意思 浏览:312
51单片机光控设计论文 浏览:650
涡旋式压缩机无油 浏览:729
企业网搭建及应用pdf 浏览:744
symanteclinux 浏览:878
程序员朋友化妆改造 浏览:493
应用被加密但不知道密码 浏览:586
百度云黑马android 浏览:773
java格式化long 浏览:893
汽车如何加密文档 浏览:625
公司理财第9版pdf 浏览:524
微信个人表情在文件夹 浏览:833
加密狗密码监控 浏览:437
重载发生在编译时 浏览:417
怎么用app买东西 浏览:532
ug后处理多坐标宏命令 浏览:34