导航:首页 > 源码编译 > 网络过滤算法

网络过滤算法

发布时间:2022-09-26 22:38:23

Ⅰ 网络加密算法是什么

就是网络在传输数字信号得时候0101代码之间的运算得出某个关键值就成为了网络的安全码。

Ⅱ 深度学习主要是学习哪些算法

深度学习(也称为深度结构化学习或分层学习)是基于人工神经网络的更广泛的机器学习方法族的一部分。学习可以是有监督的、半监督的或无监督的。
深度学习架构,例如深度神经网络、深度信念网络、循环神经网络和卷积神经网络,已经被应用于包括计算机视觉、语音识别、自然语言处理、音频识别、社交网络过滤、机器翻译、生物信息学、药物设计、医学图像分析、材料检查和棋盘游戏程序在内的领域,在这些领域中,它们的成果可与人类专家媲美,并且在某些情况下胜过人类专家。
神经网络受到生物系统中信息处理和分布式通信节点的启发。人工神经网络与生物大脑有各种不同。具体而言,神经网络往往是静态和象征性的,而大多数生物的大脑是动态(可塑)和模拟的。
定义
深度学习是一类机器学习算法: 使用多个层逐步从原始输入中逐步提取更高级别的特征。例如,在图像处理中,较低层可以识别边缘,而较高层可以识别对人类有意义的部分,例如数字/字母或面部。

Ⅲ 卷机神经网络中的对输入图像的过滤器是什么这里的过滤器怎么理解

ConvOp是Theano中对卷积层的一个实现。它重复了Scipy中scipy.signal.convolve2d的函数功能,总的来讲,ConvOp包含了两个输入(参数):
(1)对应输入图像的mini-batch的4D张量。每个张量的大小为:[mini-batch的大小,输入的特征图的数量,图像的高度,图像的宽度]。
(2)对应于权值W的4D张量。每个张量的大小为:[m层的特征图数量,m-1层的特征图数量,滤波器的高度,滤波器的宽度]。

如果输入数据是小块图像,比如8×8,那这种方法是可行的,但是如果输入图像是96×96,假设隐含层神经元100个,那么就有一百万个(96×96×100)参数需要学习,向前或向后传播计算时计算时间也会慢很多。
解决这类问题的一种简单方法是对隐含单元和输入单元间的连接加以限制:每个隐含单元仅仅只能连接输入单元的一部分。例如,每个隐含单元仅仅连接输入图像的一小片相邻区域。这也是卷积神经网络的基本思想,它是一种特殊的MLP,这个概念是从生物里面演化过来的. 根据Hubel和Wiesel早期在猫的视觉皮层上的工作, 我们知道在视觉皮层上面存在一种细胞的复杂分布,这些细胞对一些局部输入是很敏感的,它们被成为感知野, 并通过这种特殊的组合方式来覆盖整个视野. 这些过滤器对输入空间是局部敏感的,因此能够更好得发觉自然图像中不同物体的空间相关性。
对一副图片的局部特性的提取在整个视野上是可重复的,比如我们在96×96图像中选取8×8作为样本,在样本上学习到的特征应用到整幅图像上,即利用8×8中学习到的特征在96×96图像上做卷积,从而获得不同的特征值,所需要学习的参数也从96×96降到了8×8,这样成为一个特征图。我们需要从一副图像上学习的特征肯定不止一种,所以需要建立n个特征图来学习不同的特征。即使是这样,算法的复杂度也比之前全连接的方法大大的降低了。

Ⅳ 网络个性化服务 的概念是什么

浅谈网络个性化信息服务

陈启榆

摘要:本文对网络个性化服务的定义、产生背景及实现网络个性化服务所需要的一些必
要的技术支持作了论述,并结合

目前国内外网络个性化服务的现状对其未来的发展走势作出了分析。

关键词:网络 个性化信息服务 信息服务 internet

一、个性化信息服务的定义及其产生背景

1、定义

所谓个性化信息服务是指能够满足用户的个体信息需求的一种服务,即用户可以按照自
己的目的和需求,在某一特定的网上功能和服务方式中,自己设定网上信息的来源方式
、表现形式、特定网上功能及其他的网上服务方式等或通过对用户个性、使用习惯的分
析而主动地向用户提供其可能需要的信息服务。

2、产生背景

任何新事物的出现都不是偶然的,个性化信息服务的产生也有其特定的背景,大致说来
主要有以下两点:

1) 个人信息需求的有限性和互异性要求网络信息服务实现个性化

“internet是一个虚拟网络”,没有任何人对因特网上信息的有效性和有序性负责,随
着因特网上信息总量的爆炸性增长,在浩如烟海的混乱的信息世界中,人们逐渐迷失了
方向,面对这样的现实,我们应该怎么办?我们应该提供怎样的网络信息服务才能满足
用户的信息需求,才能让每一个用户都能满意呢?这一切,只要我们能够发现并利用一
个事实就有了希望,那就是:尽管网上信息总量很大,但每一个信息用户,每一个人只
是对其中的一小部分感兴趣,他们之间有着不同的兴趣爱好,不同的信息需求。尽管设
计与实现能够满足用户各自不同需求的系统具有一定的难度,但只有很好地利用这一点
,网络信息服务才会取得显着的进步。在弘扬个性,倡导创造性的现代信息社会,个性
化服务也应该是网络信息服务业发展的方向。

2)现有搜索引擎的缺陷

大家知道,网络信息服务是以网络信息查询为基础的,网络信息查询的特异性在于网络
环境下引起的资源分布化和数字技术带来的信息资源多媒体化。大部分用户上网通常是
利用搜索引擎来查找信息。在茫茫的信息海洋中,搜索引擎无疑是目前获取和利用因特
网上信息的最佳途径。但是,搜索引擎是否能让用户满意、是否能彻底解决信息过量的
问题呢?我们经常会有这样的经历:通过搜索引擎查找了一整天,却只查出一堆无关的
信息,有用的信息只是凤毛麟角,甚至毫无收获。search engine(如:yahoo,excite,
sohoo等)技术的不足,使得网络用户的信息需求与现有的信息查询技术之间的矛盾日益
尖锐。首先,在使用internet search engine时,如yahoo!,只要使用的关键词相同,
所得到的结果就相同,它并不考虑用户的信息偏好和用户的不同,对专家和初学者一视
同仁,同时返回的结果成千上万,良莠不齐,使得用户在寻找自己喜欢的信息时有如大
海捞针。用户需要个性化服务。其次,网络信息是动态变化的,用户时常关心这种变化
,要获得变化的信息,用户只能不断地在网络上查询同样的内容,这必然要花费用户大
量的时间。

二、实现个性化信息服务所需要的技术支持

1、智能代理技术

个性化信息服务的实现很大程度上取决于信息搜索的智能化程度。也即智能代理技术的
发展程度。Agent指人工智能领域发展起来的一个概念,它是指具有感知能力,问题求解
能力和与外界进行通讯能力的一个实体。作为具有自主性的一种抽象实体,它能作用于
自身和环境,并能对环境做出反应。从外部特征看,Agent具有独立性,自主性交互性。
智能Agent更具有代理性和主动性。它能代表用户工作,遵循承诺采取行动,引导,代替
用户访问资源,成为用户通达资源的中介。

提供基于Agent的个性化主动信息服务需要解决三方面的问题:获得用户的信息需求,搜
集网络信息和信息过滤算法。我们可以以用户的Bookmark作为获得用户信息需求和接受
用户信息反馈的载体,使用户可以方便地表达自己的信息需求和进行信息反馈,通过用
户信息需求的表达和信息反馈形成并训练用户的Agent,Agent根据其内部状态,通过第
一代搜索引擎搜集网络信息,并进行信息过滤。该技术解决了第一代搜索引擎的不足:
用户的Agent是根据用户的偏好和反馈训练出来的,从而实现个性化服务。Agent自主运
行,及时获取用户喜欢的最新信息,从而实现了主动信息服务。Agent之间进行交互和合
作,为用户找到志同道合者,帮助用户之间建立联系,如告诉对方的e-mail地址,同时
也与机器进行信息过滤形成互补。

2、个性化服务器和客户端智能浏览器的开发

个性化服务器和客户端智能浏览器是指能够按照用户的兴趣(如体育、电脑、影视等)
来过滤和筛选信息的服务器和浏览器。它克服了关键词检索浏览中,由于一词多义等无
法避免的因素造成信息反馈不准确的缺陷,从而改善了因为互联网信息爆炸带来的信息
获取困难的问题。其中服务器提供的个性化信息服务,可以过滤掉用户不感兴趣的内容
,从而提高检索和推送的准确率。而智能浏览器应能够识别用户的兴趣、进行智能搜索
、推送和用户查询等个性化服务。

三、个性化信息服务的现状及其未来发展趋势

1、现状

早期的个性化web信息服务主要由新闻剪裁,股票报价和目录推荐等内容组成,这些内容
都是通过浏览器的cookie文件和一些信息服务商提供的智能后端工作实现的,目前比较
流行的个性化信息服务主要是网站为用户建造创立和管理自己的信息或兴趣群组。

个性化信息服务的思想在国外网站设计与发展中已经盛行,例如,Yahoo网站提供的My
Yahoo!(http://my.yahoo.com)功能,让访问者可以在所提供的多个新闻来源中,按
照自己的兴趣和要求来设定新闻实现方式和选择新闻的来源;选择自己常用的搜索引擎
;查看自己的免费Email邮箱等。在这里,还可以对这个页面的风格作出某些相关的设定
,在一系列的选择完成后,产生的页面就是你自己在Yahoo站点中的起始页面,在下一次
再来到My Yahoo!连接时,这个被设定好的页面就显示出来。提供这项服务的其他国外
站点还有My Excite、My DejaNews等等。

国内也有少数几个站点提供了个性化的信息服务,如中文在线服务商ChinaByte 在搜索
客(http://my.cseek.com)中开通了名为“我的搜索客”的个性化服务,这是国内首家
推出个性化信息服务的网站;网易也开通了个性化的“我的网易”(http://my.163.com)
。图1来自“我的搜索客”网站提供的定制个性化服务的页面。

Ⅳ 如何对网络信息进行过滤和分析

通过对网络信息内容进行分析并对信息进行过滤,能够保证信息的安全性。在关键字过滤和IP过滤基础上,采用双向最大匹配和基于内容分析的K-最邻近文本分类算法相结合进行内容过滤,以达到信息系统过滤信息的质量和速度的效果。

Ⅵ 推荐算法有哪些

推荐算法大致可以分为三类:基于内容的推荐算法、协同过滤推荐算法和基于知识的推荐算法。 基于内容的推荐算法,原理是用户喜欢和自己关注过的Item在内容上类似的Item,比如你看了哈利波特I,基于内容的推荐算法发现哈利波特II-VI,与你以前观看的在内容上面(共有很多关键词)有很大关联性,就把后者推荐给你,这种方法可以避免Item的冷启动问题(冷启动:如果一个Item从没有被关注过,其他推荐算法则很少会去推荐,但是基于内容的推荐算法可以分析Item之间的关系,实现推荐),弊端在于推荐的Item可能会重复,典型的就是新闻推荐,如果你看了一则关于MH370的新闻,很可能推荐的新闻和你浏览过的,内容一致;另外一个弊端则是对于一些多媒体的推荐(比如音乐、电影、图片等)由于很难提内容特征,则很难进行推荐,一种解决方式则是人工给这些Item打标签。 协同过滤算法,原理是用户喜欢那些具有相似兴趣的用户喜欢过的商品,比如你的朋友喜欢电影哈利波特I,那么就会推荐给你,这是最简单的基于用户的协同过滤算法(user-based collaboratIve filtering),还有一种是基于Item的协同过滤算法(item-based collaborative filtering),这两种方法都是将用户的所有数据读入到内存中进行运算的,因此成为Memory-based Collaborative Filtering,另一种则是Model-based collaborative filtering,包括Aspect Model,pLSA,LDA,聚类,SVD,Matrix Factorization等,这种方法训练过程比较长,但是训练完成后,推荐过程比较快。 最后一种方法是基于知识的推荐算法,也有人将这种方法归为基于内容的推荐,这种方法比较典型的是构建领域本体,或者是建立一定的规则,进行推荐。 混合推荐算法,则会融合以上方法,以加权或者串联、并联等方式尽心融合。 当然,推荐系统还包括很多方法,其实机器学习或者数据挖掘里面的方法,很多都可以应用在推荐系统中,比如说LR、GBDT、RF(这三种方法在一些电商推荐里面经常用到),社交网络里面的图结构等,都可以说是推荐方法。

Ⅶ 推荐算法简介

写在最前面:本文内容主要来自于书籍《推荐系统实践》和《推荐系统与深度学习》。

推荐系统是目前互联网世界最常见的智能产品形式。从电子商务、音乐视频网站,到作为互联网经济支柱的在线广告和新颖的在线应用推荐,到处都有推荐系统的身影。推荐算法是推荐系统的核心,其本质是通过一定的方式将用户和物品联系起来,而不同的推荐系统利用了不同的方式。

推荐系统的主要功能是以个性化的方式帮助用户从极大的搜索空间中快速找到感兴趣的对象。因此,目前所用的推荐系统多为个性化推荐系统。个性化推荐的成功应用需要两个条件:

在推荐系统的众多算法中,基于协同的推荐和基于内容的推荐在实践中得到了最广泛的应用。本文也将从这两种算法开始,结合时间、地点上下文环境以及社交环境,对常见的推荐算法做一个简单的介绍。

基于内容的算法的本质是对物品内容进行分析,从中提取特征,然后基于用户对何种特征感兴趣来推荐含有用户感兴趣特征的物品。因此,基于内容的推荐算法有两个最基本的要求:

下面我们以一个简单的电影推荐来介绍基于内容的推荐算法。

现在有两个用户A、B和他们看过的电影以及打分情况如下:

其中问好(?)表示用户未看过。用户A对《银河护卫队 》《变形金刚》《星际迷航》三部科幻电影都有评分,平均分为 4 .7 分 ( (5+4+5 ) / 3=4.7 );对《三生三世》《美人鱼》《北京遇上西雅图》三部爱情电影评分平均分为 2.3 分 ( ( 3十2+2 ) /3=2.3 )。现在需要给A推荐电影,很明显A更倾向于科幻电影,因此推荐系统会给A推荐独立日。而对于用户B,通过简单的计算我们可以知道更喜欢爱情电影,因此给其推荐《三生三世》。当然,在实际推荐系统中,预测打分比这更加复杂些,但是其原理是一样的。

现在,我们可以将基于内容的推荐归纳为以下四个步骤:

通过上面四步就能快速构建一个简单的推荐系统。基于内容的推荐系统通常简单有效,可解释性好,没有物品冷启动问题。但他也有两个明显的缺点:

最后,顺便提一下特征提取方法:对于某些特征较为明确的物品,一般可以直接对其打标签,如电影类别。而对于文本类别的特征,则主要是其主题情感等,则些可以通过tf-idf或LDA等方法得到。

基于协同的算法在很多地方也叫基于邻域的算法,主要可分为两种:基于用户的协同算法和基于物品的协同算法。

啤酒和尿布的故事在数据挖掘领域十分有名,该故事讲述了美国沃尔玛超市统计发现啤酒和尿布一起被购买的次数非常多,因此将啤酒和尿布摆在了一起,最后啤酒和尿布的销量双双增加了。这便是一个典型的物品协同过滤的例子。

基于物品的协同过滤指基于物品的行为相似度(如啤酒尿布被同时购买)来进行物品推荐。该算法认为,物品A和物品B具有很大相似度是因为喜欢物品A的用户大都也喜欢物品B。

基于物品的协同过滤算法主要分为两步:

基于物品的协同过滤算法中计算物品相似度的方法有以下几种:
(1)基于共同喜欢物品的用户列表计算。

此外,John S. Breese再其论文中还提及了IUF(Inverse User Frequence,逆用户活跃度)的参数,其认为活跃用户对物品相似度的贡献应该小于不活跃的用户,应该增加IUF参数来修正物品相似度的公式:

上面的公式只是对活跃用户做了一种软性的惩罚, 但对于很多过于活跃的用户, 比如某位买了当当网80%图书的用户, 为了避免相似度矩阵过于稠密, 我们在实际计算中一般直接忽略他的兴趣列表, 而不将其纳入到相似度计算的数据集中。

(2)基于余弦相似度计算。

(3)热门物品的惩罚。
从上面(1)的相似度计算公式中,我们可以发现当物品 i 被更多人购买时,分子中的 N(i) ∩ N(j) 和分母中的 N(i) 都会增长。对于热门物品,分子 N(i) ∩ N(j) 的增长速度往往高于 N(i),这就会使得物品 i 和很多其他的物品相似度都偏高,这就是 ItemCF 中的物品热门问题。推荐结果过于热门,会使得个性化感知下降。以歌曲相似度为例,大部分用户都会收藏《小苹果》这些热门歌曲,从而导致《小苹果》出现在很多的相似歌曲中。为了解决这个问题,我们对于物品 i 进行惩罚,例如下式, 当α∈(0, 0.5) 时,N(i) 越小,惩罚得越厉害,从而使热门物品相关性分数下降( 博主注:这部分未充分理解 ):

此外,Kary pis在研究中发现如果将ItemCF的相似度矩阵按最大值归一化, 可以提高推荐的准确率。 其研究表明, 如果已经得到了物品相似度矩阵w, 那么可以用如下公式得到归一化之后的相似度矩阵w':

归一化的好处不仅仅在于增加推荐的准确度,它还可以提高推荐的覆盖率和多样性。一般来说,物品总是属于很多不同的类,每一类中的物品联系比较紧密。假设物品分为两类——A和B, A类物品之间的相似度为0.5, B类物品之间的相似度为0.6, 而A类物品和B类物品之间的相似度是0.2。 在这种情况下, 如果一个用户喜欢了5个A类物品和5个B类物品, 用ItemCF给他进行推荐, 推荐的就都是B类物品, 因为B类物品之间的相似度大。 但如果归一化之后, A类物品之间的相似度变成了1, B类物品之间的相似度也是1, 那么这种情况下, 用户如果喜欢5个A类物品和5个B类物品, 那么他的推荐列表中A类物品和B类物品的数目也应该是大致相等的。 从这个例子可以看出, 相似度的归一化可以提高推荐的多样性。

那么,对于两个不同的类,什么样的类其类内物品之间的相似度高,什么样的类其类内物品相似度低呢?一般来说,热门的类其类内物品相似度一般比较大。如果不进行归一化,就会推荐比较热门的类里面的物品,而这些物品也是比较热门的。因此,推荐的覆盖率就比较低。相反,如果进行相似度的归一化,则可以提高推荐系统的覆盖率。

最后,利用物品相似度矩阵和用户打过分的物品记录就可以对一个用户进行推荐评分:

基于用户的协同算法与基于物品的协同算法原理类似,只不过基于物品的协同是用户U购买了A物品,会计算经常有哪些物品与A一起购买(也即相似度),然后推荐给用户U这些与A相似的物品。而基于用户的协同则是先计算用户的相似性(通过计算这些用户购买过的相同的物品),然后将这些相似用户购买过的物品推荐给用户U。

基于用户的协同过滤算法主要包括两个步骤:

步骤(1)的关键是计算用户的兴趣相似度,主要是利用用户的行为相似度计算用户相似度。给定用户 u 和 v,N(u) 表示用户u曾经有过正反馈(譬如购买)的物品集合,N(v) 表示用户 v 曾经有过正反馈的物品集合。那么我们可以通过如下的 Jaccard 公式简单的计算 u 和 v 的相似度:

或通过余弦相似度:

得到用户之间的相似度之后,UserCF算法会给用户推荐和他兴趣最相似的K个用户喜欢的物品。如下的公式度量了UserCF算法中用户 u 对物品 i 的感兴趣程度:

首先回顾一下UserCF算法和ItemCF算法的推荐原理:UserCF给用户推荐那些和他有共同兴趣爱好的用户喜欢的物品, 而ItemCF给用户推荐那些和他之前喜欢的物品具有类似行为的物品。

(1)从推荐场景考虑
首先从场景来看,如果用户数量远远超过物品数量,如购物网站淘宝,那么可以考虑ItemCF,因为维护一个非常大的用户关系网是不容易的。其次,物品数据一般较为稳定,因此物品相似度矩阵不必频繁更新,维护代价较小。

UserCF的推荐结果着重于反应和用户兴趣相似的小群体的热点,而ItemCF的推荐结果着重于维系用户的历史兴趣。换句话说,UserCF的推荐更社会化,反应了用户所在小型兴趣群体中物品的热门程度,而ItemCF的推荐更加个性化,反应了用户自己的个性传承。因此UserCF更适合新闻、微博或微内容的推荐,而且新闻内容更新频率非常高,想要维护这样一个非常大而且更新频繁的表无疑是非常难的。

在新闻类网站中,用户的兴趣爱好往往比较粗粒度,很少会有用户说只看某个话题的新闻,而且往往某个话题也不是每天都会有新闻。 个性化新闻推荐更强调新闻热点,热门程度和时效性是个性化新闻推荐的重点,个性化是补充,所以 UserCF 给用户推荐和他有相同兴趣爱好的人关注的新闻,这样在保证了热点和时效性的同时,兼顾了个性化。

(2)从系统多样性(也称覆盖率,指一个推荐系统能否给用户提供多种选择)方面来看,ItemCF的多样性要远远好于UserCF,因为UserCF更倾向于推荐热门物品。而ItemCF具有较好的新颖性,能够发现长尾物品。所以大多数情况下,ItemCF在精度上较小于UserCF,但其在覆盖率和新颖性上面却比UserCF要好很多。

在介绍本节基于矩阵分解的隐语义模型之前,让我们先来回顾一下传统的矩阵分解方法SVD在推荐系统的应用吧。

基于SVD矩阵分解在推荐中的应用可分为如下几步:

SVD在计算前会先把评分矩阵 A 缺失值补全,补全之后稀疏矩阵 A 表示成稠密矩阵,然后将分解成 A' = U∑V T 。但是这种方法有两个缺点:(1)补成稠密矩阵后需要耗费巨大的储存空间,对这样巨大的稠密矩阵进行储存是不现实的;(2)SVD的计算复杂度很高,对这样大的稠密矩阵中进行计算式不现实的。因此,隐语义模型就被发明了出来。

更详细的SVD在推荐系统的应用可参考 奇异值分解SVD简介及其在推荐系统中的简单应用 。

隐语义模型(Latent Factor Model)最早在文本挖掘领域被提出,用于找到文本的隐含语义。相关的算法有LSI,pLSA,LDA和Topic Model。本节将对隐语义模型在Top-N推荐中的应用进行详细介绍,并通过实际的数据评测该模型。

隐语义模型的核心思想是通过隐含特征联系用户兴趣和物品。让我们通过一个例子来理解一下这个模型。

现有两个用户,用户A的兴趣涉及侦探小说、科普图书以及一些计算机技术书,而用户B的兴趣比较集中在数学和机器学习方面。那么如何给A和B推荐图书呢?

我们可以对书和物品的兴趣进行分类。对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品。简言之,这个基于兴趣分类的方法大概需要解决3个问题:

对于第一个问题的简单解决方案是找相关专业人员给物品分类。以图书为例,每本书出版时,编辑都会给出一个分类。但是,即使有很系统的分类体系,编辑给出的分类仍然具有以下缺点:(1)编辑的意见不能代表各种用户的意见;(2)编辑很难控制分类的细粒度;(3)编辑很难给一个物品多个分类;(4)编辑很难给一个物品多个分类;(5)编辑很难给出多个维度的分类;(6)编辑很难决定一个物品在某一个类别中的权重。

为了解决上述问题,研究员提出可以从数据出发,自动找到那些分类,然后进行个性化推荐。隐语义模型由于采用基于用户行为统计的自动聚类,较好地解决了上面提出的5个问题。

LFM将矩阵分解成2个而不是3个:

推荐系统中用户和物品的交互数据分为显性反馈和隐性反馈数据。隐式模型中多了一个置信参数,具体涉及到ALS(交替最小二乘法,Alternating Least Squares)中对于隐式反馈模型的处理方式——有的文章称为“加权的正则化矩阵分解”:

一个小细节:在隐性反馈数据集中,只有正样本(正反馈)没有负反馈(负样本),因此如何给用户生成负样本来进行训练是一个重要的问题。Rong Pan在其文章中对此进行了探讨,对比了如下几种方法:

用户行为很容易用二分图表示,因此很多图算法都可以应用到推荐系统中。基于图的模型(graph-based model)是推荐系统中的重要内容。很多研究人员把基于领域的模型也称为基于图的模型,因为可以把基于领域的模型看作基于图的模型的简单形式。

在研究基于图的模型之前,需要将用户行为数据表示成图的形式。本节的数据是由一系列用户物品二元组 (u, i) 组成的,其中 u 表示用户对物品 i 产生过行为。

令 G(V, E) 表示用户物品二分图,其中 V=V U UV I 由用户顶点 V U 和物品节点 V I 组成。对于数据集中每一个二元组 (u, i) ,图中都有一套对应的边 e(v u , v i ),其中 v u ∈V U 是用户对应的顶点,v i ∈V I 是物品i对应的顶点。如下图是一个简单的物品二分图,其中圆形节点代表用户,方形节点代表物品,用户物品的直接连线代表用户对物品产生过行为。比如下图中的用户A对物品a、b、d产生过行为。

度量图中两个顶点之间相关性的方法很多,但一般来说图中顶点的相关性主要取决于下面3个因素:

而相关性高的一对顶点一般具有如下特征:

举个例子,如下图,用户A和物品c、e没有边直连,但A可通过一条长度为3的路径到达c,而Ae之间有两条长度为3的路径。那么A和e的相关性要高于顶点A和c,因而物品e在用户A的推荐列表中应该排在物品c之前,因为Ae之间有两条路径。其中,(A,b,C,e)路径经过的顶点的出度为(3,2,2,2),而 (A,d,D,e) 路径经过了一个出度比较大的顶点D,所以 (A,d,D,e) 对顶点A与e之间相关性的贡献要小于(A,b,C,e)。

基于上面3个主要因素,研究人员设计了很多计算图中顶点相关性的方法,本节将介绍一种基于随机游走的PersonalRank算法。

假设要给用户u进行个性化推荐,可以从用户u对应的节点 v u 开始在用户物品二分图上进行随机游走。游走到任一节点时,首先按照概率α决定是继续游走还是停止这次游走并从 v u 节点重新开始游走。若决定继续游走,则从当前节点指向的节点中按照均匀分布随机选择一个节点作为游走下次经过的节点。这样,经过很多次随机游走后,每个物品被访问到的概率会收敛到一个数。最终的推荐列表中物品的权重就是物品节点的访问概率。

上述算法可以表示成下面的公式:

虽然通过随机游走可以很好地在理论上解释PersonalRank算法,但是该算法在时间复杂度上有明显的缺点。因为在为每个用户进行推荐时,都需要在整个用户物品二分图上进行迭代,知道所有顶点的PR值都收敛。这一过程的时间复杂度非常高,不仅无法在线进行实时推荐,离线计算也是非常耗时的。

有两种方法可以解决上面PersonalRank时间复杂度高的问题:
(1)减少迭代次数,在收敛之前停止迭代。但是这样会影响最终的精度。

(2)从矩阵论出发,重新涉及算法。另M为用户物品二分图的转移概率矩阵,即:

网络社交是当今社会非常重要甚至可以说是必不可少的社交方式,用户在互联网上的时间有相当大的一部分都用在了社交网络上。

当前国外最着名的社交网站是Facebook和Twitter,国内的代表则是微信/QQ和微博。这些社交网站可以分为两类:

需要指出的是,任何一个社交网站都不是单纯的社交图谱或兴趣图谱。如QQ上有些兴趣爱好群可以认识不同的陌生人,而微博中的好友也可以是现实中认识的。

社交网络定义了用户之间的联系,因此可以用图定义社交网络。我们用图 G(V,E,w) 定义一个社交网络,其中V是顶点集合,每个顶点代表一个用户,E是边集合,如果用户va和vb有社交网络关系,那么就有一条边 e(v a , v b ) 连接这两个用户,而 w(v a , v b )定义了边的权重。一般来说,有三种不同的社交网络数据:

和一般购物网站中的用户活跃度分布和物品流行度分布类似,社交网络中用户的入度(in degree,表示有多少人关注)和出度(out degree,表示关注多少人)的分布也是满足长尾分布的。即大部分人关注的人都很少,被关注很多的人也很少。

给定一个社交网络和一份用户行为数据集。其中社交网络定义了用户之间的好友关系,而用户行为数据集定义了不同用户的历史行为和兴趣数据。那么最简单的算法就是给用户推荐好友喜欢的物品集合。即用户u对物品i的兴趣 p ui 可以通过如下公式计算。

用户u和用户v的熟悉程度描述了用户u和用户在现实社会中的熟悉程度。一般来说,用户更加相信自己熟悉的好友的推荐,因此我们需要考虑用户之间的熟悉度。下面介绍3中衡量用户熟悉程度的方法。

(1)对于用户u和用户v,可以使用共同好友比例来计算他们的相似度:

上式中 out(u) 可以理解为用户u关注的用户合集,因此 out(u) ∩ out(v) 定义了用户u、v共同关注的用户集合。

(2)使用被关注的用户数量来计算用户之间的相似度,只要将公式中的 out(u) 修改为 in(u):

in(u) 是指关注用户u的集合。在无向社交网络中,in(u)和out(u)是相同的,而在微博这种有向社交网络中,这两个集合的含义就不痛了。一般来说,本方法适合用来计算微博大V之间的相似度,因为大v往往被关注的人数比较多;而方法(1)适用于计算普通用户之间的相似度,因为普通用户往往关注行为比较丰富。

(3)除此之外,还可以定义第三种有向的相似度:这个相似度的含义是用户u关注的用户中,有多大比例也关注了用户v:

这个相似度有一个缺点,就是在该相似度下所有人都和大v有很大的相似度,这是因为公式中的分母并没有考虑 in(v) 的大小,所以可以把 in(v) 加入到上面公式的分母,来降低大v与其他用户的相似度:

上面介绍了3种计算用户之间相似度(或称熟悉度)的计算方法。除了熟悉程度,还需要考虑用户之间的兴趣相似度。我们和父母很熟悉,但很多时候我们和父母的兴趣确不相似,因此也不会喜欢他们喜欢的物品。因此,在度量用户相似度时,还需要考虑兴趣相似度,而兴趣相似度可以通过和UserCF类似的方法度量,即如果两个用户喜欢的物品集合重合度很高,两个用户的兴趣相似度很高。

最后,我们可以通过加权的形式将两种权重合并起来,便得到了各个好有用户的权重了。

有了权重,我们便可以针对用户u挑选k个最相似的用户,把他们购买过的物品中,u未购买过的物品推荐给用户u即可。打分公式如下:

其中 w' 是合并后的权重,score是用户v对物品的打分。

node2vec的整体思路分为两个步骤:第一个步骤是随机游走(random walk),即通过一定规则随机抽取一些点的序列;第二个步骤是将点的序列输入至word2vec模型从而得到每个点的embedding向量。

随机游走在前面基于图的模型中已经介绍过,其主要分为两步:(1)选择起始节点;(2)选择下一节点。起始节点选择有两种方法:按一定规则抽取一定量的节点或者以图中所有节点作为起始节点。一般来说会选择后一种方法以保证所有节点都会被选取到。

在选择下一节点方法上,最简单的是按边的权重来选择,但在实际应用中需要通过广度优先还是深度优先的方法来控制游走范围。一般来说,深度优先发现能力更强,广度优先更能使社区内(较相似)的节点出现在一个路径里。

斯坦福大学Jure Leskovec教授给出了一种可以控制广度优先或者深度优先的方法。

以上图为例,假设第一步是从t随机游走到v,这时候我们要确定下一步的邻接节点。本例中,作者定义了p和q两个参数变量来调节游走,首先计算其邻居节点与上一节点t的距离d,根据下面的公式得到α:

一般从每个节点开始游走5~10次,步长则根据点的数量N游走根号N步。如此便可通过random walk生成点的序列样本。

得到序列之后,便可以通过word2vec的方式训练得到各个用户的特征向量,通过余弦相似度便可以计算各个用户的相似度了。有了相似度,便可以使用基于用户的推荐算法了。

推荐系统需要根据用户的历史行为和兴趣预测用户未来的行为和兴趣,因此大量的用户行为数据就成为推荐系统的重要组成部分和先决条件。如何在没有大量用户数据的情况下设计个性化推荐系统并且让用户对推荐结果满意从而愿意使用推荐系统,就是冷启动问题。

冷启动问题主要分为三类:

针对用户冷启动,下面给出一些简要的方案:
(1)有效利用账户信息。利用用户注册时提供的年龄、性别等数据做粗粒度的个性化;
(2)利用用户的社交网络账号登录(需要用户授权),导入用户在社交网站上的好友信息,然后给用户推荐其好友喜欢的物品;
(3)要求用户在登录时对一些物品进行反馈,手机用户对这些物品的兴趣信息,然后给用推荐那些和这些物品相似的物品;
(4)提供非个性化推荐。非个性化推荐的最简单例子就是热门排行榜,我们可以给用户推荐热门排行榜,然后等到用户数据收集到一定的时候,在切换为个性化推荐。

对于物品冷启动,可以利用新加入物品的内容信息,将它们推荐给喜欢过和他们相似的物品的用户。

对于系统冷启动,可以引入专家知识,通过一定高效的方式快速建立起物品的相关度表。

在上面介绍了一些推荐系统的基础算法知识,这些算法大都是比较经典且现在还在使用的。但是需要注意的是,在实践中,任何一种推荐算法都不是单独使用的,而是将多种推荐算法结合起来,也就是混合推荐系统,但是在这里并不准备介绍,感兴趣的可以查阅《推荐系统》或《推荐系统与深度学习》等书籍。此外,在推荐中非常重要的点击率模型以及基于矩阵的一些排序算法在这里并没有提及,感兴趣的也可自行学习。

虽然现在用的很多算法都是基于深度学习的,但是这些经典算法能够让我们对推荐系统的发展有一个比较好的理解,同时,更重要的一点——“推陈出新”,只有掌握了这些经典的算法,才能提出或理解现在的一些更好地算法。

Ⅷ 怎样处理电脑屏幕上自动弹出的网页

可以使用360安全卫士来将弹窗拦截。以下是具体的操作方法:

材料/工具:电脑、360安全卫士

1、首先,在桌面上找到“360安全卫士”。

Ⅸ 求Rete算法实现代码

Rete 在拉丁语中是 ”net” ,有网络的意思。 RETE 算法可以分为两部分:规则编译( rule compilation )和运行时执行( runtime execution )。
编译算法描述了规则如何在 Proction Memory 中产生一个有效的辨别网络。用一个非技术性的词来说,一个辨别网络就是用来过滤数据。方法是通过数据在网络中的传播来过滤数据。在顶端节点将会有很多匹配的数据。当我们顺着网络向下走,匹配的数据将会越来越少。在网络的最底部是终端节点( terminal nodes )。在 Dr Forgy 的 1982 年的论文中,他描述了 4 种基本节点: root , 1-input, 2-input and terminal 。下图是 Drools 中的 RETE 节点类型:

Figure 1. Rete Nodes
根节点( RootNode )是所有的对象进入网络的入口。然后,从根节点立即进入到 ObjectTypeNode 。 ObjectTypeNode 的作用是使引擎只做它需要做的事情。例如,我们有两个对象集: Account 和 Order 。如果规则引擎需要对每个对象都进行一个周期的评估,那会浪费很多的时间。为了提高效率,引擎将只让匹配 object type 的对象通过到达节点。通过这种方法,如果一个应用 assert 一个新的 account ,它不会将 Order 对象传递到节点中。很多现代 RETE 实现都有专门的 ObjectTypeNode 。在一些情况下, ObjectTypeNode 被用散列法进一步优化。

Figure 2 . ObjectTypeNodes
ObjectTypeNode 能够传播到 AlphaNodes, LeftInputAdapterNodes 和 BetaNodes 。
1-input 节点通常被称为 AlphaNode 。 AlphaNodes 被用来评估字面条件( literal conditions )。虽然, 1982 年的论文只提到了相等条件(指的字面上相等),很多 RETE 实现支持其他的操作。例如, Account.name = = “Mr Trout” 是一个字面条件。当一条规则对于一种 object type 有多条的字面条件,这些字面条件将被链接在一起。这是说,如果一个应用 assert 一个 account 对象,在它能到达下一个 AlphaNode 之前,它必须先满足第一个字面条件。在 Dr. Forgy 的论文中,他用 IntraElement conditions 来表述。下面的图说明了 Cheese 的 AlphaNode 组合( name = = “cheddar” , strength = = “strong” ):

Figure 3. AlphaNodes
Drools 通过散列法优化了从 ObjectTypeNode 到 AlphaNode 的传播。每次一个 AlphaNode 被加到一个 ObjectTypeNode 的时候,就以字面值( literal value )作为 key ,以 AlphaNode 作为 value 加入 HashMap 。当一个新的实例进入 ObjectTypeNode 的时候,不用传递到每一个 AlphaNode ,它可以直接从 HashMap 中获得正确的 AlphaNode ,避免了不必要的字面检查。
<!--[if !supportEmptyParas]-->

2-input 节点通常被称为 BetaNode 。 Drools 中有两种 BetaNode : JoinNode 和 NotNode 。 BetaNodes 被用来对 2 个对象进行对比。这两个对象可以是同种类型,也可以是不同类型。
我们约定 BetaNodes 的 2 个输入称为左边( left )和右边( right )。一个 BetaNode 的左边输入通常是 a list of objects 。在 Drools 中,这是一个数组。右边输入是 a single object 。两个 NotNode 可以完成‘ exists ’检查。 Drools 通过将索引应用在 BetaNodes 上扩展了 RETE 算法。下图展示了一个 JoinNode 的使用:

Figure 4 . JoinNode

注意到图中的左边输入用到了一个 LeftInputAdapterNode ,这个节点的作用是将一个 single Object 转化为一个单对象数组( single Object Tuple ),传播到 JoinNode 节点。因为我们上面提到过左边输入通常是 a list of objects 。
<!--[if !supportEmptyParas]-->
Terminal nodes 被用来表明一条规则已经匹配了它的所有条件( conditions )。 在这点,我们说这条规则有了一个完全匹配( full match )。在一些情况下,一条带有“或”条件的规则可以有超过一个的 terminal node 。
Drools 通过节点的共享来提高规则引擎的性能。因为很多的规则可能存在部分相同的模式,节点的共享允许我们对内存中的节点数量进行压缩,以提供遍历节点的过程。下面的两个规则就共享了部分节点:

这里我们先不探讨这两条 rule 到的是什么意思,单从一个直观的感觉,这两条 rule 在它们的 LHS 中基本都是一样的,只是最后的 favouriteCheese ,一条规则是等于 $cheddar ,而另一条规则是不等于 $cheddar 。下面是这两条规则的节点图:

Figure 5 . Node Sharing
从图上可以看到,编译后的 RETE 网络中, AlphaNode 是共享的,而 BetaNode 不是共享的。上面说的相等和不相等就体现在 BetaNode 的不同。然后这两条规则有各自的 Terminal Node 。
<!--[if !supportEmptyParas]-->
RETE 算法的第二个部分是运行时( runtime )。当一个应用 assert 一个对象,引擎将数据传递到 root node 。从那里,它进入 ObjectTypeNode 并 沿着网络向下传播。当数据匹配一个节点的条件,节点就将它记录到相应的内存中。这样做的原因有以下几点:主要的原因是可以带来更快的性能。虽然记住完全或 部分匹配的对象需要内存,它提供了速度和可伸缩性的特点。当一条规则的所有条件都满足,这就是完全匹配。而只有部分条件满足,就是部分匹配。(我觉得引擎 在每个节点都有其对应的内存来储存满足该节点条件的对象,这就造成了如果一个对象是完全匹配,那这个对象就会在每个节点的对应内存中都存有其映象。)
2. Leaps 算法:
Proction systems 的 Leaps 算法使用了一种“ lazy ”方法来评估条件( conditions )。一种 Leaps 算法的修改版本的实现,作为 Drools v3 的一部分,尝试结合 Leaps 和 RETE 方法的最好的特点来处理 Working Memory 中的 facts 。
古典的 Leaps 方法将所有的 asserted 的 facts ,按照其被 asserted 在 Working Memory 中的顺序( FIFO ),放在主堆栈中。它一个个的检查 facts ,通过迭代匹配 data type 的 facts 集合来找出每一个相关规则的匹配。当一个匹配的数据被发现时,系统记住此时的迭代位置以备待会的继续迭代,并且激发规则结果( consequence )。当结果( consequence )执行完成以后,系统就会继续处理处于主堆栈顶部的 fact 。如此反复。

rule
when
Cheese( $chedddar : name == " cheddar " )
$person : Person( favouriteCheese != $cheddar )
then
System.out.println( $person.getName() + " does likes cheddar " );
end

rule
when
Cheese( $chedddar : name == " cheddar " )
$person : Person( favouriteCheese == $cheddar )
then
System.out.println( $person.getName() + " likes cheddar " );
end

本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/icefishchwd/archive/2007/01/22/1489668.aspx

阅读全文

与网络过滤算法相关的资料

热点内容
武动干坤同人小说免费阅读 浏览:616
怎么找小度语音app 浏览:159
车险具体折扣算法 浏览:366
时借时花app怎么找不到了 浏览:739
压缩图片500k 浏览:242
程序员笔记本选锐龙r7400u 浏览:353
服务器如何查看cpu配置 浏览:615
北京复盛压缩机 浏览:89
烟台汽车空调压缩机 浏览:389
pythonopencvdct 浏览:26
h3c接口配置命令 浏览:780
安卓手机怎么连接不上苹果耳机 浏览:153
怎么隐藏无线网手机app 浏览:931
美团买电影票到店说系统故障 浏览:101
有床戏的拉拉片 浏览:775
什么同城约会app好 浏览:166
如何下载tis服务器地图 浏览:430
phpxsl扩展 浏览:28
美国电影一个男人带着一个小孩的 浏览:194
日本电影网推荐 浏览:895