A. 秦九韶公式是什么呢
秦九韶公式是一种多项式简化算法。秦九韶算法是一种将一元n次多项式的求值问题转化为n个一次式的算法。其大大简化了计算过程,即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法。
对于一元n次多项式的求值,通常需要经过(n+1)*n/2次乘法,秦九韶算法的先进点就在于它只需要进行n次乘法,从而大大缩短人工简化的运算过程。
秦九韶算法其他情况简介。
秦九韶算法记录在《数书九章》中,他对高次方程的数值解法与一次同余问题的解法进行了系统总结和发展,提出了相当完备的“正负开方术”和“大衍求一术”。这也让秦九韶成为我国古代数学家的杰出代表,他的研究为中国古代数学发展带来了广泛而深远的影响。
秦九韶算法和海伦公式本质上的原理十分相似,因此用秦九韶算法来推导海伦公式对于数学学习者来说其实并不难。
B. 秦九韶面积公式
秦九韶面积公式为S=√[(Ma+Mb+Mc)×(Mb+Mc-Ma)×(Mc+Ma-Mb)×(Ma+Mb-Mc)]/3,其中Ma,Mb,Mc为三角形的中线长。秦九韶算法是中国南宋时期的数学家秦九韶提出的一种多项式简化算法。在西方被称作霍纳算法。
C. 秦九韶算法公式是什么
秦九韶算法公式如下图所示:
秦九韶算法的特点和作用
特点:通过一次式的反复计算,逐步得出高次多项式的值,对于一个n次多项式,只需做n次乘法和n次加法即可。
作用:解决了运算次数的问题,大大减少了乘法运算的次数,提高了运算效率。
数学思想:把高次转化为一次的化归思想方法。算法具有通用的特点,可以解决一类问题。
D. 九章算术和秦九韶算法是什么关系
《九章算术》现存最早的中国古代数学着作之一,是《算经十书》中最重要的一种。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的。
南宋数学家秦九韶将贾宪的增乘开方术推广,以求解任意高次方程的实数根的数值解。秦九韶的《数书九章》详细叙述用秦九韶算法求解二十六个二次到十次方程的的实数根的数值解,其中包含二十个二次方程,一个三次方程,四个四次方程和一个十次方程。其中有些得到精确解;多数得近似解。
应该没什么关系。
E. 秦九韶算法公式是什么
一般地,一元n次多项式的求值需要经过(n+1)*n/2次乘法和n次加法,而秦九韶算法只需要n次乘法和n次加法。在人工计算时,一次大大简化了运算过程。
把一个n次多项式:
相关贡献
秦九韶算法是一种将一元n次多项式的求值问题转化为n个一次式的算法。其大大简化了计算过程,即使在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法。
在西方被称作霍纳算法,是以英国数学家霍纳命名的。
F. 已知任意三角形的三条边长,如何求三角形面积是否有通用公式
海伦定理
海伦公式又译希伦公式,传说是古代的叙拉古国王希伦二世发现的公式,利用三角形的三条边长来求取三角形面积。但根据Morris Kline在1908年出版的着作考证,这条公式其实是阿基米德所发现,以托希伦二世的名发表。
假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:
S=\sqrt{s(s-a)(s-b)(s-c)}
而公式里的s:
s=\frac{a+b+c}{2}
由于任何n边的多边形都可以分割成n-2个三角形,所以海伦公式可以用作求多边形面积的公式。比如说测量土地的面积的时候,不用测三角形的高,只需测两点间的距离,就可以方便地导出答案。
[编辑]证明
与海伦在他的着作"Metrica"中的原始证明不同,在此我们用三角公式和公式变形来证明。设三角形的三边a、b、c的对角分别为A、B、C,则馀弦定理为
\cos(C) = \frac{a^2+b^2-c^2}{2ab}
从而有
\sin(C) = \sqrt{1-\cos^2(C)} = \frac{ \sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2} }{2ab}
因此三角形的面积S为
S = \frac{1}{2}ab \sin(C)
= \frac{1}{4}\sqrt{-a^4 -b^4 -c^4 +2a^2b^2 +2b^2c^2 +2c^2a^2}
= \sqrt{s(s-a)(s-b)(s-c)}
最后的等号部分可用因式分解予以导出。
你也可以在网络上搜索“海伦定理”查找有关资料
G. 我国古代数学家秦九韶在《九章算术》中记述了“三斜求积术”,怎么推导出海伦公式
推导海伦公式:
用勾股定理
证明:根据勾股定理,得:
两种写法都是可以的,但多用p作为半周长。
它的特点是形式漂亮,便于记忆。