导航:首页 > 源码编译 > 什么叫缺省算法

什么叫缺省算法

发布时间:2023-01-31 03:30:38

Ⅰ simulink中的缺省步长是什么它和定步长、变步长是什么关系请各位大神指点。。。

缺省步长是仿真时间间隔的1/50,它是步长被设为auto时使用的值。
定步长算法使用固定的步长大小,一种情况下直接指定具体的数值,另一种情况下,如果步长设为auto,就会用缺省步长。
变步长算法的启动步长为缺省步长,如果Max step size设为auto,也会使用缺省步长。

Simulink模型常见的警告“最大步长为0.2秒”,那就是因为,默认的算法为变步长算法,仿真时间间隔为10秒,其1/50为0.2秒,尽管多数情况下通过步长控制机制能够得到正确结果,但有些情况下可能会有问题(典型的例子是,模型只有一个简单的Sine wave和Scope模块,而正弦的频率为100*pi),所以通过警告的方式提醒用户加以注意。

Ⅱ 数据插值的matlab实现,插值后结果是这样的,是什么错误急需答案

看看这个能不能帮到你:

Matlab中插值函数汇总和使用说明 :

MATLAB中的插值函数为interp1,其调用格式为:

yi= interp1(x,y,xi,'method')

其中x,y为插值点,yi为在被插值点xi处的插值结果;x,y为向量, 'method'表示采用的插值方法,

MATLAB提供的插值方法有几种:

'nearest'是最邻近插值, 'linear'线性插值; 'spline'三次样条插值; 'cubic'立方插值.缺省时表示线性插值。

注意:所有的插值方法都要求x是单调的,并且xi不能够超过x的范围。

例如:在一 天24小时内,从零点开始每间隔2小时测得的环境温度数据分别为

12,9,9,10,18 ,24,28,27,25,20,18,15,13,

推测中午12点(即13点)时的温度.

x=0:2:24;
y=[12 9 9 10 18 24 28 27 25 20 18
15 13];

a=13;
y1=interp1(x,y,a,'spline')

结果为: 27.8725

若要得到一天24小时的温度曲线,则:

xi=0:1/3600:24;

yi=interp1(x,y,xi, 'spline');

plot(x,y,'o' ,xi,yi)

命令1
interp1
功能
一维数据插值(表格查找)。该命令对数据点之间计算内插值。它找出一元函数f(x)在中间点的数值。其中函数f(x)由所给数据决定。
x:原始数据点
Y:原始数据点
xi:插值点
Yi:插值点
格式
(1)yi = interp1(x,Y,xi)
返回插值向量yi,每一元素对应于参量xi,同时由向量x
与Y 的内插值决定。参量x 指定数据Y 的点。
若Y
为一矩阵,则按Y 的每列计算。yi 是阶数为length(xi)*size(Y,2)的输出矩阵。
(2)yi = interp1(Y,xi)
假定x=1:N,其中N
为向量Y 的长度,或者为矩阵Y 的行数。
(3)yi = interp1(x,Y,xi,method)
用指定的算法计算插值:
’nearest’:最近邻点插值,直接完成计算;
’linear’:线性插值(缺省方式),直接完成计算;
’spline’:三次样条函数插值。对于该方法,命令interp1
调用函数spline、ppval、mkpp、umkpp。这些命令生成一系列用于分段多项式操作的函数。命令spline
用它们执行三次样条函数插值;
’pchip’:分段三次Hermite
插值。对于该方法,命令interp1 调用函数pchip,用于对向量x 与y 执行分段三次内插值。该方法保留单调性与数据的外形;
’cubic’:与’pchip’操作相同;
’v5cubic’:在MATLAB
5.0 中的三次插值。
对于超出x
范围的xi 的分量,使用方法’nearest’、’linear’、’v5cubic’的插值算法,相应地将返回NaN。对其他的方法,interp1
将对超出的分量执行外插值算法。
(4)yi = interp1(x,Y,xi,method,'extrap')
对于超出x
范围的xi 中的分量将执行特殊的外插值法extrap。
(5)yi = interp1(x,Y,xi,method,extrapval)
确定超出x
范围的xi 中的分量的外插值extrapval,其值通常取NaN 或0。
例1

>>x = 0:10; y =
x.*sin(x);
>>xx = 0:.25:10; yy =
interp1(x,y,xx);
>>plot(x,y,'kd',xx,yy)

例2

>> year =
1900:10:2010;
>> proct = [75.995
91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505
249.633 256.344 267.893
];
>>p1995 =
interp1(year,proct,1995)
>>x =
1900:1:2010;
>>y =
interp1(year,proct,x,'pchip');
>>plot(year,proct,'o',x,y)

插值结果为:

p1995 =
252.9885

命令2
interp2
功能
二维数据内插值(表格查找)
格式
(1)ZI
= interp2(X,Y,Z,XI,YI)
返回矩阵ZI,其元素包含对应于参量XI
与YI(可以是向量、或同型矩阵) 的元素, 即Zi(i,j) ←[Xi(i,j),yi(i,j)]。用户可以输入行向量和列向量Xi 与Yi,此时,输出向量Zi
与矩阵meshgrid(xi,yi)是同型的。同时取决于由输入矩阵X、Y 与Z 确定的二维函数Z=f(X,Y)。参量X 与Y
必须是单调的,且相同的划分格式,就像由命令meshgrid 生成的一样。若Xi与Yi 中有在X 与Y范围之外的点,则相应地返回nan(Not a
Number)。
(2)ZI
= interp2(Z,XI,YI)
缺省地,X=1:n、Y=1:m,其中[m,n]=size(Z)。再按第一种情形进行计算。
(3)ZI
= interp2(Z,n)
作n
次递归计算,在Z 的每两个元素之间插入它们的二维插值,这样,Z 的阶数将不断增加。interp2(Z)等价于interp2(z,1)。
(4)ZI
= interp2(X,Y,Z,XI,YI,method)
用指定的算法method
计算二维插值:
’linear’:双线性插值算法(缺省算法);
’nearest’:最临近插值;
’spline’:三次样条插值;
’cubic’:双三次插值。

例3:

>>[X,Y] =
meshgrid(-3:.25:3);
>>Z = peaks(X,Y);
>>[XI,YI] =
meshgrid(-3:.125:3);
>>ZZ =
interp2(X,Y,Z,XI,YI);
>>surfl(X,Y,Z);hold
on;
>>surfl(XI,YI,ZZ+15)
>>axis([-3 3 -3 3 -5
20]);shading flat
>>hold
off

例4:

>>years =
1950:10:1990;
>>service =
10:10:30;
>>wage = [150.697
199.592 187.625
179.323 195.072 250.287
203.212 179.092 322.767
226.505 153.706 426.730
249.633 120.281
598.243];
>>w =
interp2(service,years,wage,15,1975)

插值结果为:

w =
190.6288

命令3
interp3
功能
三维数据插值(查表)
格式
(1)VI
= interp3(X,Y,Z,V,XI,YI,ZI)
找出由参量X,Y,Z决定的三元函数V=V(X,Y,Z)在点(XI,YI,ZI)的值。参量XI,YI,ZI
是同型阵列或向量。若向量参量XI,YI,ZI 是不同长度,不同方向(行或列)的向量,这时输出参量VI 与Y1,Y2,Y3 为同型矩阵。其中Y1,Y2,Y3
为用命令meshgrid(XI,YI,ZI)生成的同型阵列。若插值点(XI,YI,ZI)中有位于点(X,Y,Z)之外的点,则相应地返回特殊变量值NaN。
(2)VI
= interp3(V,XI,YI,ZI)
缺省地,
X=1:N ,Y=1:M, Z=1:P ,其中,[M,N,P]=size(V),再按上面的情形计算。
(3)VI
= interp3(V,n)
作n
次递归计算,在V 的每两个元素之间插入它们的三维插值。这样,V 的阶数将不断增加。interp3(V)等价于interp3(V,1)。
(4)VI
= interp3(......,method) %用指定的算法method 作插值计算:
‘linear’:线性插值(缺省算法);
‘cubic’:三次插值;
‘spline’:三次样条插值;
‘nearest’:最邻近插值。
说明
在所有的算法中,都要求X,Y,Z 是单调且有相同的格点形式。当X,Y,Z
是等距且单调时,用算法’*linear’,’*cubic’,’*nearest’,可得到快速插值。

Ⅲ 数据结构

何谓数据结构
?
数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由那些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,而物理上的数据结构反映成分数据在计算机内部的存储安排。数据结构是数据存在的形式。 数据结构是信息的一种组织方式,其目的是为了提高算法的效率,它通常与一组算法的集合相对应,通过这组算法集合可以对数据结构中的数据进行某种操作。
?
数据结构主要研究什么?
?
数据结构作为一门学科主要研究数据的各种逻辑结构和存储结构,以及对数据的各种操作。因此,主要有三个方面的内容:数据的逻辑结构;数据的物理存储结构;对数据的操作(或算法)。通常,算法的
?
设计取决于数据的逻辑结构,算法的实现取决于数据的物理存储结构。
?
什么是数据结构?什么是逻辑结构和物理结构?
?
数据是指由有限的符号(比如,"0"和"1",具有其自己的结构、操作、和相应的语义)组成的元素的集合。结构是元素之间的关系的集合。通常来说,一个数据结构DS 可以表示为一个二元组:
?
DS=(D,S), //i.e., data-structure=(data-part,logic-structure-part) 这里D是数据元素的集合(或者是“结点”,可能还含有“数据项”或“数据域”),S是定义在D(或其他集合)上的关系的集合,S = { R | R : D×D×...},称之为元素的逻辑结构。 逻辑结构有四种基本类型:集合结构、线性结构、树状结构和网络结构。表和树是最常用的两种高效数据结构,许多高效的算法可以用这两种数据结构来设计实现。表是线性结构的(全序关系),树(偏序或层次关系)和图(局部有序(weak/local orders))是非线性结构。
?
数据结构的物理结构是指逻辑结构的存储镜像(image)。数据结构 DS 的物理结构 P对应于从 DS 的数据元素到存储区M(维护着逻辑结构S)的一个映射:
?
(PD,S) -- > M 存储器模型:一个存储器 M 是一系列固定大小的存储单元,每个单元 U 有一个唯一的地址 A(U),该地址被连续地编码。每个单元 U 有一个唯一的后继单元 U'=succ(U)。 P 的四种基本映射模型:顺序(sequential)、链接(linked)、索引(indexed)和散列(hashing)映射。
?
因此,我们至少可以得到4×4种可能的物理数据结构:
?
sequential (sets)
linked lists
indexed trees
hash graphs
?
(并不是所有的可能组合都合理)
?
??? 数据结构DS上的操作:所有的定义在DS上的操作在改变数据元素(节点)或节点的域时必须保持DS的逻辑和物理结构。
?
DS上的基本操作:任何其他对DS的高级操作都可以用这些基本操作来实现。最好将DS和他的所有基本操作看作一个整体——称之为模块。我们可以进一步将该模块抽象为数据类型(其中DS的存储结构被表示为私有成员,基本操作被表示为公共方法),称之为ADT。作为ADT,堆栈和队列都是一种特殊的表,他们拥有表的操作的子集。 对于DATs的高级操作可以被设计为(不封装的)算法,利用基本操作对DS进行处理。
?
好的和坏的DS:如果一个DS可以通过某种“线性规则”被转化为线性的DS(例如线性表),则称它为好的DS。好的DS通常对应于好的(高效的)算法。这是由计算机的计算能力决定的,因为计算机本质上只能存取逻辑连续的内存单元,因此如何没有线性化的结构逻辑上是不可计算的。比如对一个图进行操作,要访问图的所有结点,则必须按照某种顺序来依次访问所有节点(要形成一个偏序),必须通过某种方式将图固有的非线性结构转化为线性结构才能对图进行操作。
?
树是好的DS——它有非常简单而高效的线性化规则,因此可以利用树设计出许多非常高效的算法。树的实现和使用都很简单,但可以解决大量特殊的复杂问题,因此树是实际编程中最重要和最有用的一种数据结构。树的结构本质上有递归的性质——每一个叶节点可以被一棵子树所替代,反之亦然。实际上,每一种递归的结构都可以被转化为(或等价于)树形结构。
?

从机器语言到高级语言的抽象
?
我们知道,算法被定义为一个运算序列。这个运算序列中的所有运算定义在一类特定的数据模型上,并以解决一类特定问题为目标。这个运算序列应该具备下列四个特征。 有限性,即序列的项数有限,且每一运算项都可在有限的时间内完成;确定性,即序列的每一项运算都有明确的定义,无二义性;可以没有输入运算项,但一定要有输出运算项;可行性,即对于任意给定的合法的输入都能得到相应的正确的输出。这些特征可以用来判别一个确定的运算序列是否称得上是一个算法。 但是,我们现在的问题不是要判别一个确定的运算序列是否称得上是一个算法,而是要对一个己经称得上是算法的运算序列,回顾我们曾经如何用程序设计语言去表达它。
?
算法的程序表达,归根到底是算法要素的程序表达,因为一旦算法的每一项要素都用程序清楚地表达,整个算法的程序表达也就不成问题。
?
作为运算序列的算法,有三个要素。 作为运算序列中各种运算的运算对象和运算结果的数据;运算序列中的各种运算;运算序列中的控制转移。这三种要素依序分别简称为数据、运算和控制。 由于算法层出不穷,变化万千,其中的运算所作用的对象数据和所得到的结果数据名目繁多,不胜枚举。最简单最基本的有布尔值数据、字符数据、整数和实数数据等;稍复杂的有向量、矩阵、记录等数据;更复杂的有集合、树和图,还有声音、图形、图像等数据。 同样由于算法层出不穷,变化万千,其中运算的种类五花八门、多姿多彩。最基本最初等的有赋值运算、算术运算、逻辑运算和关系运算等;稍复杂的有算术表达式和逻辑表达式等;更复杂的有函数值计算、向量运算、矩阵运算、集合运算,以及表、栈、队列、树和图上的运算等:此外,还可能有以上列举的运算的复合和嵌套。 关于控制转移,相对单纯。在串行计算中,它只有顺序、分支、循环、递归和无条件转移等几种。
?
我们来回顾一下,自从计算机问世以来,算法的上述三要素的程序表达,经历过一个怎样的过程。
?
最早的程序设计语言是机器语言,即具体的计算机上的一个指令集。当时,要在计算机上运行的所有算法都必须直接用机器语言来表达,计算机才能接受。算法的运算序列包括运算对象和运算结果都必须转换为指令序列。其中的每一条指令都以编码(指令码和地址码)的形式出现。与算法语言表达的算法,相差十万八千里。对于没受过程序设计专门训练的人来说,一份程序恰似一份"天书",让人看了不知所云,可读性
?
极差。
?
用机器语言表达算法的运算、数据和控制十分繁杂琐碎,因为机器语言所提供的指令太初等、原始。机器语言只接受算术运算、按位逻辑运算和数的大小比较运算等。对于稍复杂的运算,都必须一一分解,直到到达最初等的运算才能用相应的指令替代之。机器语言能直接表达的数据只有最原始的位、字节、和字三种。算法中即使是最简单的数据如布尔值、字符、整数、和实数,也必须一一地映射到位、字节和字
中,还得一一分配它们的存储单元。对于算法中有结构的数据的表达则要麻烦得多。机器语言所提供的控制转移指令也只有无条件转移、条件转移、进入子程序和从子程序返回等最基本的几种。用它们来构造循环、形成分支、调用函数和过程得事先做许多的准备,还得靠许多的技巧。 直接用机器语言表达算法有许多缺点。
?

大量繁杂琐碎的细节牵制着程序员,使他们不可能有更多的时间和精力去从事创造性的劳动,执行对他们来说更为重要的任务。如确保程序的正确性、高效性。程序员既要驾驭程序设计的全局又要深入每一个局部直到实现的细节,即使智力超群的程序员也常常会顾此失彼,屡出差错,因而所编出的程序可靠性差,且开发周期长。 由于用机器语言进行程序设计的思维和表达方式与人们的习惯大相径庭,只有经过
较长时间职业训练的程序员才能胜任,使得程序设计曲高和寡。因为它的书面形式全是"密"码,所以可读性差,不便于交流与合作。因为它严重地依赖于具体的计算机,所以可移植性差,重用性差。这些弊端造成当时的计算机应用未能迅速得到推广。
?
克服上述缺点的出路在于程序设计语言的抽象,让它尽可能地接近于算法语言。 为此,人们首先注意到的是可读性和可移植性,因为它们相对地容易通过抽象而得到改善。于是,很快就出现汇编语言。这种语言对机器语言的抽象,首先表现在将机器语言的每一条指令符号化:指令码代之以记忆符号,地址码代之以符号地址,使得其含义显现在符号上而不再隐藏在编码中,可让人望"文"生义。其次表现在这种语言摆脱了具体计算机的限制,可在不同指令集的计算机上运行,只要该计算机配上汇编语言的一个汇编程序。这无疑是机器语言朝算法语言靠拢迈出的一步。但是,它离算法语言还太远,以致程序员还不能从分解算法的数据、运算和控制到汇编才能直接表达的指令等繁杂琐碎的事务中解脱出来。 到了50年代中期,出现程序设计的高级语言如Fortran,Algol60,以及后来的PL/l, Pascal等,算法的程序表达才产生一次大的飞跃。
?
诚然,算法最终要表达为具体计算机上的机器语言才能在该计算机上运行,得到所需要的结果。但汇编语言的实践启发人们,表达成机器语言不必一步到位,可以分两步走或者可以筑桥过河。即先表达成一种中介语言,然后转成机器语言。汇编语言作为一种中介语言,并没有获得很大成功,原因是它离算法语
?
言还太远。这便指引人们去设计一种尽量接近算法语言的规范语言,即所谓的高级语言,让程序员可以用它方便地表达算法,然后借助于规范的高级语言到规范的机器语言的"翻译",最终将算法表达为机器语言。而且,由于高级语言和机器语言都具有规范性,这里的"翻译"完全可以机械化地由计算机来完成,就像汇编语言被翻译成机器语言一样,只要计算机配上一个编译程序。 上述两步,前一步由程序员去完成,后一步可以由编译程序去完成。在规定清楚它们各自该做什么之后,这两步是完全独立的。它们各自该如何做互不相干。前一步要做的只是用高级语言正确地表达给定的算法,产生一个高级语言程序;后一步要做的只是将第一步得到的高级语言程序翻译成机器语言程序。至于程序员如何用高级语言表达算法和编译程序如何将高级语言表达的算法翻译成机器语言表达的算法,显然毫不相干。
?
处理从算法语言最终表达成机器语言这一复杂过程的上述思想方法就是一种抽象。汇编语言和高级语言的出现都是这种抽象的范例。 与汇编语言相比,高级语言的巨大成功在于它在数据、运算和控制三方
?
面的表达中引入许多接近算法语言的概念和工具,大大地提高抽象地表达算法的能力。 在运算方面,高级语言如Pascal,除允许原封不动地运用算法语言的四则运算、逻辑运算、关系运算、算术表达式、逻辑表达式外,还引入强有力的函数与过程的工具,并让用户自定义。这一工具的重要性不仅在于它精简了重复的程序文本段,而且在于它反映出程序的两级抽象。
?
在函数与过程调用级,人们只关心它能做什么,不必关心它如何做。只是到函数与过程的定义时,人们才给出如何做的细节。用过高级语言的读者都知道,一旦函数与过程的名称、参数和功能被规定清楚,那么,在程序中调用它们便与在程序的头部说明它们完全分开。你可以修改甚至更换函数体与过程体,而不影响它们的被调用。如果把函数与过程名看成是运算名,把参数看成是运算的对象或运算的结果,那么
?
,函数与过程的调用和初等运算的引用没有两样。利用函数和过程以及它们的复合或嵌套可以很自然地表达算法语言中任何复杂的运算。
?
在数据方面,高级语言如Pascal引人了数据类型的概念,即把所有的数据加以分类。每一个数据(包括表达式)或每一个数据变量都属于其中确定的一类。称这一类数据为一个数据类型。 因此,数据类型是数据或数据变量类属的说明,它指示该数据或数据变量可能取的值的全体。对于无结构的数据,高级语言如Pascal,除提供标准的基本数据类型--布尔型、字符型、整型和实型外,还提供用户可自定义的枚举类、子界类型和指针类型。这些类型(除指针外),其使用方式都顺应人们在算法语言中使用的习惯。对于有结构的数据,高级语言如Pascal,提供了数组、记录、有限制的集合和文件等四种标准的结构数据类型。其中,数组是科学计算中的向量、矩阵的抽象;记录是商业和管理中的记录的抽象;有限制的集合是数学中足够小的集合的势集的抽象;文件是诸如磁盘等外存储数据的抽象。
?
人们可以利用所提供的基本数据类型(包括标准的和自定义的),按数组、记录、有限制的集合和文件的构造规则构造有结构的数据。 此外,还允许用户利用标准的结构数据类型,通过复合或嵌套构造更复杂更高层的结构数据。这使得高级语言中的数据类型呈明显的分层。 高级语言中数据类型的分层是没有穷尽的,因而用它们可以表达算法语言中任何复杂层次的数据。 在控制方面,高级语言如Pascal,提供了表达算法控制转移的六种方式。
?
(1)缺省的顺序控制";"。
?
(2)条件(分支)控制:"if表达式(为真)then S1 else S2;" 。
?
(3)选择(情况)控制:
?
"Case 表达式 of
?
值1: S1
值2: S2
...
值n: Sn
end"
?
(4)循环控制:
?
"while 表达式(为真) do S;" 或
"repeat S until 表达式(为真);" 或
"for变量名:=初值 to/downto 终值do S;"
?
(5)函数和过程的调用,包括递归函数和递归过程的调用。
?
(6)无条件转移goto。

这六种表达方式不仅覆盖了算法语言中所有控制表达的要求,而且不再像机器语言或汇编语言那样原始、那样繁琐、那样隐晦,而是如上面所看到的,与自然语言的表达相差无几。 程序设计语言从机器语言到高级语言的抽象,带来的主要好处是: 高级语言接近算法语言,易学、易掌握,一般工程技术人员只要几周时间的培训就可以胜任程序员的工作;高级语言为程序员提供了结构化程序设计的环境和工具,使得设计出来的程序可读性好,可维护性强,可靠性高;高级语言远离机器语言,与具体的计算机硬件关系不大,因而所写出来的程序可移植性好,重用率高; 由于把繁杂琐碎的事务交给了编译程序去做,所以自动化程度高,开发周期短,且程、序员得到解脱,可以集中时间和精力去从事对于他们来说更为重要的创造性劳动,以提高、程序的质量。
?
数据结构、数据类型和抽象数据类型
?
数据结构、数据类型和抽象数据类型,这三个术语在字面上既不同又相近,反映出它们在含义上既有区别又有联系。
?
数据结构是在整个计算机科学与技术领域上广泛被使用的术语。它用来反映一个数据的内部构成,即一个数据由哪些成分数据构成,以什么方式构成,呈什么结构。数据结构有逻辑上的数据结构和物理上的数据结构之分。逻辑上的数据结构反映成分数据之间的逻辑关系,物理上的数据结构反映成分数据在计算机内的存储安排。数据结构是数据存在的形式。
?
数据是按照数据结构分类的,具有相同数据结构的数据属同一类。同一类数据的全体称为一个数据类型。在程序设计高级语言中,数据类型用来说明一个数据在数据分类中的归属。它是数据的一种属性。这个属性限定了该数据的变化范围。为了解题的需要,根据数据结构的种类,高级语言定义了一系列的数据类型。不同的高级语言所定义的数据类型不尽相同。Pascal语言所定义的数据类型的种类。
?
其中,简单数据类型对应于简单的数据结构;构造数据类型对应于复杂的数据结构;在复杂的数据结构里,允许成分数据本身具有复杂的数据结构,因而,构造数据类型允许复合嵌套;指针类型对应于数据结构中成分数据之间的关系,表面上属简单数据类型,实际上都指向复杂的成分数据即构造数据类型中的数据,因此这里没有把它划入简单数据类型,也没有划入构造数据类型,而单独划出一类。
?
数据结构反映数据内部的构成方式,它常常用一个结构图来描述:数据中的每一项成分数据被看作一个结点,并用方框或圆圈表示,成分数据之间的关系用相应的结点之间带箭号的连线表示。如果成分数据本身又有它自身的结构,则结构出现嵌套。这里嵌套还允许是递归的嵌套。
?
由于指针数据的引入,使构造各种复杂的数据结构成为可能。按数据结构中的成分数据之间的关系,数据结构有线性与非线性之分。在非线性数据结构中又有层次与网状之分。 由于数据类型是按照数据结构划分的,因此,一类数据结构对应着一种数据类型。数据类型按照该类型中的数据所呈现的结构也有线性与非线性之分,层次与网状之分。一个数据变量,在高级语言中的类型说明必须是读变量所具有的数据结构所对应的数据类型。最常用的数据结构是数组结构和记录结构。数组结构的特点是:
?
成分数据的个数固定,它们之间的逻辑关系由成分数据的序号(或叫数组的下标)来体现。这些成分数据按照序号的先后顺序一个挨一个地排列起来。每一个成分数据具有相同的结构(可以是简单结构,也可以是复杂结构),因而属于同一个数据类型(相应地是简单数据类型或构造数据类型)。这种同一的数据类型称为基类型。所有的成分数据被依序安排在一片连续的存储单元中。 概括起来,数组结构是一个线性的、均匀的、其成分数据可随机访问的结构。
?
由于这、种结构有这些良好的特性,所以最常被人们所采用。在高级语言中,与数组结构相对应的、数据类型是数组类型,即数组结构的数据变量必须说明为array [i] of T0 ,其中i是数组、结构的下标类型,而T0是数组结构的基类型。 记录结构是另一种常用的数据结构。它的特点是:与数组结构一样,成分数据的个数固定。但成分数据之间没有自然序,它们处于平等地位。每一个成分数据被称为一个域并赋予域名。不同的域有不同的域名。不同的域允许有不同的结构,因而允许属于不同的数据类型。与数组结构一样,它们可以随机访问,但访问的途径靠的是域名。在高级语言中记录结构对应的数据类型是记录类型。记录结构的数据的变量必须说明为记录类型。
?
抽象数据类型的含义在上一段已作了专门叙述。它可理解为数据类型的进一步抽象。即把数据类型和数据类型上的运算捆在一起,进行封装。引入抽象数据类型的目的是把数据类型的表示和数据类型上运算的实现与这些数据类型和运算在程序中的引用隔开,使它们相互独立。对于抽象数据类型的描述,除了必须描述它的数据结构外,还必须描述定义在它上面的运算(过程或函数)。抽象数据类型上定义的过程和函
数以该抽象数据类型的数据所应具有的数据结构为基础。
?
泛型设计和数据结构与算法
?
下面我想再说说关于泛型程序设计模型对于数据结构和算法方面的最新推动,泛型思想已经把数据结
?
构和算法方面的基本思想抽象到了一个前所未有的高度,现在有多种程序设计语言支持泛型设计,比如
ADA,C++,而且据说在JAVA的下一版本和C#中也将对泛型设计进行全面的支持。
?
先说说泛型设计的基本思想:泛型编程(generic programming,以下直接以GP称呼)是一种全新的程序设计思想,和OO,OB,PO这些为人所熟知的程序设计想法不同的是GP抽象度更高,基于GP设计的组件之间偶合度底,没有继承关系,所以其组件间的互交性和扩展性都非常高。我们都知道,任何算法都是作用在一种特定的数据结构上的,最简单的例子就是快速排序算法最根本的实现条件就是所排序的对象是存
贮在数组里面,因为快速排序就是因为要用到数组的随机存储特性,即可以在单位时间内交换远距离的对象,而不只是相临的两个对象,而如果用联表去存储对象,由于在联表中取得对象的时间是线性的既O[n],这样将使快速排序失去其快速的特点。也就是说,我们在设计一种算法的时候,我们总是先要考虑其应用的数据结构,比如数组查找,联表查找,树查找,图查找其核心都是查找,但因为作用的数据结构不同
?
将有多种不同的表现形式。数据结构和算法之间这样密切的关系一直是我们以前的认识。泛型设计的根本思想就是想把算法和其作用的数据结构分离,也就是说,我们设计算法的时候并不去考虑我们设计的算法将作用于何种数据结构之上。泛型设计的理想状态是一个查找算法将可以作用于数组,联表,树,图等各种数据结构之上,变成一个通用的,泛型的算法。这样的理想是不是很诱惑人?
?
泛型编程带来的是前所未有的弹性以及不会损失效率的抽象性,GP和OO不同,它不要求你通过额外的间接层来调用函数:它让你撰写完全一般化并可重复使用的算法,其效率与针对特定数据结构而设计的算法旗鼓相当。我们大家都知道数据结构在C++中可以用用户定义类型来表示,而C++中的模板技术就是以类型作为参数,那么我可以想象利用模板技术可以实现我们开始的GP思想,即一个模板函数可以对于各种传递进来的类型起作用,而这些类型就可以是我们定义的各种数据结构。
?
泛型算法抽离于特定类型和特定数据结构之外,使得其适应与尽可能的一般化类型,算法本身只是为了实现算法其需要表达的逻辑本质而不去被为各种数据结构的实现细节所干扰。这意味着一个泛型算法实际具有两部分。1,用来描叙算法本质逻辑的实际指令;2,正确指定其参数类型必须满足的性质的一组需求条件。到此,相信有不少人已经开始糊涂了,呵呵,不要紧。毕竟GP是一种抽象度非常高的程序设计思想,里面的核心就是抽象条件成为成为程序设计过程中的核心,从而取代了类型这在OO里面的核心地位,正是因为类型不在是我们考虑的重点,类型成为了抽象条件的外衣,所以我们称这样的程序思想为泛型思想------把类型泛化。

Ⅳ 缺省逻辑的语义

一个缺省规则可以应用于一个理论,如果它的前件被这个理论所蕴涵,并且它的论据都一致于这个理论。缺省规则的应用导致它的结论增加到这个理论。其他缺省规则接着可以应用于结果的理论。当没有缺省规则可以应用于理论的时候,这个理论就叫做缺省理论的扩展。缺省规则可以按不同的次序应用,这可以导致不同的扩展。尼克松菱形例子是有两个扩展的缺省理论:
<math>
leftlangle left{ frac{Republican(X): eg Pacifist(X)}{ eg Pacifist(X)},frac{Quaker(X):Pacifist(X)}{Pacifist(X)} ight},left{Republican(Nixon),Quaker(Nixon) ight} ight angle </math>
因为 尼克松既是共和党的人又是教友会的人,两个缺省都可以应用。但是,应用第一个缺省导致尼克松是不爱好和平的人的结论。以同样的方式,应用第二个缺省我们得出尼克松是爱好和平的人,因此使第一个缺省不可应用。这种特定的缺省理论因此有两个扩展,其中一个 <math>Pacifist(Nixon)</math> 是真,而另一个 <math>Pacifist(Nixon)</math> 是假。
缺省逻辑的最初的语义基于的是函数的不动点。下面是一个等价的算法定义。如果缺省包含有自由变量的公式,它被认为表示通过向所有这些变量给出一个值而得到所有缺省的集合。缺省 <math>frac{alpha:eta_1,ldots,eta_n}{gamma}</math> 对命题理论 <math>T</math> 是可应用的,如果 <math>T models alpha</math> 并且所有理论 <math>T cup {eta_i}</math> 是一致的。这个缺省对 <math>T</math> 的应用得到理论 <math>T cup {gamma}</math>;。通过应用下列算法可以生成一个扩展:
T=W /* 当前理论 */
A=0 /* 迄今应用的缺省的集合 */
/* 应用一序列的缺省 */
while 有个不在 A 中的缺省 d 对于 T 是可应用的
增加 d 的结论到 T
增加 d 到 A
/* 最终的一致性检查 */
if
for 所有缺省 d in A
T 一致于 d 的所有论据
then
输出 T
这个算法是非确定性的,因为对于给定的理论 <math>T</math> 有很多缺省可以应用。在尼克松菱形的例子中,第一个缺省的应用导致第二个缺省不能应用的一个理论,反之亦然。作为结果,可以生成两个扩展: 在其中一个里尼克松是爱好和平的人和另一个里尼克松不爱好和平的人。
最终的所有已经应用的缺省的论据的一致性检查使某些理论不能有任何扩展。特别是,这发生在对于可应用的缺省的所有序列这个检查都失败的时候。下列缺省理论就没有扩展:
<math>
leftlangle left{ frac{:A(b)}{ eg A(b)} ight},emptyset ight angle </math>
因为 <math>A(b)</math> 一致于缺省被应用到的背景理论,所以得出结论 <math>A(b)</math> 是假的。但是这个结果破坏了应用第一个缺省所有做的假定。因此,这个理论没有扩展。
正规的缺省理论保证至少有一个扩展。进一步的,正规缺省理论的扩展是相互矛盾的。

Ⅳ 配置缺省路由

缺省路由:路由算法有动静之分,静态路由是一种特殊的路由,它是由管理员手工设定的。手工配置所有的路由虽然可以使网络正常运转,但是也会带来一些局限性。网络拓扑发生变化之后,静态路由不会自动改变,必须有网络管理员的介入。
缺省路由是静态路由的一种,也是由管理员设置的。在没有找到目标网络的路由表项时,路由器将信息发送到缺省路由器。而动态的算法,顾名思义,是由路由器自动计算出的路由,常说的RIP、OSPF等都是动态算法的典型代表。
另外,还可以将路由算法分为DV和LS两种。DV(Distance Vector,距离向量)算法将当前路由器的路由信息传送给相邻路由器,相邻路由器将这些信息加入自身的路由表。而LS(Link State,链路状态)算法将链路状态信息传给域内所有的路由器,接收路由器利用这些信息构建网络拓扑图,并利用图论中的最短路径优先算法决定路由。

Ⅵ 经典的 Dijkstra 算法中,有点不懂的,求教

struct qnode 里面用的是 C++ 的语法,把结构体当做一个类来定义。
语句解析:
1) qnode (int vv = 0, typec cc = 0) : v(vv), c(cc) {}
a)函数 qnode 是 struct qnode 的构造函数,
b)参数有两个:int w 和 typec c ,都有默认值 0 。默认值的作用是调用 qnode 这函数的时 候,如果不给参数传值,那么就是用默认值,如:

qnode(1,2); // 给第一个参数w 和第二个参数 cc 都制定值
qnode(3); // 等价于 qnode(3,0); 第二个参数 cc 使用默认值 0
qnode(); // 等价于 qnode(0,0); 第一个参数w 和第二个参数 cc 都使用默认值 0

c)":" 后面的 v(w),c(cc) 是给结构体里面定义的两个变量 int v; typec c; 赋值,
相当于:v=w,c=cc; 如果不用这种形式,还可以改成:
qnode (int vv = 0, typec cc = 0) {v=w,c=cc;}

2) bool operator < (const qnode& r) const { return c>r.c; }
a) 这是重载运算符"<",也就是“小于号”,让小于号两边的操作数可以是结构体 struct qnode。
比如:
struct qnode a,b;
/*
只有重载运算符"<",a<b 才能编译通过,否则编译无法通过,
因为C(C++)编译器默认是不知到如何比较两个 sturct qnode 类型的变量的。
*/
if(a<b){}

b) 上面例子中的 if(a<b) 具体是如何比较的呢?
我们假设:a.c = 1; b.c = 2;
那么通过函数体里面:
return c>r.c;
我们知道两个 struct qnode 比较的时候,只和结构体里面的 typec c 变量有关,和其他变量无关。
因此 a<b 返回真。

Ⅶ MATLAB中三种差值法怎样编程

http://wenku..com/view/4b8beb2dcfc789eb172dc896.html?st=1

http://wenku..com/view/49a35f050740be1e650e9aac.html?st=1

http://wenku..com/view/97931e353968011ca30091ac.html

http://wenku..com/view/702346f8910ef12d2af9e7ad.html

阅读全文

与什么叫缺省算法相关的资料

热点内容
vue编译成js文件 浏览:88
给单片机供电的电池 浏览:339
什么app是分享教育的 浏览:896
可视化编程java 浏览:83
人工智能温控器算法 浏览:376
大号文件夹多少钱一个 浏览:572
pdf阅读器打开文件 浏览:98
winrar解压日文文件 浏览:38
什么app可以看广东珠江电视台 浏览:75
linux移动文件位置 浏览:144
循环码与卷积码编译原理 浏览:807
进化算法和启发式算法的区别 浏览:602
android组件是什么 浏览:973
安卓手机微信怎么同步信息 浏览:182
小人pdf 浏览:806
我的世界服务器怎么造好看的建筑 浏览:307
兄弟连培训php多少钱 浏览:250
1523铺地面的算法 浏览:747
linux源码安装php环境 浏览:822
ping命令用法 浏览:718