导航:首页 > 源码编译 > 单片机pid算法教程

单片机pid算法教程

发布时间:2023-10-28 05:59:23

‘壹’ 怎样用PID算法对恒温箱的温度进行控制,求相关的51单片机编程

本设计要求:本温度控制系统为以单片机为核心,实现了对温度实时监测和控制,实现了控制的智能化。设计恒温箱温度控制系统,配有温度传感器,采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输,采用了PID控制技术,可以使温度保持在要求的一个恒定范围内,配有键盘,用于输入设定温度;配有数码管LED用来显示温度。
技术参数和设计任务:
1、利用单片机AT89C2051实现对温度的控制,实现保持恒温箱在最高温度为110℃。
2、可预置恒温箱温度,烘干过程恒温控制,温度控制误差小于±2℃。
3、预置时显示设定温度,恒温时显示实时温度,采用PID控制算法显示精确到0.1℃。
4、温度超出预置温度±5℃时发出声音报警。
5、对升、降温过程没有线性要求。
6、温度检测部分采用DS18B20数字温度传感器,无需数模拟∕数字转换,可直接与单片机进行数字传输
7、人机对话部分由键盘、显示和报警三部分组成,实现对温度的显示、报警。
需要的话联系用户名扣扣

‘贰’ 单片机加pid算法去控制步进电机的具体措施或方法

//P1.1(T0):Count They Distance
//P0.4:Tx
//P0.5:Rx
#include <C8051F310.h> //SFR declarations
#include <stdio.h> //Standard I/O definition file
#include <math.h> //Math library file
#include <Intrins.h>
#include <absacc.h>

unsigned int j,i;
char a=0;
unsigned int t=0;

//sbit led=P0^2;
//P0.0(PWM0):给定左轮速度.
sbit vls=P0^4; //P0.4(GPIO):给定左轮方向.
sbit vlf=P0^6; //P0.6(T0) :反馈左轮速度.
sbit dlf=P1^0; //P1.0(GPIO):反馈左轮方向.

//P0.2(PWM0):给定右轮速度.
sbit vrs=P0^5; //P0.5(GPIO):给定右轮方向.
sbit vrf=P0^7; //P0.7(T0) :反馈右轮速度.
sbit drf=P1^1; //P1.1(GPIO):反馈右轮方向.

int ol; //左轮给定值
int len;
int len_1,len_2;
int lyn_1,lyn_2;
int vl1,vl2; //反馈左轮速度值(取样周期内的方波数)
int lfz; //运算后赋给PWM的值

int lyn,lynn;
int lun=0,lun_1=0; //偏差校正值 即校正PWM输出
int lunp,luni,lund; //PID 校正值

int or; //右轮给定值
int ren;
int ren_1,ren_2;
int ryn_1,ryn_2;
int vr1,vr2; //反馈右轮速度值(取样周期内的方波数)
int rfz; //运算后赋给PWM的值

int ryn,rynn;
int run=0,run_1=0; //偏差校正值 即校正PWM输出
int runp,runi,rund; //PID 校正值

float kp=2.0; //比例系数1.8
float kd=0.2; //微分系数0.4
float lki; //积分系数

void pio_init(void);
void sys_init(void);
void t01_init(void);
void TIME3_INT(void);
void PID(void);
void interrupt_init(void);
void delay(unsigned int x);
void pwm1_1(void);

void main(void)
{
PCA0MD &= ~0x40; //关闭
pio_init(); //P11为测距输入端
sys_init();
t01_init();
pwm1_1();
TIME3_INT();
interrupt_init();

vls=1;vrs=0;
while(1)
{

ol=50;
or=50;
delay(1000);

ol=100;
or=100;
delay(1000);

ol=-50;
or=50;
delay(1000);

}

}

void PID(void)
{
/****************左轮PID调节******************/
if(dlf==1)
{
lyn=(vl2*256+vl1); //dlf是左轮反馈方向,0表示向前 vl=TL0
}
else
{
lyn=-(vl2*256+vl1); //dlf=1表示是向后退,速度应该为负值
}

len=ol-lyn; //误差=给定速度-反馈速度(取样周期内的方波数)

if(abs(len)<8)//30
{
lki=1.4; //ki值的确定1.4
}
else
{
lki=0.05; //积分系数:如果 | 给定值-反馈值 | 太大
} //则就可以不引入积分,或者引入的很小0.05

lunp=kp*(len-len_1); //比例校正
luni=lki*len; //积分校正
lund=kd*(len-2*len_1+len_2); //微分校正

lun=lunp+luni+lund+lun_1; //总校正

/*************新旧数据更新*************************/
len_2=len_1;
len_1=len; //len:当前取样周期内出现的速度偏差;len_1:上次取样周期内出现的速度偏差
lun_1=lun; //lun:当前取样周期内得出的PWM校正值;lun_1:上次取样周期内得出的PWM校正值
/*************新旧数据更新*************************/

if(lun>255)
{
lun=255; //正速度
}
if(lun<-255)
{
lun=-255; //负速度
}
if(lun<0)

{
vls=1;
PCA0CPH0=-lun;
}

if(lun>=0)
{
vls=0;
PCA0CPH0=lun;
}

/****************右轮PID调节******************/
if(drf==0)
{
ryn=(vr2*256+vr1); //drf是右轮反馈方向,0表示向前 vl=TL0
}
else
{
ryn=-(vr2*256+vr1); //dlf=1表示是向后退,速度应该为负值
}

ren=or-ryn; //误差=给定速度-反馈速度(取样周期内的方波数)

if(abs(ren)<8)//30
{
lki=1.4; //ki值的确定1.4
}
else
{
lki=0.05; //积分系数:如果 | 给定值-反馈值 | 太大
} //则就可以不引入积分,或者引入的很小0.05

runp=kp*(ren-ren_1); //比例校正
runi=lki*ren; //积分校正
rund=kd*(ren-2*ren_1+ren_2); //微分校正

run=runp+runi+rund+run_1; //总校正

/*************新旧数据更新*************************/
ren_2=ren_1;
ren_1=ren; //len:当前取样周期内出现的速度偏差;len_1:上次取样周期内出现的速度偏差
run_1=run; //lun:当前取样周期内得出的PWM校正值;lun_1:上次取样周期内得出的PWM校正值
/*************新旧数据更新*************************/

if(run>255)
{
run=255; //正速度
}
if(run<-255)
{
run=-255; //负速度
}
if(run<0)

{
vrs=1;
PCA0CPH1=-run;
}

if(run>=0)
{
vrs=0;
PCA0CPH1=run;
}
//因为这里的PCA0CPH0越大,对应的电机速度越小,所以要255来减一下
}

void pio_init(void)
{
XBR0=0x00; //0000 0001
XBR1=0x72; //0111 0010 时能弱上拉 T0T1连接到脚口P06、P07 CEX0、CEX1连接到脚口P00、P01

P0MDIN=0xff; //模拟(0);数字(1) 1111 0011
P0MDOUT=0xc3;//开漏(0);推挽(1) 1111 1111
P0SKIP=0x3c; //0011 1100

P1MDIN=0xff; //1111 1111
P1MDOUT=0xfc;//
P1SKIP=0x00; //1111 1111

}

void sys_init(void) //12MHz
{
OSCICL=0x43;
OSCICN=0xc2;
CLKSEL=0x00;

}

void pwm1_1(void) //PWM的初始化
{
PCA0MD=0x08; //PCA时钟为12分频

PCA0CPL0=200; //左轮
PCA0CPM0=0x42; //设置左轮为8位PWM输出
PCA0CPH0=200;

PCA0CPL1=200; //平衡校正
PCA0CPM1=0x42; //设置为8位PWM输出
PCA0CPH1=200;

PCA0CN=0x40; //允许PCA工作
}

void t01_init(void)
{
TCON=0x50; //计数器1、2允许
TMOD=0x55; //定时器1、2采用16位计数功能
CKCON=0x00;

TH1=0x00; //用于采集左轮的速度
TL1=0x00;

TH0=0x00; //用于采集右轮的速度
TL0=0x00;
}

void TIME3_INT(void)
{
TMR3CN = 0x00; //定时器3为16位自动重载
CKCON &= ~0x40;

TMR3RLL = 0xff;
TMR3RLH = 0xd7;
TMR3L = 0xff;
TMR3H = 0xd7;

TMR3CN |= 0x04;
}

void T3_ISR() interrupt 14 //定时器3中断服务程序
{
//led=~led;
EA=0;
TCON &=~0x50; //关闭计数器0、1

vl1=TL0; //取左轮速度值
vl2=TH0;

vr1=TL1; //取右轮速度值
vr2=TH1;

TH1=0x00;
TL1=0x00;

TH0=0x00;
TL0=0x00;

PID(); //PID处理

TMR3CN &=~0x80; //清中断标志位
TCON |=0x50; //重新开计数器0、1
EA=1;
}

void interrupt_init(void)
{ IE=0x80;
IP=0x00;
EIE1|=0x80;
EIP1|=0x80;

}

void delay(unsigned int m) //延时程序
{
for(i=0;i<2000;i++)
{
for(j=0;j<m;j++){_nop_(); _nop_();}
}
}

‘叁’ 一文搞懂PID控制算法

PID算法是工业应用中最广泛算法之一,在闭环系统的控制中,可自动对控制系统进行准确且迅速的校正。PID算法已经有100多年历史,在四轴飞行器,平衡小车、汽车定速巡航、温度控制器等场景均有应用。

之前做过循迹车项目,简单循迹摇摆幅度较大,效果如下所示:

PID算法优化后,循迹稳定性能较大提升,效果如下所示:

PID算法:就是“比例(proportional)、积分(integral)、微分(derivative)”,是一种常见的“保持稳定”控制算法。

常规的模拟PID控制系统原理框图如下所示:

因此可以得出e(t)和u(t)的关系:

其中:

Kp:比例增益,是调适参数;

Ki:积分增益,也是调适参数;

Kd:微分增益,也是调适参数;

e:误差=设定值(SP)- 回授值(PV);

t:目前时间。

数学公式可能比较枯燥,通过以下例子,了解PID算法的应用。

例如,使用控制器使一锅水的温度保持在50℃,小于50℃就让它加热,大于50度就断电不就行了?

没错,在要求不高的情况下,确实可以这么干,如果换一种说法,你就知道问题出在哪里了。

如果控制对象是一辆汽车呢?要是希望汽车的车速保持在50km/h不动,这种方法就存在问题了。

设想一下,假如汽车的定速巡航电脑在某一时间测到车速是45km/h,它立刻命令发动机:加速!

结果,发动机那边突然来了个100%全油门,嗡的一下汽车急加速到了60km/h,这时电脑又发出命令:刹车!结果乘客吐......

所以,在大多数场合中,用“开关量”来控制一个物理量就显得比较简单粗暴了,有时候是无法保持稳定的,因为单片机、传感器不是无限快的,采集、控制需要时间。

而且,控制对象具有惯性,比如将热水控制器拔掉,它的“余热”即热惯性可能还会使水温继续升高一小会。

此时就需要使用PID控制算法了。

接着咱再来详细了解PID控制算法的三个最基本的参数:Kp比例增益、Ki积分增益、Kd微分增益。

1、Kp比例增益

Kp比例控制考虑当前误差,误差值和一个正值的常数Kp(表示比例)相乘。需要控制的量,比如水温,有它现在的 当前值 ,也有我们期望的 目标值 。

当两者差距不大时,就让加热器“轻轻地”加热一下。

要是因为某些原因,温度降低了很多,就让加热器“稍稍用力”加热一下。

要是当前温度比目标温度低得多,就让加热器“开足马力”加热,尽快让水温到达目标附近。

这就是P的作用,跟开关控制方法相比,是不是“温文尔雅”了很多。

实际写程序时,就让偏差(目标减去当前)与调节装置的“调节力度”,建立一个一次函数的关系,就可以实现最基本的“比例”控制了~

Kp越大,调节作用越激进,Kp调小会让调节作用更保守。

若你正在制作一个平衡车,有了P的作用,你会发现,平衡车在平衡角度附近来回“狂抖”,比较难稳住。

2、Kd微分增益

Kd微分控制考虑将来误差,计算误差的一阶导,并和一个正值的常数Kd相乘。

有了P的作用,不难发现,只有P好像不能让平衡车站起来,水温也控制得晃晃悠悠,好像整个系统不是特别稳定,总是在“抖动”。

设想有一个弹簧:现在在平衡位置上,拉它一下,然后松手,这时它会震荡起来,因为阻力很小,它可能会震荡很长时间,才会重新停在平衡位置。

请想象一下:要是把上图所示的系统浸没在水里,同样拉它一下 :这种情况下,重新停在平衡位置的时间就短得多。

此时需要一个控制作用,让被控制的物理量的“变化速度”趋于0,即类似于“阻尼”的作用。

因为,当比较接近目标时,P的控制作用就比较小了,越接近目标,P的作用越温柔,有很多内在的或者外部的因素,使控制量发生小范围的摆动。

D的作用就是让物理量的速度趋于0,只要什么时候,这个量具有了速度,D就向相反的方向用力,尽力刹住这个变化。

Kd参数越大,向速度相反方向刹车的力道就越强,如果是平衡小车,加上P和D两种控制作用,如果参数调节合适,它应该可以站起来了。

3、Ki积分增益

Ki积分控制考虑过去误差,将误差值过去一段时间和(误差和)乘以一个正值的常数Ki。

还是以热水为例,假如有个人把加热装置带到了非常冷的地方,开始烧水了,需要烧到50℃。

在P的作用下,水温慢慢升高,直到升高到45℃时,他发现了一个不好的事情:天气太冷,水散热的速度,和P控制的加热的速度相等了。

这可怎么办?

P兄这样想:我和目标已经很近了,只需要轻轻加热就可以了。

D兄这样想:加热和散热相等,温度没有波动,我好像不用调整什么。

于是,水温永远地停留在45℃,永远到不了50℃。

根据常识,我们知道,应该进一步增加加热的功率,可是增加多少该如何计算呢?

前辈科学家们想到的方法是真的巧妙,设置一个积分量,只要偏差存在,就不断地对偏差进行积分(累加),并反应在调节力度上。

这样一来,即使45℃和50℃相差不是太大,但是随着时间的推移,只要没达到目标温度,这个积分量就不断增加,系统就会慢慢意识到:还没有到达目标温度,该增加功率啦!

到了目标温度后,假设温度没有波动,积分值就不会再变动,这时,加热功率仍然等于散热功率,但是,温度是稳稳的50℃。

Ki的值越大,积分时乘的系数就越大,积分效果越明显,所以,I的作用就是,减小静态情况下的误差,让受控物理量尽可能接近目标值。

I在使用时还有个问题:需要设定积分限制,防止在刚开始加热时,就把积分量积得太大,难以控制。

PID算法的参数调试是指通过调整控制参数(比例增益、积分增益/时间、微分增益/时间) 让系统达到最佳的控制效果 。

调试中稳定性(不会有发散性的震荡)是首要条件,此外,不同系统有不同的行为,不同的应用其需求也不同,而且这些需求还可能会互相冲突。

PID算法只有三个参数,在原理上容易说明,但PID算法参数调试是一个困难的工作,因为要符合一些特别的判据,而且PID控制有其限制存在。

1、稳定性

若PID算法控制器的参数未挑选妥当,其控制器输出可能是不稳定的,也就是其输出发散,过程中可能有震荡,也可能没有震荡,且其输出只受饱和或是机械损坏等原因所限制。不稳定一般是因为过大增益造成,特别是针对延迟时间很长的系统。

2、最佳性能

PID控制器的最佳性能可能和针对过程变化或是设定值变化有关,也会随应用而不同。

两个基本的需求是调整能力(regulation,干扰拒绝,使系统维持在设定值)及命令追随 (设定值变化下,控制器输出追随设定值的反应速度)。有关命令追随的一些判据包括有上升时间及整定时间。有些应用可能因为安全考量,不允许输出超过设定值,也有些应用要求在到达设定值过程中的能量可以最小化。

3、各调试方法对比

4、调整PID参数对系统的影响

‘肆’ PID控制器算法

PID的增量型公式:

PID=Uk+KP*【E(k)-E(k-1)】+KI*E(k)+KD*【E(k)-2E(k-1)+E(k-2)】

PID算法具体分两种:一种是位置式的 ,一种是增量式的。

位置式PID的输出与过去的所有状态有关,计算时要对e(每一次的控制误差)进行累加,这个计算量非常大,而明显没有必要。而且小车的PID控制器的输出并不是绝对数值,而是一个△,代表增多少,减多少。换句话说,通过增量PID算法,每次输出是PWM要增加多少或者减小多少,而不是PWM的实际值。所以明白增量式PID就行了。


PID控制原理:

本系统通过摆杆(辊)反馈的位置信号实现同步控制。收线控制采用实时计算吵宽的实际卷径值,通过卷径的变化修正PID前馈量,可以使整个系统准确、稳定运行。

PID系统特点:

1、主驱动电机速度可以通过电位器来控制,把禅樱S350设置为SVC开环矢量控制,将模拟输出端子FM设定为运行频率,从而给定收卷用变频器的主速度。

2、收卷用S350变频器的主速度来自放卷(主驱动)的模拟输出端口。摆杆贺碰丛电位器模拟量

信号通过CI通道作为PID的反馈量。S350的频率源采用主频率Ⅵ和辅助频率源PID叠加的方式。通过调整运行过程PID参数,可以获得稳定的收放卷效果。

3、本系统启用逻辑控制和卷径计算功能,能使系统在任意卷径下平稳启动,同时两组PID参数可确保生产全程摆杆控制效果稳定。

‘伍’ 如何用PID算法编程,使单片机通过控制继电器来实现恒温功能。

/***********************************************************************
PID温度控制程序
程序说明:
系统上电后显示 “--温度”
表示需要先设定温度才开始进行温度检测
温度设定完毕后程序才开始进行PID温控
***********************************************************************/
#include <reg52.h>
#include <absacc.h>
#include"DS18B20.H"
#include"PID.H"
#define uchar unsigned char
#define uint unsigned int
unsigned char code tab[]=
{
0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xBF
}
;
/*个位0~9的数码管段码*/
unsigned char code sao[]=
{
0x7f,0xbf,0xdf,0xef
}
;
//扫描码
uchar set=30,keyflag=1 ; //set初始化为30° keyflag为进入温度设定的标志位
//4个按键使用说明
sbit key_out=P1^0 ; //用于温度设定后的退出
sbit key_up=P1^1 ; //设定温度加
sbit key_down=P1^2 ; //设定温度减
sbit key_in=P1^3 ; //在程序的运行中如需要重新设定温度 按下此键才能进入设置模式并且此时是停在温度控制的,按下key_out键后才表示设定完毕
void Show_key();
/***********************************************************/
void delays(unsigned char k)
{
unsigned char i,j ;
for(i=0;i<k;i++)
for(j=0;j<50;j++);
}
/*********************************************************
//数码管显示函数
P0口 作为数据口
P2口的低四位作为扫描口
变量 x表示扫描
d表示是否要加小数点 为1是 为0不加
y表示传递的数值
*********************************************************/
LCD_disp_char(uchar x,bit d,uchar y)
{
P2=0XFF ;
P0=0xFF ;
if(d==0)
P0=tab[y];
else
P0=tab[y]&0x7f ; //与上0x7f表示是否要加小数点
P2=sao[x]; //打开扫描端号

}
/*********************************************************
按键扫描
*********************************************************/
void keyscan(void)
{
if(key_in==0) //按键进入函数
{
delays(10); //延时消抖 (以下同)
if(key_in==0)
{
while(key_in==0)
{
Show_key(); //如果一直按着键不放 就一直显示在当前状态 (以下同)
}
keyflag=1 ; //按键标志位
}
}
/***********************/
if(key_out==0) //按键退出
{
delays(10);
if(key_out==0)
{
while(key_out==0)
{
Show_key();
}
keyflag=0 ;
set_temper=set ;
}
}
/*************************/
if(key_up==0) //设定温度的加
{
delays(10);
if(key_up==0)
{
while(key_up==0)
{
Show_key();
}
if(keyflag==1)
{
set++;
if(set>90) //如果大于90°就不在加
set=90 ;
}
}
}
/*************************/
if(key_down==0) //温度设定的减
{
delays(10);
if(key_down==0)
{
while(key_down==0)
{
Show_key();
}
if(keyflag==1)
{
set--;
if(set<30) //温度减到30°时不在往下减
set=30 ;
}
}
}
}
/*********************************************************************
按键按下时的显示函数
***********************************************************************/
void Show_key()
{
output=1 ;
LCD_disp_char(3,0,10); //显示 -
delays(3);
LCD_disp_char(2,0,10); //显示- (表示温度设定 )
delays(3);
LCD_disp_char(1,0,set/10); //显示温度十位
delays(3);
LCD_disp_char(0,0,set%10); //显示温度个位
delays(3);
}
/*****************************************************************/
void main()
{
unsigned int tmp ;//声明温度中间变量
unsigned char counter=0 ;
PIDBEGIN(); //PID参数的初始化
output=1 ; //关闭继电器输出
while(1)
{
keyscan();
if(keyflag)
{
Show_key(); //显示温度设定
}
else
{
if(counter--==0)
{
tmp=ReadTemperature();//每隔一段时间读取温度值
counter=20 ;
}
LCD_disp_char(3,0,tmp/1000); //显示温度十位
delays(3);
LCD_disp_char(2,1,tmp/100%10); //显示温度个位
//显示小数点
delays(3);
LCD_disp_char(1,0,tmp/10%10); //显示温度小数后一位
delays(3);
LCD_disp_char(0,0,tmp%10);//显示温度小数后二位
delays(3);
P2=0XFF ;
P0=0xff ;
compare_temper(); //比较温度

}
}
}
/**********************************************************************************************************************************************/
//PID算法温控C语言2008-08-17 18:58
#ifndef _PID_H__
#define _PID_H__
#include<intrins.h>
#include<math.h>
#include<string.h>
struct PID
{
unsigned int SetPoint ;
// 设定目标 Desired Value
unsigned int Proportion ;
// 比例常数 Proportional Const
unsigned int Integral ;
// 积分常数 Integral Const
unsigned int Derivative ;
// 微分常数 Derivative Const
unsigned int LastError ;
// Error[-1]
unsigned int PrevError ;
// Error[-2]
unsigned int SumError ;
// Sums of Errors
}
;
struct PID spid ;
// PID Control Structure
unsigned int rout ;
// PID Response (Output)
unsigned int rin ;
// PID Feedback (Input)

sbit output=P1^4;
unsigned char high_time,low_time,count=0 ;
//占空比调节参数
unsigned char set_temper ;
void PIDInit(struct PID*pp)
{
memset(pp,0,sizeof(struct PID)); //PID参数初始化全部设置为0
}
unsigned int PIDCalc(struct PID*pp,unsigned int NextPoint)
{
unsigned int dError,Error ;
Error=pp->SetPoint-NextPoint ;
// 偏差
pp->SumError+=Error ;
// 积分
dError=pp->LastError-pp->PrevError ;
// 当前微分
pp->PrevError=pp->LastError ;
pp->LastError=Error ;
//比例
//积分项
return(pp->Proportion*Error+pp->Integral*pp->SumError+pp->Derivative*dError);
// 微分项
}
/***********************************************************
温度比较处理子程序
***********************************************************/
void compare_temper()
{
unsigned char i ;
//EA=0;
if(set_temper>temper)
{
if(set_temper-temper>1)
{
high_time=100 ; //大于1°不进行PID运算
low_time=0 ;
}
else
{ //在1°范围内进行PID运算
for(i=0;i<10;i++)
{
//get_temper();
rin=s;
// Read Input
rout=PIDCalc(&spid,rin); //执行PID运算
// Perform PID Interation
}
if(high_time<=100) //限制最大值
high_time=(unsigned char)(rout/800);
else
high_time=100;
low_time=(100-high_time);
}
}
/****************************************/
else if(set_temper<=temper) //当实际温度大于设置温度时
{
if(temper-set_temper>0)//如果实际温度大于设定温度
{
high_time=0 ;
low_time=100 ;
}
else
{
for(i=0;i<10;i++)
{
//get_temper();
rin=s ;
// Read Input
rout=PIDCalc(&spid,rin);
// Perform PID Interation
}
if(high_time<100) //此变量是无符号字符型
high_time=(unsigned char)(rout/10000);
else
high_time=0 ;//限制不输出负值
low_time=(100-high_time);
//EA=1;
}
}
}

/*****************************************************
T0中断服务子程序,用于控制电平的翻转 ,40us*100=4ms周期
******************************************************/
void serve_T0()interrupt 1 using 1
{
if(++count<=(high_time))
output=0 ;
else if(count<=100)
{
output=1 ;
}
else
count=0 ;
TH0=0x2f ;
TL0=0xe0 ;
}
void PIDBEGIN()
{

TMOD=0x01 ;
TH0=0x2f ;
TL0=0x40 ;

EA=1 ;
ET0=1 ;
TR0=1 ;

high_time=50 ;
low_time=50 ;
PIDInit(&spid);
// Initialize Structure
spid.Proportion=10 ;
// Set PID Coefficients
spid.Integral=8 ;
spid.Derivative=6 ;
spid.SetPoint=100 ;
// Set PID Setpoint

}
#endif

转自他人程序。

‘陆’ pic单片机pid控制算法参数整定

我这有51的

#include <stdlib.h>

#include "global_varible.h"

/****************************************************************************
* 模块名: PID
* 描述: PID调节子程序
* 采用PID-PD算法。在偏差绝对值大于△e时,用PD算法,以改善动态品质。
* 当偏差绝对值小于△e时,用PID算法,提高稳定精度。
* PIDout=kp*e(t)+ki*[e(t)+e(t-1)+...+e(1)]+kd*[e(t)-e(t-1)]
*============================================================================
* 入口: 无
* 出口: 无
* 改变: PID_T_Run=加热时间控制
*****************************************************************************/
void PID_Math(void)
{
signed long ee1; //偏差一阶
//signed long ee2; //偏差二阶
signed long d_out; //积分输出

if(!Flag_PID_T_OK)
return;
Flag_PID_T_OK=0;

Temp_Set=3700; //温度控制设定值37.00度

PID_e0 = Temp_Set-Temp_Now; //本次偏差
ee1 = PID_e0-PID_e1; //计算一阶偏差
//ee2 = PID_e0-2*PID_e1+PID_e2; //计算二阶偏差
if(ee1 > 500) //一阶偏差的限制范围
ee1 = 500;
if(ee1 < -500)
ee1 = -500;
PID_e_SUM += PID_e0; //偏差之和
if(PID_e_SUM > 200) //积分最多累计的温差
PID_e_SUM = 200;
if(PID_e_SUM < -200)
PID_e_SUM = -200;

PID_Out = PID_kp*PID_e0+PID_kd*ee1; //计算PID比例和微分输出
if(abs(PID_e0) < 200) //如果温度相差小于1.5度则计入PID积分输出
{
if(abs(PID_e0) > 100) //如果温度相差大于1度时积分累计限制
{
if(PID_e_SUM > 100)
PID_e_SUM = 100;
if(PID_e_SUM < -100)
PID_e_SUM = -100;
}
d_out = PID_ki*PID_e_SUM; //积分输出
if(PID_e0 < -5) //当前温度高于设定温度0.5度时积分累计限制
{
if(PID_e_SUM > 150)
PID_e_SUM = 150;

if(PID_e_SUM > 0) //当前温度高于设定温度0.5度时削弱积分正输出
d_out >>= 1;
}
PID_Out += d_out; //PID比例,积分和微分输出
}
else
PID_e_SUM=0;

PID_Out/=100; //恢复被PID_Out系数放大的倍数
if(PID_Out > 200)
PID_Out=200;
if(PID_Out<0)
PID_Out=0;

if(PID_e0 > 300) //当前温度比设定温度低3度则全速加热
PID_Out=200;
if(PID_e0 < -20) //当前温度高于设定温度0.2度则关闭加热
PID_Out=0;

Hot_T_Run=PID_Out; //加热时间控制输出

PID_e2 = PID_e1; //保存上次偏差
PID_e1 = PID_e0; //保存当前偏差
}
////////////////////////////////////////////////////////////void PID_Math() end.

‘柒’ 单片机如何写PID程序

PID算法有公式,直接套用就可以了。
公式在这个链接说的很明白了。
http://ke..com/view/1759810.htm
1、如果加入D抖动的特别厉害,试试只用PI控制。
2、还有PID参数都是一步一步调出来的,我建议你做个上位机,就是个简单的VB串口程序,用来设置PID参数
3、然后在单片机这边弄个串口接收程序,这里就是个简单的串口程序,人人都会,把接收到的PID存储在缓冲区里。
4、然后单片机程序直接调用。单片机带EEPROM的话,当接收到改变的PID参数时,存储这些参数。去STC官网下你的单片机资料,上面有EEPROM测试程序,直接套用。
上面纯属个人建议,都容易实现,不过有点费时。

‘捌’ 8位单片机PID控制PWM的算法如何实现,C语言计算

PID控制在8位单片机中仍然有广泛的应用,比如温度控制,利用比例、积分、微分补偿来做恒温补偿控制,当然由于有这些数学处理,用C语言相对方便一些,以下是一个具体的实例。

#include<reg51.h>

#include<intrins.h>

#include<math.h>

#include<string.h>

struct PID {

unsigned int SetPoint; // 设定目标 Desired Value

unsigned int Proportion; // 比例常数 Proportional Const

unsigned int Integral; // 积分常数 Integral Const

unsigned int Derivative; // 微分常数 Derivative Const

unsigned int LastError; // Error[-1]

unsigned int PrevError; // Error[-2]

unsigned int SumError; // Sums of Errors

};

struct PID spid; // PID Control Structure

unsigned int rout; // PID Response (Output)

unsigned int rin; // PID Feedback (Input)

sbit data1=P1^0;

sbit clk=P1^1;

sbit plus=P2^0;

sbit subs=P2^1;

sbit stop=P2^2;

sbit output=P3^4;

sbit DQ=P3^3;

unsigned char flag,flag_1=0;

unsigned char high_time,low_time,count=0;//占空比调节参数

unsigned char set_temper=35;

unsigned char temper;

unsigned char i;

unsigned char j=0;

unsigned int s;

/***********************************************************

延时子程序,延时时间以12M晶振为准,延时时间为30us×time

***********************************************************/

void delay(unsigned char time)

{

unsigned char m,n;

for(n=0;n<time;n++)

for(m=0;m<2;m++){}

}

/***********************************************************

写一位数据子程序

***********************************************************/

void write_bit(unsigned char bitval)

{

EA=0;

DQ=0; /*拉低DQ以开始一个写时序*/

if(bitval==1)

{

_nop_();

DQ=1; /*如要写1,则将总线置高*/

}

delay(5); /*延时90us供DA18B20采样*/

DQ=1; /*释放DQ总线*/

_nop_();

_nop_();

EA=1;

}

/***********************************************************

写一字节数据子程序

***********************************************************/

void write_byte(unsigned char val)

{

unsigned char i;

unsigned char temp;

EA=0;

TR0=0;

for(i=0;i<8;i++) /*写一字节数据,一次写一位*/

{

temp=val>>i; /*移位操作,将本次要写的位移到最低位*/

temp=temp&1;

write_bit(temp); /*向总线写该位*/

}

delay(7); /*延时120us后*/

// TR0=1;

EA=1;

}

/***********************************************************

读一位数据子程序

***********************************************************/

unsigned char read_bit()

{

unsigned char i,value_bit;

EA=0;

DQ=0; /*拉低DQ,开始读时序*/

_nop_();

_nop_();

DQ=1; /*释放总线*/

for(i=0;i<2;i++){}

value_bit=DQ;

EA=1;

return(value_bit);

}

/***********************************************************

读一字节数据子程序

***********************************************************/

unsigned char read_byte()

{

unsigned char i,value=0;

EA=0;

for(i=0;i<8;i++)

{

if(read_bit()) /*读一字节数据,一个时序中读一次,并作移位处理*/

value|=0x01<<i;

delay(4); /*延时80us以完成此次都时序,之后再读下一数据*/

}

EA=1;

return(value);

}

/***********************************************************

复位子程序

***********************************************************/

unsigned char reset()

{

unsigned char presence;

EA=0;

DQ=0; /*拉低DQ总线开始复位*/

delay(30); /*保持低电平480us*/

DQ=1; /*释放总线*/

delay(3);

presence=DQ; /*获取应答信号*/

delay(28); /*延时以完成整个时序*/

EA=1;

return(presence); /*返回应答信号,有芯片应答返回0,无芯片则返回1*/

}

/***********************************************************

获取温度子程序

***********************************************************/

void get_temper()

{

unsigned char i,j;

do

{

i=reset(); /*复位*/

} while(i!=0); /*1为无反馈信号*/

i=0xcc; /*发送设备定位命令*/

write_byte(i);

i=0x44; /*发送开始转换命令*/

write_byte(i);

delay(180); /*延时*/

do

{

i=reset(); /*复位*/

} while(i!=0);

i=0xcc; /*设备定位*/

write_byte(i);

i=0xbe; /*读出缓冲区内容*/

write_byte(i);

j=read_byte();

i=read_byte();

i=(i<<4)&0x7f;

s=(unsigned int)(j&0x0f); //得到小数部分

s=(s*100)/16;

j=j>>4;

temper=i|j; /*获取的温度放在temper中*/

}

/*====================================================================================================

Initialize PID Structure

=====================================================================================================*/

void PIDInit (struct PID *pp)

{

memset ( pp,0,sizeof(struct PID)); //全部初始化为0

}

/*====================================================================================================

PID计算部分

=====================================================================================================*/

unsigned int PIDCalc( struct PID *pp, unsigned int NextPoint )

{

unsigned int dError,Error;

Error = pp->SetPoint - NextPoint; // 偏差

pp->SumError += Error; // 积分

dError = pp->LastError - pp->PrevError; // 当前微分

pp->PrevError = pp->LastError;

pp->LastError = Error;

return (pp->Proportion * Error // 比例项

+ pp->Integral * pp->SumError // 积分项

+ pp->Derivative * dError); // 微分项

}

/***********************************************************

温度比较处理子程序

***********************************************************/

void compare_temper()

{

unsigned char i;

if(set_temper>temper) //是否设置的温度大于实际温度

{

if(set_temper-temper>1) //设置的温度比实际的温度是否是大于1度

{

high_time=100; //如果是,则全速加热

low_time=0;

}

else //如果是在1度范围内,则运行PID计算

{

for(i=0;i<10;i++)

{

get_temper(); //获取温度

rin = s; // Read Input

rout = PIDCalc ( &spid,rin ); // Perform PID Interation

}

if (high_time<=100)

high_time=(unsigned char)(rout/800);

else

high_time=100;

low_time= (100-high_time);

}

}

else if(set_temper<=temper)

{

if(temper-set_temper>0)

{

high_time=0;

low_time=100;

}

else

{

for(i=0;i<10;i++)

{

get_temper();

rin = s; // Read Input

rout = PIDCalc ( &spid,rin ); // Perform PID Interation

}

if (high_time<100)

high_time=(unsigned char)(rout/10000);

else

high_time=0;

low_time= (100-high_time);

}

}

// else

// {}

}

/*****************************************************

T0中断服务子程序,用于控制电平的翻转 ,40us*100=4ms周期

******************************************************/

void serve_T0() interrupt 1 using 1

{

if(++count<=(high_time))

output=1;

else if(count<=100)

{

output=0;

}

else

count=0;

TH0=0x2f;

TL0=0xe0;

}

/*****************************************************

串行口中断服务程序,用于上位机通讯

******************************************************/

void serve_sio() interrupt 4 using 2

{

/* EA=0;

RI=0;

i=SBUF;

if(i==2)

{

while(RI==0){}

RI=0;

set_temper=SBUF;

SBUF=0x02;

while(TI==0){}

TI=0;

}

else if(i==3)

{

TI=0;

SBUF=temper;

while(TI==0){}

TI=0;

}

EA=1; */

}

void disp_1(unsigned char disp_num1[6])

{

unsigned char n,a,m;

for(n=0;n<6;n++)

{

// k=disp_num1[n];

for(a=0;a<8;a++)

{

clk=0;

m=(disp_num1[n]&1);

disp_num1[n]=disp_num1[n]>>1;

if(m==1)

data1=1;

else

data1=0;

_nop_();

clk=1;

_nop_();

}

}

}

/*****************************************************

显示子程序

功能:将占空比温度转化为单个字符,显示占空比和测得到的温度

******************************************************/

void display()

{

unsigned char code number[]={0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xe0,0xfe,0xf6};

unsigned char disp_num[6];

unsigned int k,k1;


k=high_time;

k=k%1000;

k1=k/100;

if(k1==0)

disp_num[0]=0;

else

disp_num[0]=0x60;

k=k%100;

disp_num[1]=number[k/10];

disp_num[2]=number[k%10];

k=temper;

k=k%100;

disp_num[3]=number[k/10];

disp_num[4]=number[k%10]+1;

disp_num[5]=number[s/10];

disp_1(disp_num);

}

/***********************************************************

主程序

***********************************************************/

void main()

{

unsigned char z;

unsigned char a,b,flag_2=1,count1=0;

unsigned char phil[]={2,0xce,0x6e,0x60,0x1c,2};

TMOD=0x21;

TH0=0x2f;

TL0=0x40;

SCON=0x50;

PCON=0x00;

TH1=0xfd;

TL1=0xfd;

PS=1;

EA=1;

EX1=0;

ET0=1;

ES=1;

TR0=1;

TR1=1;

high_time=50;

low_time=50;

PIDInit ( &spid ); // Initialize Structure

spid.Proportion = 10; // Set PID Coefficients 比例常数 Proportional Const

spid.Integral = 8; //积分常数 Integral Const

spid.Derivative =6; //微分常数 Derivative Const

spid.SetPoint = 100; // Set PID Setpoint 设定目标 Desired Value

while(1)

{

if(plus==0)

{

EA=0;

for(a=0;a<5;a++)

for(b=0;b<102;b++){}

if(plus==0)

{

set_temper++;

flag=0;

}

}

else if(subs==0)

{

for(a=0;a<5;a++)

for(b=0;a<102;b++){}

if(subs==0)

{

set_temper--;

flag=0;

}

}

else if(stop==0)

{

for(a=0;a<5;a++)

for(b=0;b<102;b++){}

if(stop==0)

{

flag=0;

break;

}

EA=1;

}

get_temper();

b=temper;

if(flag_2==1)

a=b;

if((abs(a-b))>5)

temper=a;

else

temper=b;

a=temper;

flag_2=0;

if(++count1>30)

{

display();

count1=0;

}

compare_temper();

}

TR0=0;

z=1;

while(1)

{

EA=0;

if(stop==0)

{

for(a=0;a<5;a++)

for(b=0;b<102;b++){}

if(stop==0)

disp_1(phil);

// break;

}

EA=1;

}

}

‘玖’ 单片机用PID控制可控硅,让电烤箱温度恒定的算法请教高手!

pid位置式算法,在温度比设定温度低x度时,用pd,当比设定温度低x度以内,用pid。
可控硅部分,硬件用BTA26或者BT139(看加热器件的功率了),采用过零检测来确定过零点,用单片机的外部中断配合tmer,来控制开关时间。在pd和pid阶段,pid参数可能要用2套参数,自己实验吧,还有,你可以看一下,Ziegler-Nichols参数整定法。
另:
OURAVR上也有个酷贴,很详细的,你可以参考一下,网址再下面:
http://www.ourdev.cn/bbs/bbs_content.jsp?bbs_sn=936512&bbs_page_no=1&search_mode=1&search_text=pid&bbs_id=1000

阅读全文

与单片机pid算法教程相关的资料

热点内容
icloud收信服务器地址 浏览:498
编程思考者 浏览:450
压缩机型号用什么氟利昂 浏览:553
农机空气压缩机 浏览:664
程序员下载歌曲 浏览:894
编译未检测到仿真器 浏览:807
压缩机每次启动12分钟就停 浏览:730
creo复制曲面命令 浏览:959
程序员恋上女硕士 浏览:669
ansys的get命令 浏览:988
国外dns苹果服务器地址 浏览:430
国家职业技术资格证书程序员 浏览:652
奇瑞租车app是什么 浏览:99
系统源码安装说明 浏览:420
命令行加壳 浏览:96
解压时显示防失效视频已加密 浏览:295
苹果短信加密发送 浏览:446
天翼私有云服务器租用 浏览:733
贵州云服务器属于哪个上市公司 浏览:59
编程联动教程 浏览:483