导航:首页 > 源码编译 > 遗传算法工具包

遗传算法工具包

发布时间:2023-11-01 17:05:04

Ⅰ 如何调用MATLAB遗传算法工具箱

1、打开MATLAB软件。

Ⅱ 请教怎么在matlab上安装遗传算法工具箱啊,为什么我安不上啊

安装步骤

1.将GAOT工具箱文件拷贝至Matlab文件夹下,具体路径为:
C:\program files\MATLAB\R2009a\toolbox。(也可以放在其他路径,不一定放在toolbox里面,比如C:\program files\MATLAB\R2009a也行)。

2.将GAOT工具箱路径加入Matlab文件路径之中。流程为:File-->Set Path-->Add with Subfolders。即,将C:\program files\MATLAB\R2009a\toolbox\gaot文件夹加入该路径系统中。

3. 重新启动Matlab,运行。

4. 但是在重新启动后,你会发现在命令窗口,会出现如下警告。即安装遗传工具箱后出现问题:Warning: Name is nonexistent or not a directory: \afs\eos\info\ie\ie589k_info\GAOT
解决方案:打开gaot文件夹下的startup.m,这里面写着“path(path,'\afs\eos\info\ie\ie589k_info\GAOT');”只要将“\afs\eos\info\ie\ie589k_info\GAOT”改为goat当前所在的目录,即“C:\program files\MATLAB\R2009a\toolbox\gaot”就可以了

5.测试是否安装成功,方法如下:在命令窗口输入:edit ga出现如下函数:function [x,fval,exitFlag,output,population,scores] = ga(fun,nvars,Aineq,bineq,Aeq,beq,lb,ub,nonlcon,options)此时你会发现这是MATLAB自带的ga函数,并不是你想要的工具箱中的ga函数,这样会在以后应用工具箱编写程序是发生错误。

6. 解决上述问题的方法:为了统一,不管你是高版本还是低版本,都可以通过将GAOT工具箱中的ga重命名为gaot_ga(名字可以随你定,但是不能改为大写GA,原因是MATLAB会默认大小写函数是同一个函数,不信你可以用edit ga和edit GA验证),来实现解决上述问题。
这样整个的GAOT工具箱安装完备。

Ⅲ 用遗传算法工具箱求解一个多目标优化问题,现在需要一个matlab程序,求高人指点

用遗传算法工具箱求解一个多目标优化问题的步骤:

1、根据题意,建立自定义目标函数,ga_fun1(x)

2、在命令窗口中,输入

>> optimtool %调用遗传算法工具箱

3、在遗传算法工具箱界面中,分别对Fitnessfunction框内输入@ga_fun1();A框内输入[1,1,1];b框内输入16;Aeq框内输入[];beq框内输入[];Lower框内输入[0,0,0];Upper框内输入[];

4、单击Start。得到x=4.508 y=2.513 z=1.912值。

Ⅳ 基于遗传算法的BP神经网络

源码地址: https://github.com/Grootzz/GA-BP
介绍:
利用遗传算法并行地优化BP网络的权值和阈值,从而避免了BP网络在优化权值和阈值时陷入局部最优的缺点

背景:
这个项目的背景为客运量和货运量的预测

文件介绍:

因为项目中用到了GAOT工具包中的函数,所以需要将GAOT工具包加入路径。
操作步骤为:点击GAOT文件--->添加到路径--->选定文件夹和子文件夹
这样,工程中就可以调用GAOT工具包中的函数了

源码地址: https://github.com/Grootzz/GA-BP

Ⅳ 如何用遗传算法工具箱中的函数画出适应度函数曲线

matlab有遗传算法工具箱。

核心函数:
(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数
【输出参数】
pop--生成的初始种群
【输入参数】
num--种群中的个体数目
bounds--代表变量的上下界的矩阵
eevalFN--适应度函数
eevalOps--传递给适应度函数的参数
options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如
precision--变量进行二进制编码时指定的精度
F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)

(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,
termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数
【输出参数】
x--求得的最优解
endPop--最终得到的种群
bPop--最优种群的一个搜索轨迹
【输入参数】
bounds--代表变量上下界的矩阵
evalFN--适应度函数
evalOps--传递给适应度函数的参数
startPop-初始种群
opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0]
termFN--终止函数的名称,如['maxGenTerm']
termOps--传递个终止函数的参数,如[100]
selectFN--选择函数的名称,如['normGeomSelect']
selectOps--传递个选择函数的参数,如[0.08]
xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover']
xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]
mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']
mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

注意】matlab工具箱函数必须放在工作目录下
【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9
【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08
【程序清单】
%编写目标函数
function[sol,eval]=fitness(sol,options)
x=sol(1);
eval=x+10*sin(5*x)+7*cos(4*x);
%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10
[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',
[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =
7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

【问题】在-5<=Xi<=5,i=1,2区间内,求解
f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2)))+22.71282的最小值。
【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3
【程序清单】
%源函数的matlab代码
function [eval]=f(sol)
numv=size(sol,2);
x=sol(1:numv);
eval=-20*exp(-0.2*sqrt(sum(x.^2)/numv)))-exp(sum(cos(2*pi*x))/numv)+22.71282;
%适应度函数的matlab代码
function [sol,eval]=fitness(sol,options)
numv=size(sol,2)-1;
x=sol(1:numv);
eval=f(x);
eval=-eval;
%遗传算法的matlab代码
bounds=ones(2,1)*[-5 5];
[p,endPop,bestSols,trace]=ga(bounds,'fitness')

注:前两个文件存储为m文件并放在工作目录下,运行结果为
p =
0.0000 -0.0000 0.0055

大家可以直接绘出f(x)的图形来大概看看f(x)的最值是多少,也可是使用优化函数来验证。matlab命令行执行命令:
fplot('x+10*sin(5*x)+7*cos(4*x)',[0,9])

evalops是传递给适应度函数的参数,opts是二进制编码的精度,termops是选择maxGenTerm结束函数时传递个maxGenTerm的参数,即遗传代数。xoverops是传递给交叉函数的参数。mutops是传递给变异函数的参数。

Ⅵ 请教一下,用遗传算法工具箱怎么求下面函数的最小值

题主给出函数用遗传算法工具箱求其最小值,可以这样来做:

1、自定义函数,并保存为leijia.m文件。

2、在当前目录下,执行 optimtool,打开最优化工具箱,再选择遗传算法工具箱

3、按表中格式,输入相关内容,最后执行可以得到

阅读全文

与遗传算法工具包相关的资料

热点内容
rtk文件夹没了怎么办 浏览:187
饥荒安卓闪退怎么办 浏览:635
python二次开发cad 浏览:304
程序员直播机器人舞团 浏览:769
devc指针编译问题 浏览:1002
支持dsd硬解压声卡 浏览:771
怎么查看u盘加密区 浏览:184
台电加密是什么格式 浏览:158
php论坛版块在哪个文件夹 浏览:442
暗黑的服务器为什么维护 浏览:624
android内存溢出的原因 浏览:18
标志307的压缩比是多少 浏览:636
服务器启动为什么叫三声 浏览:997
追风筝的人英文pdf 浏览:940
解压小熊手机壳 浏览:348
成都市区建成面积算法 浏览:662
智能家居单片机 浏览:98
买男装用什么app好 浏览:857
文件夹合并了怎么拆开 浏览:262
波段副图源码无未来函数 浏览:91