⑴ c语言中排序方法
1、冒泡排序(最常用)
冒泡排序是最简单的排序方法:原理是:从左到右,相邻元素进行比较。每次比较一轮,就会找到序列中最大的一个或最小的一个。这个数就会从序列的最右边冒出来。(注意每一轮都是从a[0]开始比较的)
以从小到大排序为例,第一轮比较后,所有数中最大的那个数就会浮到最右边;第二轮比较后,所有数中第二大的那个数就会浮到倒数第二个位置……就这样一轮一轮地比较,最后实现从小到大排序。
2、鸡尾酒排序
鸡尾酒排序又称双向冒泡排序、鸡尾酒搅拌排序、搅拌排序、涟漪排序、来回排序或快乐小时排序, 是冒泡排序的一种变形。该算法与冒泡排序的不同处在于排序时是以双向在序列中进行排序。
原理:数组中的数字本是无规律的排放,先找到最小的数字,把他放到第一位,然后找到最大的数字放到最后一位。然后再找到第二小的数字放到第二位,再找到第二大的数字放到倒数第二位。以此类推,直到完成排序。
3、选择排序
思路是设有10个元素a[1]-a[10],将a[1]与a[2]-a[10]比较,若a[1]比a[2]-a[10]都小,则不进行交换。若a[2]-a[10]中有一个以上比a[1]小,则将其中最大的一个与a[1]交换,此时a[1]就存放了10个数中最小的一个。同理,第二轮拿a[2]与a[3]-a[10]比较,a[2]存放a[2]-a[10]中最小的数,以此类推。
4、插入排序
插入排序是在一个已经有序的小序列的基础上,一次插入一个元素*
一般来说,插入排序都采用in-place在数组上实现。
具体算法描述如下:
⒈ 从第一个元素开始,该元素可以认为已经被排序
⒉ 取出下一个元素,在已经排序的元素序列中从后向前扫描
⒊ 如果该元素(已排序)大于新元素,将该元素移到下一位置
⒋ 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置
⒌ 将新元素插入到下一位置中
⒍ 重复步骤2~5
⑵ 求c语言基数排序与桶排序的源代码
基数排斗败序:
#include<math.h>
testBS()
{
inta[]={2,343,342,1,123,43,4343,433,687,654,3};
int*a_p=a;
//计算数组长度
intsize=sizeof(a)/sizeof(int);
//基数排序
bucketSort3(a_p,size);
//打印排序后结果
inti;
for(i=0;i<size;i++)
{
printf("%d ",a[i]);
}
intt;
scanf("%d",t);
}
//基数排序
voidbucketSort3(int*p,intn)
{
//获取数组中的最大数
intmaxNum=findMaxNum(p,n);
//获取最大数的位数,次数也是再分配的次数。
intloopTimes=getLoopTimes(maxNum);
inti;
//对每一位进行桶分配
for(i=1;i<=loopTimes;i++)
{
sort2(p,n,i);
}
}
//获取数字的位数
intgetLoopTimes(intnum)
{
intcount=1;
inttemp=num/10;
while(temp!=0)
{
count++;
temp=temp/10;
}
胡碰returncount;
}
//查询数组中的最大数
intfindMaxNum(int*p,intn)
{
inti;
intmax=0;
for(i=0;i<n;i++)
{
if(*(p+i)>max)
{
max=*(p+i);
}
}
returnmax;
}
//将数字分配到各自的桶中,然后按照桶的顺序输出排序结果
voidsort2(int*p,intn,intloop)
{
//建立一组桶此处的20是预设的根据实际数情况修改
intbuckets[10][20]={};
//求桶的index的除数
//如798个位桶index=(798/1)%10=8
//十位桶index=(798/10)%10=9
//百位桶index=(798/100)%10=7
//tempNum为上式中的1、10、100
inttempNum=(int)pow(10,loop-1);
inti,j;
for(i=0;i<n;i++)
{
introw_index=(*(p+i)/tempNum)%10;
for(j=0;j<20;j++)
{
if(buckets[row_index][j]==NULL)
{
buckets[row_index][j]=*(p+i);
break;
}
}
}
//将桶中的数,倒回到原有数组中
intk=0;
for(i=0;i<10;i++)
{
for(j=0;j<20;j++)
{
if(buckets[i][j]!=NULL)
{
*(p+k)=buckets[i][j];
buckets[i][j]=NULL;
裤销谈k++;
}
}
}
}
桶排序
#include<stdio.h>
#defineMAXNUM100
voidbucksort(intarr[],intN,intM)
{
intcount[MAXNUM];
for(inti=0;i<=M;i++)
{
count[i]=0;
}
for(inti=0;i<N;i++)
{
++count[arr[i]];
}
for(inti=0;i<=M;i++)
{
for(intj=1;j<=count[i];j++)
{
printf("%d",i);
}
}
}
intmain()
{
inta[]={2,5,6,12,4,8,8,6,7,8,8,10,7,6};
bucksort(a,sizeof(a)/sizeof(a[0]),12);
return0;
}
⑶ C语言排序
//总共给你整理了7种排序算法:希尔排序,链式基数排序,归并排序
//起泡排序,简单选择排序,树形选择排序,堆排序,先自己看看吧,
//看不懂可以再问身边的人或者查资料,既然可以上网,我相信你所在的地方信息流通方式应该还行,所有的程序全部在VC++6.0下编译通过
//希尔排序
#include<stdio.h>
typedef int InfoType; // 定义其它数据项的类型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};
struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
void ShellInsert(SqList &L,int dk)
{ // 对顺序表L作一趟希尔插入排序。本算法是和一趟直接插入排序相比,
// 作了以下修改:
// 1.前后记录位置的增量是dk,而不是1;
// 2.r[0]只是暂存单元,不是哨兵。当j<=0时,插入位置已找到。算法10.4
int i,j;
for(i=dk+1;i<=L.length;++i)
if LT(L.r[i].key,L.r[i-dk].key)
{ // 需将L.r[i]插入有序增量子表
L.r[0]=L.r[i]; // 暂存在L.r[0]
for(j=i-dk;j>0&<(L.r[0].key,L.r[j].key);j-=dk)
L.r[j+dk]=L.r[j]; // 记录后移,查找插入位置
L.r[j+dk]=L.r[0]; // 插入
}
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("%d ",L.r[i].key);
printf("\n");
}
void print1(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
void ShellSort(SqList &L,int dlta[],int t)
{ // 按增量序列dlta[0..t-1]对顺序表L作希尔排序。算法10.5
int k;
for(k=0;k<t;++k)
{
ShellInsert(L,dlta[k]); // 一趟增量为dlta[k]的插入排序
printf("第%d趟排序结果: ",k+1);
print(L);
}
}
#define N 10
#define T 3
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8},{55,9},{4,10}};
SqList l;
int dt[T]={5,3,1}; // 增量序列数组
for(int i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前: ");
print(l);
ShellSort(l,dt,T);
printf("排序后: ");
print1(l);
}
/*****************************************************************/
//链式基数排序
typedef int InfoType; // 定义其它数据项的类型
typedef int KeyType; // 定义RedType类型的关键字为整型
struct RedType // 记录类型(同c10-1.h)
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项
};
typedef char KeysType; // 定义关键字类型为字符型
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函数结果状态代码
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函数的类型,其值是函数结果状态代码,如OK等
typedef int Boolean; // Boolean是布尔类型,其值是TRUE或FALSE
#define MAX_NUM_OF_KEY 8 // 关键字项数的最大值
#define RADIX 10 // 关键字基数,此时是十进制整数的基数
#define MAX_SPACE 1000
struct SLCell // 静态链表的结点类型
{
KeysType keys[MAX_NUM_OF_KEY]; // 关键字
InfoType otheritems; // 其它数据项
int next;
};
struct SLList // 静态链表类型
{
SLCell r[MAX_SPACE]; // 静态链表的可利用空间,r[0]为头结点
int keynum; // 记录的当前关键字个数
int recnum; // 静态链表的当前长度
};
typedef int ArrType[RADIX];
void InitList(SLList &L,RedType D[],int n)
{ // 初始化静态链表L(把数组D中的数据存于L中)
char c[MAX_NUM_OF_KEY],c1[MAX_NUM_OF_KEY];
int i,j,max=D[0].key; // max为关键字的最大值
for(i=1;i<n;i++)
if(max<D[i].key)
max=D[i].key;
L.keynum=int(ceil(log10(max)));
L.recnum=n;
for(i=1;i<=n;i++)
{
L.r[i].otheritems=D[i-1].otherinfo;
itoa(D[i-1].key,c,10); // 将10进制整型转化为字符型,存入c
for(j=strlen(c);j<L.keynum;j++) // 若c的长度<max的位数,在c前补'0'
{
strcpy(c1,"0");
strcat(c1,c);
strcpy(c,c1);
}
for(j=0;j<L.keynum;j++)
L.r[i].keys[j]=c[L.keynum-1-j];
}
}
int ord(char c)
{ // 返回k的映射(个位整数)
return c-'0';
}
void Distribute(SLCell r[],int i,ArrType f,ArrType e) // 算法10.15
{ // 静态键表L的r域中记录已按(keys[0],…,keys[i-1])有序。本算法按
// 第i个关键字keys[i]建立RADIX个子表,使同一子表中记录的keys[i]相同。
// f[0..RADIX-1]和e[0..RADIX-1]分别指向各子表中第一个和最后一个记录
int j,p;
for(j=0;j<RADIX;++j)
f[j]=0; // 各子表初始化为空表
for(p=r[0].next;p;p=r[p].next)
{
j=ord(r[p].keys[i]); // ord将记录中第i个关键字映射到[0..RADIX-1]
if(!f[j])
f[j]=p;
else
r[e[j]].next=p;
e[j]=p; // 将p所指的结点插入第j个子表中
}
}
int succ(int i)
{ // 求后继函数
return ++i;
}
void Collect(SLCell r[],ArrType f,ArrType e)
{ // 本算法按keys[i]自小至大地将f[0..RADIX-1]所指各子表依次链接成
// 一个链表,e[0..RADIX-1]为各子表的尾指针。算法10.16
int j,t;
for(j=0;!f[j];j=succ(j)); // 找第一个非空子表,succ为求后继函数
r[0].next=f[j];
t=e[j]; // r[0].next指向第一个非空子表中第一个结点
while(j<RADIX-1)
{
for(j=succ(j);j<RADIX-1&&!f[j];j=succ(j)); // 找下一个非空子表
if(f[j])
{ // 链接两个非空子表
r[t].next=f[j];
t=e[j];
}
}
r[t].next=0; // t指向最后一个非空子表中的最后一个结点
}
void printl(SLList L)
{ // 按链表输出静态链表
int i=L.r[0].next,j;
while(i)
{
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" ");
i=L.r[i].next;
}
}
void RadixSort(SLList &L)
{ // L是采用静态链表表示的顺序表。对L作基数排序,使得L成为按关键字
// 自小到大的有序静态链表,L.r[0]为头结点。算法10.17
int i;
ArrType f,e;
for(i=0;i<L.recnum;++i)
L.r[i].next=i+1;
L.r[L.recnum].next=0; // 将L改造为静态链表
for(i=0;i<L.keynum;++i)
{ // 按最低位优先依次对各关键字进行分配和收集
Distribute(L.r,i,f,e); // 第i趟分配
Collect(L.r,f,e); // 第i趟收集
printf("第%d趟收集后:\n",i+1);
printl(L);
printf("\n");
}
}
void print(SLList L)
{ // 按数组序号输出静态链表
int i,j;
printf("keynum=%d recnum=%d\n",L.keynum,L.recnum);
for(i=1;i<=L.recnum;i++)
{
printf("keys=");
for(j=L.keynum-1;j>=0;j--)
printf("%c",L.r[i].keys[j]);
printf(" otheritems=%d next=%d\n",L.r[i].otheritems,L.r[i].next);
}
}
void Sort(SLList L,int adr[]) // 改此句(类型)
{ // 求得adr[1..L.length],adr[i]为静态链表L的第i个最小记录的序号
int i=1,p=L.r[0].next;
while(p)
{
adr[i++]=p;
p=L.r[p].next;
}
}
void Rearrange(SLList &L,int adr[]) // 改此句(类型)
{ // adr给出静态链表L的有序次序,即L.r[adr[i]]是第i小的记录。
// 本算法按adr重排L.r,使其有序。算法10.18(L的类型有变)
int i,j,k;
for(i=1;i<L.recnum;++i) // 改此句(类型)
if(adr[i]!=i)
{
j=i;
L.r[0]=L.r[i]; // 暂存记录L.r[i]
while(adr[j]!=i)
{ // 调整L.r[adr[j]]的记录到位直到adr[j]=i为止
k=adr[j];
L.r[j]=L.r[k];
adr[j]=j;
j=k; // 记录按序到位
}
L.r[j]=L.r[0];
adr[j]=j;
}
}
#define N 10
void main()
{
RedType d[N]={{278,1},{109,2},{63,3},{930,4},{589,5},{184,6},{505,7},{269,8},{8,9},{83,10}};
SLList l;
int *adr;
InitList(l,d,N);
printf("排序前(next域还没赋值):\n");
print(l);
RadixSort(l);
printf("排序后(静态链表):\n");
print(l);
adr=(int*)malloc((l.recnum)*sizeof(int));
Sort(l,adr);
Rearrange(l,adr);
printf("排序后(重排记录):\n");
print(l);
}
/*******************************************/
//归并排序
#include<stdio.h>
typedef int InfoType; // 定义其它数据项的类型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};
struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
void Merge(RedType SR[],RedType TR[],int i,int m,int n)
{ // 将有序的SR[i..m]和SR[m+1..n]归并为有序的TR[i..n] 算法10.12
int j,k,l;
for(j=m+1,k=i;i<=m&&j<=n;++k) // 将SR中记录由小到大地并入TR
if LQ(SR[i].key,SR[j].key)
TR[k]=SR[i++];
else
TR[k]=SR[j++];
if(i<=m)
for(l=0;l<=m-i;l++)
TR[k+l]=SR[i+l]; // 将剩余的SR[i..m]复制到TR
if(j<=n)
for(l=0;l<=n-j;l++)
TR[k+l]=SR[j+l]; // 将剩余的SR[j..n]复制到TR
}
void MSort(RedType SR[],RedType TR1[],int s, int t)
{ // 将SR[s..t]归并排序为TR1[s..t]。算法10.13
int m;
RedType TR2[MAXSIZE+1];
if(s==t)
TR1[s]=SR[s];
else
{
m=(s+t)/2; // 将SR[s..t]平分为SR[s..m]和SR[m+1..t]
MSort(SR,TR2,s,m); // 递归地将SR[s..m]归并为有序的TR2[s..m]
MSort(SR,TR2,m+1,t); // 递归地将SR[m+1..t]归并为有序的TR2[m+1..t]
Merge(TR2,TR1,s,m,t); // 将TR2[s..m]和TR2[m+1..t]归并到TR1[s..t]
}
}
void MergeSort(SqList &L)
{ // 对顺序表L作归并排序。算法10.14
MSort(L.r,L.r,1,L.length);
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
#define N 7
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
MergeSort(l);
printf("排序后:\n");
print(l);
}
/**********************************************/
//起泡排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函数结果状态代码
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status;
typedef int Boolean;
#define N 8
void bubble_sort(int a[],int n)
{ // 将a中整数序列重新排列成自小至大有序的整数序列(起泡排序)
int i,j,t;
Status change;
for(i=n-1,change=TRUE;i>1&&change;--i)
{
change=FALSE;
for(j=0;j<i;++j)
if(a[j]>a[j+1])
{
t=a[j];
a[j]=a[j+1];
a[j+1]=t;
change=TRUE;
}
}
}
void print(int r[],int n)
{
int i;
for(i=0;i<n;i++)
printf("%d ",r[i]);
printf("\n");
}
void main()
{
int d[N]={49,38,65,97,76,13,27,49};
printf("排序前:\n");
print(d,N);
bubble_sort(d,N);
printf("排序后:\n");
print(d,N);
}
/****************************************************/
//简单选择排序
#include<stdio.h>
typedef int InfoType; // 定义其它数据项的类型
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};
struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
int SelectMinKey(SqList L,int i)
{ // 返回在L.r[i..L.length]中key最小的记录的序号
KeyType min;
int j,k;
k=i; // 设第i个为最小
min=L.r[i].key;
for(j=i+1;j<=L.length;j++)
if(L.r[j].key<min) // 找到更小的
{
k=j;
min=L.r[j].key;
}
return k;
}
void SelectSort(SqList &L)
{ // 对顺序表L作简单选择排序。算法10.9
int i,j;
RedType t;
for(i=1;i<L.length;++i)
{ // 选择第i小的记录,并交换到位
j=SelectMinKey(L,i); // 在L.r[i..L.length]中选择key最小的记录
if(i!=j)
{ // 与第i个记录交换
t=L.r[i];
L.r[i]=L.r[j];
L.r[j]=t;
}
}
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
SelectSort(l);
printf("排序后:\n");
print(l);
}
/************************************************/
//树形选择排序
#include<string.h>
#include<ctype.h>
#include<malloc.h> // malloc()等
#include<limits.h> // INT_MAX等
#include<stdio.h> // EOF(=^Z或F6),NULL
#include<stdlib.h> // atoi()
#include<io.h> // eof()
#include<math.h> // floor(),ceil(),abs()
#include<process.h> // exit()
#include<iostream.h> // cout,cin
// 函数结果状态代码
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define INFEASIBLE -1
typedef int Status; // Status是函数的类型,其值是函数结果状态代码,如OK等
typedef int Boolean; // Boolean是布尔类型,其值是TRUE或FALSE
typedef int InfoType; // 定义其它数据项的类型
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};
struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
void TreeSort(SqList &L)
{ // 树形选择排序
int i,j,j1,k,k1,l,n=L.length;
RedType *t;
l=(int)ceil(log(n)/log(2))+1; // 完全二叉树的层数
k=(int)pow(2,l)-1; // l层完全二叉树的结点总数
k1=(int)pow(2,l-1)-1; // l-1层完全二叉树的结点总数
t=(RedType*)malloc(k*sizeof(RedType)); // 二叉树采用顺序存储结构
for(i=1;i<=n;i++) // 将L.r赋给叶子结点
t[k1+i-1]=L.r[i];
for(i=k1+n;i<k;i++) // 给多余的叶子的关键字赋无穷大
t[i].key=INT_MAX;
j1=k1;
j=k;
while(j1)
{ // 给非叶子结点赋值
for(i=j1;i<j;i+=2)
t[i].key<t[i+1].key?(t[(i+1)/2-1]=t[i]):(t[(i+1)/2-1]=t[i+1]);
j=j1;
j1=(j1-1)/2;
}
for(i=0;i<n;i++)
{
L.r[i+1]=t[0]; // 将当前最小值赋给L.r[i]
j1=0;
for(j=1;j<l;j++) // 沿树根找结点t[0]在叶子中的序号j1
t[2*j1+1].key==t[j1].key?(j1=2*j1+1):(j1=2*j1+2);
t[j1].key=INT_MAX;
while(j1)
{
j1=(j1+1)/2-1; // 序号为j1的结点的双亲结点序号
t[2*j1+1].key<=t[2*j1+2].key?(t[j1]=t[2*j1+1]):(t[j1]=t[2*j1+2]);
}
}
free(t);
}
void print(SqList L)
{
int i;
for(i=1;i<=L.length;i++)
printf("(%d,%d)",L.r[i].key,L.r[i].otherinfo);
printf("\n");
}
#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
SqList l;
int i;
for(i=0;i<N;i++)
l.r[i+1]=d[i];
l.length=N;
printf("排序前:\n");
print(l);
TreeSort(l);
printf("排序后:\n");
print(l);
}
/****************************/
//堆排序
#include<stdio.h>
typedef int InfoType; // 定义其它数据项的类型
#define EQ(a,b) ((a)==(b))
#define LT(a,b) ((a)<(b))
#define LQ(a,b) ((a)<=(b))
#define MAXSIZE 20 // 一个用作示例的小顺序表的最大长度
typedef int KeyType; // 定义关键字类型为整型
struct RedType // 记录类型
{
KeyType key; // 关键字项
InfoType otherinfo; // 其它数据项,具体类型在主程中定义
};
struct SqList // 顺序表类型
{
RedType r[MAXSIZE+1]; // r[0]闲置或用作哨兵单元
int length; // 顺序表长度
};
typedef SqList HeapType; // 堆采用顺序表存储表示
void HeapAdjust(HeapType &H,int s,int m) // 算法10.10
{ // 已知H.r[s..m]中记录的关键字除H.r[s].key之外均满足堆的定义,本函数
// 调整H.r[s]的关键字,使H.r[s..m]成为一个大顶堆(对其中记录的关键字而言)
RedType rc;
int j;
rc=H.r[s];
for(j=2*s;j<=m;j*=2)
{ // 沿key较大的孩子结点向下筛选
if(j<m&<(H.r[j].key,H.r[j+1].key))
++j; // j为key较大的记录的下标
if(!LT(rc.key,H.r[j].key))
break; // rc应插入在位置s上
H.r[s]=H.r[j];
s=j;
}
H.r[s]=rc; // 插入
}
void HeapSort(HeapType &H)
{ // 对顺序表H进行堆排序。算法10.11
RedType t;
int i;
for(i=H.length/2;i>0;--i) // 把H.r[1..H.length]建成大顶堆
HeapAdjust(H,i,H.length);
for(i=H.length;i>1;--i)
{ // 将堆顶记录和当前未经排序子序列H.r[1..i]中最后一个记录相互交换
t=H.r[1];
H.r[1]=H.r[i];
H.r[i]=t;
HeapAdjust(H,1,i-1); // 将H.r[1..i-1]重新调整为大顶堆
}
}
void print(HeapType H)
{
int i;
for(i=1;i<=H.length;i++)
printf("(%d,%d)",H.r[i].key,H.r[i].otherinfo);
printf("\n");
}
#define N 8
void main()
{
RedType d[N]={{49,1},{38,2},{65,3},{97,4},{76,5},{13,6},{27,7},{49,8}};
HeapType h;
int i;
for(i=0;i<N;i++)
h.r[i+1]=d[i];
h.length=N;
printf("排序前:\n");
print(h);
HeapSort(h);
printf("排序后:\n");
print(h);
}
⑷ C语言 各常见排序法的时间复杂度 急 请简单说明
选择排序算法复杂度是O(n^2)。
插入排序是O(n^2)
快速排序快速排序是不稳定的。最理想情况算法时间复杂度O(nlog2n),最坏O(n^2)。
堆排序算法时间复杂度O(nlogn)。
归并排序的时间复杂度是O(nlog2n)。