⑴ RFID定位与UWB定位技术的区别
你好,这个问题建议你从两种技术的底层开始了解,会更好理解两者的优劣势
一、定义
1)RFID定位,RFID(radio frequency identification devices)通常指2.4Ghz频段内的无线射频识别,用于定位的,主要分无源UHF和有源RFID(典型2.4G、800M、400M等非标准协议);
2)UWB定位,UWB(Ultra Wide Band),遵循IEEE 802.15.4A通信标准。
二、定位原理
1)无源RFID定位,通过UHF读头进行判别,通常安装于出入口,识别到即判定经过,门口两侧通过定向天线,进行进出区分,因无源(不用电池),标签从读头处获得能量再发射出来,故识别距离较短,通常1~2米;
2)有源RFID定位,有源标签通过定时发送信号,有源基站可接收周边标签信号,通常接收范围有限(一般不大于100米半径),加上标签RSSI进行过滤,即可得到一定的范围控制,从而可识别标签靠近哪个基站,且有粗糙的距离可以参考(通常米级~10米级,故仅作范围控制参考);
3)UBW定位,通过信号飞行时间进行精确计算,通常采用TOF或TDOA方法,以超高频率发送脉冲信号,可有效排除大部分杂信号干扰,精度可达10cm级别,通常30cm应用精度,如WEWILLS众志可做0维、一维、2维及3维的定位应用,此精度下,可赋能3D场景地图,实现虚拟化现场展现。
三、主要优劣对比点:
1)基于以上原理,最大的区别其实就是在定位精度及范围上,UWB为精准定位,有源RFID为存在性0维定位,无源RFID为识别性关卡定位;
2)成本对比,无源标签为元级别,有源RFID为10元级别,UWB为百元级别;
3)功耗:无源标签不需供电,有源RFID通常0.5~3年,UWB通常可充电1~3个月;
4)体积:无源纸片级别(除抗金属外),有源RFID打火机级别,UWB火柴盒级别;
四、其他几种技术,也可以参考了解:
多种物联网定位技术
⑵ 室内定位技术都有哪些
首先毫无疑问的是,室内定位方式有多种,精确的定义依据不同需求而不同,或许不是精度越高越好,因为精度越高,对应的成本造价一般越高!
建议你可以先了解下室内定位的几种方式:
第一代:存在性、识别性技术,也可以称为早期零维定位。
主要采用无源RFID技术,如UHF超高频,好处是标签(终端)不需供电,成本低廉,可不需考虑回收流程,弊端是,识别距离最远也就10米左右,通常1~2米,且靠近金属及液体,识别距离要再打骨折。
第二代:粗略性范围识别,可携带传感信息。
主要采用有源技术,包括WIFI、BLE、Zigbee、Sub1G、Lora等等,已经实现初步的位置识别,通过RSSI,三点定位算法等,可达到米级定位精度,且标签(终端)有电池供电,可加入各种互动功能,如按键,屏幕显示,温湿度检测等等。
第三代:精准性定位及测距,主要代表即UWB
主要利用超宽带的技术特点,以超短脉冲信号优化信号干扰,功耗强,冲突大等问题,WEWILLS利用飞行时间算法,精度可达10cm。弊端是目前成本还未足够低,主要还是用在工业领域,如能源建设(电力、水利、火力等)、工业智能制造、公检司法的人员管控、隧道施工(地铁、高速隧道、矿场)等。UWB目前各厂家采用的技术方案都一致,最大的区别将在于流程服务及落地经验。
根据不同的应用场景需求,精度定义会各有不同,比如养老院房间多的场景,需求如果是确定在哪个房间,那就可以用UWB、蓝牙AOA、蓝牙beacon,sub1G,UHF等等方式去实现(当然每个场景的特性差异将决定最终技术选择性),比如需要知道在房间的床上还是书桌旁,还是厕所里,那就基本只能用UWB或者蓝牙AOA了。
综合来说,室内定位是个很大的舞台,所以,WEWILLS众志做的是综合性的大平台,多种技术融合,终端用户仅需对接一套API,即可在不同场景下采用单种或多种定位技术,混合定位,实现内心所要的效果,有需求可以找。
⑶ 用uwb技术和RFID相比有什么不同,国内有用UWB定位的产品吗
1、含义不同:射频识别RFID是一种操控简易,适用于自动控制领域的技术,它利用电感和电磁耦合的传输特性,实现对被识别物体的自动识别。RFID定位系统通常由电子标签、射频读写器以及计算机数据库构组成。根据电子标签是否有源可以分为有源RFID和无源RFID。
UWB定位系统通常包括UWB定位基站、UWB定位标签和定位引擎。UWB定位技术通过发送纳秒级及其以下的超窄脉冲来传输数据,可以获得GHz级的数据带宽,发射功率较低,无载波。
2、侧重不同:有源RFID的电子标签包含电池,因此信号传输范围相比于无源RFID更大,达到30米以上。同时可以实现基于RSSI测量的指纹定位。
无源RFID系统只依赖电感耦合,因此没有电池。相比有源RFID,体积更小,耐用性更高,成本更低。无源RFID定位系统多使用邻近探测法实现定位。
UWB定位技术的主要优势有低功耗、对信道衰落(如多径、非视距等信道)不敏感、抗干扰能力强、不会对同一环境下的其他设备产生干扰、穿透性较强(能在穿透一堵砖墙的环境进行定位)、在室内或者建筑物比较密集的场合可以获得良好的定位效果。
同时在进行测距、定位、跟踪时也能达到更高的精度,可应用于静止或者移动物体以及人的定位跟踪。
3、总结:UWB定位技术较RFID定位技术而言,具有更高的精度,更适用于对定位精度要求较高的行业,比如化工人员定位、煤矿人员定位、电力能源人员定位、制造业人员定位、公安司法人员定位、隧道人员定位等。
(3)rfid定位算法实现扩展阅读:
UWB技术具有系统复杂度低,发射信号功率谱密度低,对信道衰落不敏感,截获能力低,定位精度高等优点,尤其适用于室内等密集多径场所的高速无线接入。
UWB技术是一种使用1GHz以上频率带宽的无线载波通信技术。它不采用正弦载波,而是利用纳秒级的非正弦波窄脉冲传输数据,因此其所占的频谱范围很大,尽管使用无线通信,但其数据传输速率可以达到几百兆比特每秒以上。
使用UWB技术可在非常宽的带宽上传输信号,美国联邦通信委员会(FCC)对UWB技术的规定为:在3.1~10.6GHz频段中占用500MHz以上的带宽。
⑷ 室内定位技术有哪些
超声波技术
超声波定位目前大多数采用反射式测距法。系统由一个主测距器和若干个电子标签组成,主测距器可放置于移动机器人本体上,各个电子标签放置于室内空间的固定位置。定位过程如下:先由上位机发送同频率的信号给各个电子标签,电子标签接收到后又反射传输给主测距器,从而可以确定各个电子标签到主测距器之间的距离,并得到定位坐标。
红外线技术
红外线是一种波长间于无线电波和可见光波之间的电磁波。典型的红外线室内定位系统Active badges使待测物体附上一个电子标识,该标识通过红外发射机向室内固定放置的红外接收机周期发送该待测物唯一ID,接收机再通过有线网络将数据传输给数据库。这个定位技术功耗较大且常常会受到室内墙体或物体的阻隔,实用性较低。
超宽带技术
超宽带技术是近年来新兴的一项无线技术,目前,包括美国,日本,加拿大等在内的国家都在研究这项技术,在无线室内定位领域具有良好的前景。UWB技术是一种传输速率高(最高可达1000Mbps以上),发射功率较低,穿透能力较强并且是基于极窄脉冲的无线技术,无载波。正是这些优点,使它在室内定位领域得到了较为精确的结果。
射频识别技术
射频定位技术实现起来非常方便, 而且系统受环境的干扰较小,电子标签信息可以编辑改写比较灵活。