导航:首页 > 源码编译 > r语言关联分析算法步骤

r语言关联分析算法步骤

发布时间:2022-04-24 17:57:31

① 如何用r语言把关联分析中数据做成ld图

: 主要介绍R语言绘制图琢磨思路绘制图步骤三: 需要绘制图;(约等于废) 要绘制图理信息经纬度啊边界啊等等; 利用2数据R画 步骤目前关键2r语言编写数据用关系图展示前端页面

② 基于R语言实现Lasso回归分析

基于R语言实现Lasso回归分析
主要步骤:
将数据存成csv格式,逗号分隔
在R中,读取数据,然后将数据转成矩阵形式
加载lars包,先安装
调用lars函数
确定Cp值最小的步数
确定筛选出的变量,并计算回归系数
具体代码如下:

需要注意的地方:
1、数据读取的方法,这里用的file.choose( ),这样做的好处是,会弹出窗口让你选择你要加载进来的文件,免去了输入路径的苦恼。
2、数据要转为矩阵形式
3、(la) 可以看到R方,这里为0.66,略低
4、图如何看? summary的结果里,第1步是Cp最小的,在图里,看到第1步与横轴0.0的交界处,只有变量1是非0的。所以筛选出的是nongyangungun
Ps: R语言只学习了数据输入,及一些简单的处理,图形可视化部分尚未学习,等论文写完了,再把这部分认真学习一下~~在这里立个flag

③ 如何用R语言做线性相关回归分析

cor()函数可以提供双变量之间的相关系数,还可以用scatterplotMatrix()函数生成散点图矩阵

不过R语言没有直接给出偏相关的函数;
我们要是做的话,要先调用cor.test()对变量进行Pearson相关性分析,
得到简单相关系数,然后做t检验,判断显着性。

④ 用R语言进行关联分析

用R语言进行关联分析
关联是两个或多个变量取值之间存在的一类重要的可被发现的某种规律性。关联分析目的是寻找给定数据记录集中数据项之间隐藏的关联关系,描述数据之间的密切度。
几个基本概念
1. 项集
这是一个集合的概念,在一篮子商品中的一件消费品即为一项(Item),则若干项的集合为项集,如{啤酒,尿布}构成一个二元项集。
2. 关联规则
一般记为的形式,X为先决条件,Y为相应的关联结果,用于表示数据内隐含的关联性。如:,表示购买了尿布的消费者往往也会购买啤酒。
关联性强度如何,由三个概念——支持度、置信度、提升度来控制和评价。
例:有10000个消费者购买了商品,其中购买尿布1000个,购买啤酒2000个,购买面包500个,同时购买尿布和面包800个,同时购买尿布和面包100个。
3. 支持度(Support)
支持度是指在所有项集中{X, Y}出现的可能性,即项集中同时含有X和Y的概率:
该指标作为建立强关联规则的第一个门槛,衡量了所考察关联规则在“量”上的多少。通过设定最小阈值(minsup),剔除“出镜率”较低的无意义规则,保留出现较为频繁的项集所隐含的规则。
设定最小阈值为5%,由于{尿布,啤酒}的支持度为800/10000=8%,满足基本输了要求,成为频繁项集,保留规则;而{尿布,面包}的支持度为100/10000=1%,被剔除。
4. 置信度(Confidence)
置信度表示在先决条件X发生的条件下,关联结果Y发生的概率:
这是生成强关联规则的第二个门槛,衡量了所考察的关联规则在“质”上的可靠性。相似的,我们需要对置信度设定最小阈值(mincon)来实现进一步筛选。
具体的,当设定置信度的最小阈值为70%时,置信度为800/1000=80%,而的置信度为800/2000=40%,被剔除。
5. 提升度(lift)
提升度表示在含有X的条件下同时含有Y的可能性与没有X这个条件下项集中含有Y的可能性之比:
该指标与置信度同样衡量规则的可靠性,可以看作是置信度的一种互补指标。
R中Apriori算法
算法步骤:
1. 选出满足支持度最小阈值的所有项集,即频繁项集;
2. 从频繁项集中找出满足最小置信度的所有规则。
> library(arules) #加载arules包
> click_detail =read.transactions("click_detail.txt",format="basket",sep=",",cols=c(1)) #读取txt文档(文档编码为ANSI)
> rules <- apriori(click_detail, parameter =list(supp=0.01,conf=0.5,target="rules")) #调用apriori算法
> rules
set of419 rules
> inspect(rules[1:10]) #查看前十条规则
解释
1) library(arules):加载程序包arules,当然如果你前面没有下载过这个包,就要先install.packages(arules)
2) click_detail =read.transactions("click_detail.txt",format="basket",sep=",",cols=c(1)):读入数据
read.transactions(file, format =c("basket", "single"), sep = NULL,
cols = NULL, rm.plicates =FALSE, encoding = "unknown")
file:文件名,对应click_detail中的“click_detail.txt”
format:文件格式,可以有两种,分别为“basket”,“single”,click_detail.txt中用的是basket。
basket: basket就是篮子,一个顾客买的东西都放到同一个篮子,所有顾客的transactions就是一个个篮子的组合结果。如下形式,每条交易都是独立的。
文件形式:
item1,item2
item1
item2,item3
读入后:
items
1 {item1,
item2}
2 {item1}
3 {item2,
item3}
single: single的意思,顾名思义,就是单独的交易,简单说,交易记录为:顾客1买了产品1, 顾客1买了产品2,顾客2买了产品3……(产品1,产品2,产品3中可以是单个产品,也可以是多个产品),如下形式:
trans1 item1
trans2 item1
trans2 item2
读入后:
items transactionID
1 {item1} trans1
2 {item1,
item2} trans2
sep:文件中数据是怎么被分隔的,默认为空格,click_detail里面用逗号分隔
cols:对basket, col=1,表示第一列是数据的transaction ids(交易号),如果col=NULL,则表示数据里面没有交易号这一列;对single,col=c(1,2)表示第一列是transaction ids,第二列是item ids
rm.plicates:是否移除重复项,默认为FALSE
encoding:写到这里研究了encoding是什么意思,发现前面txt可以不是”ANSI”类型,如果TXT是“UTF-8”,写encoding=”UTF-8”,就OK了.
3) rules <- apriori(click_detail,parameter = list(supp=0.01,conf=0.5,target="rules")):apriori函数
apriori(data, parameter = NULL, appearance = NULL, control = NULL)
data:数据
parameter:设置参数,默认情况下parameter=list(supp=0.1,conf=0.8,maxlen=10,minlen=1,target=”rules”)
supp:支持度(support)
conf:置信度(confidence)
maxlen,minlen:每个项集所含项数的最大最小值
target:“rules”或“frequent itemsets”(输出关联规则/频繁项集)
apperence:对先决条件X(lhs),关联结果Y(rhs)中具体包含哪些项进行限制,如:设置lhs=beer,将仅输出lhs含有beer这一项的关联规则。默认情况下,所有项都将无限制出现。
control:控制函数性能,如可以设定对项集进行升序sort=1或降序sort=-1排序,是否向使用者报告进程(verbose=F/T)
补充
通过支持度控制:rules.sorted_sup = sort(rules, by=”support”)
通过置信度控制:rules.sorted_con = sort(rules, by=”confidence”)
通过提升度控制:rules.sorted_lift = sort(rules, by=”lift”)
Apriori算法
两步法:
1. 频繁项集的产生:找出所有满足最小支持度阈值的项集,称为频繁项集;
2. 规则的产生:对于每一个频繁项集l,找出其中所有的非空子集;然后,对于每一个这样的子集a,如果support(l)与support(a)的比值大于最小可信度,则存在规则a==>(l-a)。
频繁项集产生所需要的计算开销远大于规则产生所需的计算开销
频繁项集的产生
几个概念:
1, 一个包含K个项的数据集,可能产生2^k个候选集

2,先验原理:如果一个项集是频繁的,则它的所有子集也是频繁的(理解了频繁项集的意义,这句话很容易理解的);相反,如果一个项集是非频繁的,则它所有子集也一定是非频繁的。

3基于支持度(SUPPORT)度量的一个关键性质:一个项集的支持度不会超过它的子集的支持度(很好理解,支持度是共同发生的概率,假设项集{A,B,C},{A,B}是它的一个自己,A,B,C同时发生的概率肯定不会超过A,B同时发生的概率)。
上面这条规则就是Apriori中使用到的,如下图,当寻找频繁项集时,从上往下扫描,当遇到一个项集是非频繁项集(该项集支持度小于Minsup),那么它下面的项集肯定就是非频繁项集,这一部分就剪枝掉了。
一个例子(网络到的一个PPT上的):
当我在理解频繁项集的意义时,在R上简单的复现了这个例子,这里采用了eclat算法,跟apriori应该差不多:
代码:
item <- list(
c("bread","milk"),
c("bread","diaper","beer","eggs"),
c("milk","diaper","beer","coke"),
c("bread","milk","diaper","beer"),
c("bread","milk","diaper","coke")
)
names(item) <- paste("tr",c(1:5),sep = "")
item
trans <- as(item,"transactions") #将List转为transactions型
rules = eclat(trans,parameter = list(supp = 0.6,
target ="frequent itemsets"),control = list(sort=1))
inspect(rules) #查看频繁项集
运行后结果:
>inspect(rules)
items support
1{beer,
diaper} 0.6
2{diaper,
milk} 0.6
3{bread,
diaper} 0.6
4{bread,
milk} 0.6
5{beer} 0.6
6{milk} 0.8
7{bread} 0.8
8{diaper} 0.8
以上就是该例子的所有频繁项集,然后我发现少了{bread,milk,diaper}这个项集,回到例子一看,这个项集实际上只出现了两次,所以是没有这个项集的。
规则的产生
每个频繁k项集能产生最多2k-2个关联规则
将项集Y划分成两个非空的子集X和Y-X,使得X ->Y-X满足置信度阈值
定理:如果规则X->Y-X不满足置信度阈值,则X’->Y-X’的规则一定也不满足置信度阈值,其中X’是X的子集
Apriori按下图进行逐层计算,当发现一个不满足置信度的项集后,该项集所有子集的规则都可以剪枝掉了。

⑤ R语言怎么做时差相关分析

分析——预测——交叉相关性,将待分析的变量选入“变量”中,点击“选项”,最大延期数框中输入 你要延的期数

⑥ R语言相关性分析图。想知道怎么分析这些数据

框内的数字是行变量和列变量之间的相关系数R,相关系数R绝对值越大,颜色越深(红正,蓝负)。统计学中,P值越小相关性越显着,一般来说 一个*代表显着相关(P值为0.01,选取不同参数可能不一样)、两个**代表极显着相关(P值为0.001)、三个***代表极极显着相关(P值为0.0001). 图中还可以看出,相关系数R的绝对值0.67(变量P50与T之间)以上的都显着相关,至少一个*。符合一般关于相关系数R值的显着性统计。

⑦ R语言,怎么把XML文件导入R中,导入之后怎么操作数据,怎么发现模式或者怎么进行关联分析

我觉得能用rodbc做这个事;同时,我也期待正确答案;
如果是我,我就用其他语言处理下,把这个xml处理成read.table能读的表格;
关联分析,可以线性回归,可以聚类....
弄上来几行给看看;

⑧ R语言做关联分析

tr=read.transactions(file="apri.txt",format = "single",cols = c(2,1))

cols错了

⑨ 大数据关联规则分析怎么做

1.可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2. 数据挖掘算法

大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统

学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如
果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。
3. 预测性分析
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。
4. 语义引擎
非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5.数据质量和数据管理。 大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。

大数据的技术
数据采集: ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
数据存取: 关系数据库、NOSQL、SQL等。
基础架构: 云存储、分布式文件存储等。

据处理: 自然语言处理(NLP,Natural Language
Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机地理解地自然语言,所以自然语言处理又叫做自然语言理
解也称为计算语言学。一方面它是语言信息处理的一个分支,另一方面它是人工智能的核心课题之一。
统计分析:
假设检验、显着性检验、差异分析、相关分析、T检验、 方差分析 、
卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、
因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

据挖掘: 分类
(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或关联规则(Affinity
grouping or association rules)、聚类(Clustering)、描述和可视化、Description and
Visualization)、复杂数据类型挖掘(Text, Web ,图形图像,视频,音频等)
模型预测 :预测模型、机器学习、建模仿真。
结果呈现: 云计算、标签云、关系图等。

大数据的处理
1. 大数据处理之一:采集

数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的
数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除
此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
在大数据的采集过程中,其主要特点和挑战是并发数高,因为同时
有可能会有成千上万的用户
来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间
进行负载均衡和分片的确是需要深入的思考和设计。
2. 大数据处理之二:导入/预处理
虽然采集端本身会有很多数据库,但是如果要对这些
海量数据进行有效的分析,还是应该将这
些来自前端的数据导入到一个集中的大型分布式数据库,或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工作。也有一些用户会在导入时使
用来自Twitter的Storm来对数据进行流式计算,来满足部分业务的实时计算需求。
导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
3. 大数据处理之三:统计/分析

计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通
的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于
MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。
统计与分析这部分的主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
4. 大数据处理之四:挖掘

前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数
据上面进行基于各种算法的计算,从而起到预测(Predict)的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于

统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并
且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。

整个大数据处理的普遍流程至少应该满足这四个方面的步骤,才能算得上是一个比较完整的大数据处理。

⑩ 如何按照对应分析的过程编写r语言程序

cancor()
cancor(x,
y,
xcenter
=
TRUE,
ycenter
=
TRUE)
x,y为两组变量的数据矩阵;xcenter和ycenter是逻辑值,表示是否中心化,实际中一般采用默认值TRUE
注意分析前要对数据进行标准化
scale():对数据进行标准化和中心化
scale(x,
center
=
TRUE,
scale
=
TRUE)
x是矩阵,提供数据;若center为数字或与x等长的向量,中心化时用x减去center对应的数值;
center=TRUE则减去x的平均值,默认为TRUE;scale为数字或与x等长的向量,则标准化用x除以scale,默认为TRUE,即除以标准差。

阅读全文

与r语言关联分析算法步骤相关的资料

热点内容
php前补零 浏览:731
算法推荐广告伦理问题 浏览:921
亚马逊云服务器的选择 浏览:810
单片机频率发生器 浏览:732
备份与加密 浏览:623
用什么app可以看论坛 浏览:52
javajdbcmysql连接 浏览:473
制作linux交叉编译工具链 浏览:751
编程负数除以正数 浏览:512
app和aso有什么区别 浏览:326
手机vmap是什么文件夹 浏览:36
塔科夫锁服如何选择服务器 浏览:290
消费者生产者问题java 浏览:61
程序员筱柒顾默结婚的时候 浏览:578
安卓截长屏怎么弄 浏览:475
优信办理解压手续怎么那么慢 浏览:605
私有云服务器一体机安全吗 浏览:430
python的tk界面禁用鼠标 浏览:186
怎么看服务器mac地址 浏览:291
安卓如何将图镜像翻转 浏览:325