⑴ 高速缓冲存储器的读取命中率
CPU在Cache中找到有用的数据被称为命中,当Cache中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有2级Cache的CPU中,读取L1Cache的命中率为80%。也就是说CPU从L1Cache中找到的有用数据占数据总量的80%,剩下的20%从L2Cache读取。由于不能准确预测将要执行的数据,读取L2的命中率也在80%左右(从L2读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。在一些高端领域的CPU中,我们常听到L3Cache,它是为读取L2Cache后未命中的数据设计的—种Cache,在拥有L3Cache的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。
为了保证CPU访问时有较高的命中率,Cache中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出Cache,提高Cache的利用率。
Cache的替换算法对命中率的影响。 当新的主存块需要调入Cache并且它的可用空间位置又被占满时,需要替换掉Cache的数据,这就产生了替换策略(算法)问题。根据程序局部性规律可知:程序在运行中,总是频繁地使用那些最近被使用过的指令和数据。这就提供了替换策略的理论依据。 替换算法目标就是使Cache获得最高的命中率。Cache替换算法是影响代理缓存系统性能的一个重要因素,一个好的Cache替换算法可以产生较高的命中率。常用算法如下:
(1)随机法(RAND法) 随机替换算法就是用随机数发生器产生一个要替换的块号,将该块替换出去,此算法简单、易于实现,而且它不考虑Cache块过去、现在及将来的使用情况,但是没有利用上层存储器使用的“历史信息”、没有根据访存的局部性原理,故不能提高Cache的命中率,命中率较低。
(2)先进先出法(FIFO法) 先进先出(First-In-First-Out,FIFO)算法。就是将最先进入Cache的信息块替换出去。FIFO算法按调入Cache的先后决定淘汰的顺序,选择最早调入Cache的字块进行替换,它不需要记录各字块的使用情况,比较容易实现,系统开销小,其缺点是可能会把一些需要经常使用的程序块(如循环程序)也作为最早进入Cache的块替换掉,而且没有根据访存的局部性原理,故不能提高Cache的命中率。因为最早调入的信息可能以后还要用到,或者经常要用到,如循环程序。此法简单、方便,利用了主存的“历史信息”, 但并不能说最先进入的就不经常使用,其缺点是不能正确反映程序局部性原理,命中率不高,可能出现一种异常现象。
(3)近期最少使用法(LRU法) 近期最少使用(Least Recently Used,LRU)算法。这种方法是将近期最少使用的Cache中的信息块替换出去。该算法较先进先出算法要好一些。但此法也不能保证过去不常用将来也不常用。 LRU法是依据各块使用的情况,总是选择那个最近最少使用的块被替换。这种方法虽然比较好地反映了程序局部性规律,但是这种替换方法需要随时记录Cache中各块的使用情况,以便确定哪个块是近期最少使用的块。LRU算法相对合理,但实现起来比较复杂,系统开销较大。通常需要对每一块设置一个称为计数器的硬件或软件模块,用以记录其被使用的情况。
⑵ 高速缓冲存储器的工作原理
高速缓冲存储器通常由高速存储器、联想存储器、替换逻辑电路和相应的控制线路组成。在有高速缓冲存储器的计算机系统中,中央处理器存取主存储器的地址划分为行号、列号和组内地址三个字段。于是,主存储器就在逻辑上划分为若干行;每行划分为若干的存储单元组;每组包含几个或几十个字。高速存储器也相应地划分为行和列的存储单元组。二者的列数相同,组的大小也相同,但高速存储器的行数却比主存储器的行数少得多。
联想存储器用于地址联想,有与高速存储器相同行数和列数的存储单元。当主存储器某一列某一行存储单元组调入高速存储器同一列某一空着的存储单元组时,与联想存储器对应位置的存储单元就记录调入的存储单元组在主存储器中的行号。
当中央处理器存取主存储器时,硬件首先自动对存取地址的列号字段进行译码,以便将联想存储器该列的全部行号与存取主存储器地址的行号字段进行比较:若有相同的,表明要存取的主存储器单元已在高速存储器中,称为命中,硬件就将存取主存储器的地址映射为高速存储器的地址并执行存取操作;若都不相同,表明该单元不在高速存储器中,称为脱靶,硬件将执行存取主存储器操作并自动将该单元所在的那一主存储器单元组调入高速存储器相同列中空着的存储单元组中,同时将该组在主存储器中的行号存入联想存储器对应位置的单元内。
当出现脱靶而高速存储器对应列中没有空的位置时,便淘汰该列中的某一组以腾出位置存放新调入的组,这称为替换。确定替换的规则叫替换算法,常用的替换算法有:最近最少使用算法(LRU)、先进先出法(FIFO)和随机法(RAND)等。替换逻辑电路就是执行这个功能的。另外,当执行写主存储器操作时,为保持主存储器和高速存储器内容的一致性,对命中和脱靶须分别处理。
主-辅存存储层次 由于计算机主存容量相对于程序员所需要的容量来说总是太小,程序与数据从辅存调入主存是由程序员自己安排的,程序员必须花费很大精力和时间把大程序预先分成块,确定好这些程序块在辅存中的位置和装入主存的地址,而且还要预先安排好程序运行时各块如何和何时调入调出,因此存在存储空间的分配问题。操作系统的形成和发展使得程序员尽可能摆脱主、辅存之间的地址定位,同时形成了支持这些功能的“辅助硬件”,通过软件、硬件的结合,把主存和辅存统一成了一个整体,如图所示。这时,由主存、辅存形成了一个存储层次,即存储系统。从整体看,其速度接近于主存的速度,其容量则接近于辅存的容量,而每位的平均价格也接近于廉价的慢速的辅存平均价格。这种系统不断发展和完善,就逐步形成了现在广泛使用的虚拟存储系统。在系统中,应用程序员可用机器指令地址码对整个程序统一编址,如同程序员具有对应这个地址码宽度的全部虚存空间一样。该空间可以比主存实际空间大得多,以致可以存得下整个程序。这种指令地址码称为虚地址(虚存地址、虚拟地址)或逻辑地址,其对应的存储容量称为虚存容量或虚存空间;而把实际主存的地址称为物理地址、实(存)地址,其对应的存储容量称为主存容量、实存容量或实(主)存空间
主-辅存存储层次 地址映象是指某一数据在内存中的地址与在缓冲中的地址,两者之间的对应关系。下面介绍三种地址映象的方式。
1.全相联方式
地址映象规则:主存的任意一块可以映象到Cache中的任意一块
(1) 主存与缓存分成相同大小的数据块。
(2) 主存的某一数据块可以装入缓存的任意一块空间中。如果Cache的块数为Cb,主存的块数为Mb,则映象关系共有Cb×Mb种。
目录表存放在相关(联)存储器中,其中包括三部分:数据块在主存的块地址、存入缓存后的块地址、及有效位(也称装入位)。由于是全相联方式,因此,目录表的容量应当与缓存的块数相同。
优点:命中率比较高,Cache存储空间利用率高。
缺点:访问相关存储器时,每次都要与全部内容比较,速度低,成本高,因而应用少。
2.直接相联方式
地址映象规则: 主存储器中一块只能映象到Cache的一个特定的块中。
(1) 主存与缓存分成相同大小的数据块。
(2) 主存容量应是缓存容量的整数倍,将主存空间按缓存的容量分成区,主存中每一区的块数与缓存的总块数相等。
(3) 主存中某区的一块存入缓存时只能存入缓存中块号相同的位置。
主存中各区内相同块号的数据块都可以分别调入缓存中块号相同的地址中,但同时只能有一个区的块存入缓存。由于主、缓存块号相同,因此,目录登记时,只记录调入块的区号即可。主、缓存块号及块内地址两个字段完全相同。目录表存放在高速小容量存储器中,其中包括二部分:数据块在主存的区号和有效位。目录表的容量与缓存的块数相同。
优点:地址映象方式简单,数据访问时,只需检查区号是否相等即可,因而可以得到比较快的访问速度,硬件设备简单。
缺点:替换操作频繁,命中率比较低。
3.组相联映象方式
组相联的映象规则:
(1) 主存和Cache按同样大小划分成块。
(2) 主存和Cache按同样大小划分成组。
(3) 主存容量是缓存容量的整数倍,将主存空间按缓冲区的大小分成区,主存中每一区的组数与缓存的组数相同。
(4) 当主存的数据调入缓存时,主存与缓存的组号应相等,也就是各区中的某一块只能存入缓存的同组号的空间内,但组内各块地址之间则可以任意存放,即从主存的组到Cache的组之间采用直接映象方式;在两个对应的组内部采用全相联映象方式。
主存地址与缓存地址的转换有两部分,组地址是按直接映象方式,按地址进行访问,而块地址是采用全相联方式,按内容访问。组相联的地址转换部件也是采用相关存储器实现。
优点:块的冲突概率比较低,块的利用率大幅度提高,块失效率明显降低。
缺点:实现难度和造价要比直接映象方式高。 1. 根据程序局部性规律可知:程序在运行中,总是频繁地使用那些最近被使用过的指令和数据。这就提供了替换策略的理论依据。综合命中率、实现的难易及速度的快慢各种因素,替换策略可有随机法、先进先出法、最近最少使用法等。
(1).随机法(RAND法)
随机法是随机地确定替换的存储块。设置一个随机数产生器,依据所产生的随机数,确定替换块。这种方法简单、易于实现,但命中率比较低。
(2).先进先出法(FIFO法)
先进先出法是选择那个最先调入的那个块进行替换。当最先调入并被多次命中的块,很可能被优先替换,因而不符合局部性规律。这种方法的命中率比随机法好些,但还不满足要求。先进先出方法易于实现,
(3).最近最少使用法(LRU法)
LRU法是依据各块使用的情况, 总是选择那个最近最少使用的块被替换。这种方法比较好地反映了程序局部性规律。 实现LRU策略的方法有多种。
2 在多体并行存储系统中,由于 I/O 设备向主存请求的级别高于 CPU 访存,这就出现了 CPU 等待 I/O 设备访存的现象,致使 CPU 空等一段时间,甚至可能等待几个主存周期,从而降低了 CPU 的工作效率。为了避免 CPU 与 I/O 设备争抢访存,可在 CPU 与主存之间加一级缓存,这样,主存可将 CPU 要取的信息提前送至缓存,一旦主存在与 I/O 设备交换时, CPU 可直接从缓存中读取所需信息,不必空等而影响效率。
3 目前提出的算法可以分为以下三类(第一类是重点要掌握的):
(1)传统替换算法及其直接演化,其代表算法有 :①LRU( Least Recently Used)算法:将最近最少使用的内容替换出Cache ;②LFU( Lease Frequently Used)算法:将访问次数最少的内容替换出Cache;③如果Cache中所有内容都是同一天被缓存的,则将最大的文档替换出Cache,否则按LRU算法进行替换 。④FIFO( First In First Out):遵循先入先出原则,若当前Cache被填满,则替换最早进入Cache的那个。
(2)基于缓存内容关键特征的替换算法,其代表算法有:①Size替换算法:将最大的内容替换出Cache②LRU— MIN替换算法:该算法力图使被替换的文档个数最少。设待缓存文档的大小为S,对Cache中缓存的大小至少是S的文档,根据LRU算法进行替换;如果没有大小至少为S的对象,则从大小至少为S/2的文档中按照LRU算法进行替换;③LRU—Threshold替换算法:和LRU算法一致,只是大小超过一定阈值的文档不能被缓存;④Lowest Lacency First替换算法:将访问延迟最小的文档替换出Cache。
(3)基于代价的替换算法,该类算法使用一个代价函数对Cache中的对象进行评估,最后根据代价值的大小决定替换对象。其代表算法有:①Hybrid算法:算法对Cache中的每一个对象赋予一个效用函数,将效用最小的对象替换出Cache;②Lowest Relative Value算法:将效用值最低的对象替换出Cache;③Least Normalized Cost Replacement(LCNR)算法:该算法使用一个关于文档访问频次、传输时间和大小的推理函数来确定替换文档;④Bolot等人 提出了一种基于文档传输时间代价、大小、和上次访问时间的权重推理函数来确定文档替换;⑤Size—Adjust LRU(SLRU)算法:对缓存的对象按代价与大小的比率进行排序,并选取比率最小的对象进行替换。
⑶ 高速缓存命中率的算法问题
命中的话,读写时间为3ns,不命中,读写时间就是33ns,假设命中率是p,
则 3 x p + 33 x (1 - p) = 3.27,可以求出 p = 99.1%
⑷ 刚才有人说缓存还存在算法关系,那么有什么算法呢,怎样来决定缓存的大小呢
当然有了,这里是说CPU的高速缓存,它采用一种特殊的算法,可以“预知”你下一步要运行的程序,所以它会提前把一些需要的数据存在高速缓存中,如果命中率高的话,那你的电脑运行起来速度就很快。相对于没有缓存的CPU,带缓存的CPU运行速度要快得多,价格也差别很大。
缓存的大小时固定的,一旦CPU成型了,缓存也就是固定了,现在的CPU都有2M缓存。
你说的磁盘缓存,在我的电脑上点右键,属性,高级,性能——设置,即可对缓存大小进行设置,大小一般是你物理内存的4倍。当然,如果你的物理内存大于1G,就不用再设置缓存了,因为物理内存足够用。
⑸ 问下什么是高速缓存
缓存(Cache memory)是硬盘控制器上的一块内存芯片,具有极快的存取速度,它是硬盘内部存储和外界接口之间的缓冲器。由于硬盘的内部数据传输速度和外界接口传输速度不同,缓存在其中起到一个缓冲的作用。缓存的大小与速度是直接关系到硬盘的传输速度的重要因素,能够大幅度地提高硬盘整体性能。当硬盘存取零碎数据时需要不断地在硬盘与内存之间交换数据,如果有大缓存,则可以将那些零碎数据暂存在缓存中,减小外系统的负荷,也提高了数据的传输速度。
硬盘的缓存主要起三种作用:一是预读取。当硬盘受到CPU指令控制开始读取数据时,硬盘上的控制芯片会控制磁头把正在读取的簇的下一个或者几个簇中的数据读到缓存中(由于硬盘上数据存储时是比较连续的,所以读取命中率较高),当需要读取下一个或者几个簇中的数据的时候,硬盘则不需要再次读取数据,直接把缓存中的数据传输到内存中就可以了,由于缓存的速度远远高于磁头读写的速度,所以能够达到明显改善性能的目的;二是对写入动作进行缓存。当硬盘接到写入数据的指令之后,并不会马上将数据写入到盘片上,而是先暂时存储在缓存里,然后发送一个“数据已写入”的信号给系统,这时系统就会认为数据已经写入,并继续执行下面的工作,而硬盘则在空闲(不进行读取或写入的时候)时再将缓存中的数据写入到盘片上。虽然对于写入数据的性能有一定提升,但也不可避免地带来了安全隐患——如果数据还在缓存里的时候突然掉电,那么这些数据就会丢失。对于这个问题,硬盘厂商们自然也有解决办法:掉电时,磁头会借助惯性将缓存中的数据写入零磁道以外的暂存区域,等到下次启动时再将这些数据写入目的地;第三个作用就是临时存储最近访问过的数据。有时候,某些数据是会经常需要访问的,硬盘内部的缓存会将读取比较频繁的一些数据存储在缓存中,再次读取时就可以直接从缓存中直接传输。
缓存容量的大小不同品牌、不同型号的产品各不相同,早期的硬盘缓存基本都很小,只有几百KB,已无法满足用户的需求。2MB和8MB缓存是现今主流硬盘所采用,而在服务器或特殊应用领域中还有缓存容量更大的产品,甚至达到了16MB、64MB等。
大容量的缓存虽然可以在硬盘进行读写工作状态下,让更多的数据存储在缓存中,以提高硬盘的访问速度,但并不意味着缓存越大就越出众。缓存的应用存在一个算法的问题,即便缓存容量很大,而没有一个高效率的算法,那将导致应用中缓存数据的命中率偏低,无法有效发挥出大容量缓存的优势。算法是和缓存容量相辅相成,大容量的缓存需要更为有效率的算法,否则性能会大大折扣,从技术角度上说,高容量缓存的算法是直接影响到硬盘性能发挥的重要因素。更大容量缓存是未来硬盘发展的必然趋势。
⑹ CPU的问题
光看主频是不够的,这要全方面的比较
缓冲存储器Cache是位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。
在Cache中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从Cache中调用,从而加快读取速度。由此可见,在CPU中加入Cache是一种高效的解决方案,这样整个内存储器(Cache+内存)就变成了既有Cache的高速度,又有内存的大容量的存储系统了。
Cache对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与Cache间的带宽引起的。
高速缓存的工作原理
1、读取顺序
CPU要读取一个数据时,首先从Cache中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入Cache中,可以使得以后对整块数据的读取都从Cache中进行,不必再调用内存。
正是这样的读取机制使CPU读取Cache的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在Cache中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先Cache后内存。
2、缓存分类
前面是把Cache作为一个整体来考虑的,现在要分类分析了。Intel从Pentium开始将Cache分开,通常分为一级高速缓存L1和二级高速缓存L2。
在以往的观念中,L1 Cache是集成在CPU中的,被称为片内Cache。在L1中还分数据Cache(I-Cache)和指令Cache(D-Cache)。它们分别用来存放数据和执行这些数据的指令,而且两个Cache可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。
在P4处理器中使用了一种先进的一级指令Cache——动态跟踪缓存。它直接和执行单元及动态跟踪引擎相连,通过动态跟踪引擎可以很快地找到所执行的指令,并且将指令的顺序存储在追踪缓存里,这样就减少了主执行循环的解码周期,提高了处理器的运算效率。
以前的L2 Cache没集成在CPU中,而在主板上或与CPU集成在同一块电路板上,因此也被称为片外Cache。但从PⅢ开始,由于工艺的提高L2 Cache被集成在CPU内核中,以相同于主频的速度工作,结束了L2 Cache与CPU大差距分频的历史,使L2 Cache与L1 Cache在性能上平等,得到更高的传输速度。 L2Cache只存储数据,因此不分数据Cache和指令Cache。在CPU核心不变化的情况下,增加L2 Cache的容量能使性能提升,同一核心的CPU高低端之分往往也是在L2 Cache上做手脚,可见L2 Cache的重要性。现在CPU的L1 Cache与L2 Cache惟一区别在于读取顺序。
3、读取命中率
CPU在Cache中找到有用的数据被称为命中,当Cache中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有2级Cache的CPU中,读取L1 Cache的命中率为80%。也就是说CPU从L1 Cache中找到的有用数据占数据总量的80%,剩下的20%从L2 Cache读取。由于不能准确预测将要执行的数据,读取L2的命中率也在80%左右(从L2读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。在一些高端领域的CPU(像Intel的Itanium)中,我们常听到L3 Cache,它是为读取L2 Cache后未命中的数据设计的—种Cache,在拥有L3 Cache的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。
为了保证CPU访问时有较高的命中率,Cache中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出Cache,提高Cache的利用率。 缓存技术的发展
总之,在传输速度有较大差异的设备间都可以利用Cache作为匹配来调节差距,或者说是这些设备的传输通道。在显示系统、硬盘和光驱,以及网络通讯中,都需要使用Cache技术。但Cache均由静态RAM组成,结构复杂,成本不菲,使用现有工艺在有限的面积内不可能做得很大,不过,这也正是技术前进的源动力,有需要才有进步
CPU的主频,即CPU内核工作的时钟频率(CPU Clock Speed)。通常所说的某某CPU是多少兆赫的,而这个多少兆赫就是“CPU的主频”。很多人认为CPU的主频就是其运行速度,其实不然。CPU的主频表示在CPU内数字脉冲信号震荡的速度,与CPU实际的运算能力并没有直接关系。主频和实际的运算速度存在一定的关系,但目前还没有一个确定的公式能够定量两者的数值关系,因为CPU的运算速度还要看CPU的流水线的各方面的性能指标(缓存、指令集,CPU的位数等等)。由于主频并不直接代表运算速度,所以在一定情况下,很可能会出现主频较高的CPU实际运算速度较低的现象。比如AMD公司的AthlonXP系列CPU大多都能已较低的主频,达到英特尔公司的Pentium 4系列CPU较高主频的CPU性能,所以AthlonXP系列CPU才以PR值的方式来命名。因此主频仅是CPU性能表现的一个方面,而不代表CPU的整体性能。
但是INTER得整体性能比较稳定,以为有大的缓存来支持,而AMD速度比较快,以速为胜,所以这都是个人见解,还要看自己的需要!
⑺ Cache的定义
中文译为缓存
CACHE是一种加速内存或磁盘存取的装置,可将慢速磁盘上的数据拷贝至快速的磁盘进行读写动作,以提升系统响应的速度。
其运作原理在于使用较快速的储存装置保留一份从慢速储存装置中所读取数据且进行拷贝,当有需要再从较慢的储存体中读写数据时,CACHE能够使得读写的动作先在快速的装置上完成,如此会使系统的响应较为快速。
举例来说,存取内存 (RAM) 的速度较磁盘驱动器快非常多,所以我们可以将一部份的主存储器保留当成磁盘CACHE,每当有磁盘读取的需求时就把刚读取的数据拷贝一份放在CACHE内存中,如果系统继续要求读取或写入同一份数据或同一扇区 (sector) 时,系统可以直接从内存中的CACHE部分作读写的动作,这样系统对磁盘的存取速度感觉上会快许多。
同样的,静态内存 (SRAM) 比动态内存 (DRAM) 的读写速度快,使用些静态内存作为动态内存的CACHE,也可以提升读写的效率。
内存不全部使用SRAM取代DRAM 的原因,是因为SRAM的成本较DRAM高出许多。
使用CACHE的问题是写入CACHE中的数据如果不立即写回真正的储存体,一但电源中断或其它意外会导致数据流失;但若因而每次都将数据写写回真正的储存体,又将会使得CACHE只能发挥加速读取的功能,而不能加速写入的速度,这样的状况使得CACHE写入的方式分为两类:
1. Write-Through: 每次遇到写入时就将数据写入真正的储存体。
2. Write-Back: 遇到写入时不一定回写,只纪录在CACHE内,并将该份数据标示为已更改(dirty),等系统有空或等到一定的时间后再将数据写回真正的储存体,这种做法是承担一点风险来换取效率。
由于很多时候系统不只有重复读写同一块区域,使用两组各自独立的CACHE效能通常比只使用一组较佳,这称为 2-Ways Associate,同样的,使用四组CACHE则称为4ways Associate,但更多组的CACHE会使得算法相对的复杂许多。
CACHE的效能依算法的使用而有好坏之分,估量的单位通常使用命中率 (hits),命中率较高者较佳。
新式的CPU上也有内建的CACHE,称为 LEVEL 1 (L1) 快取, 由于与 CPU 同频率运作,能比在主机板上的 LEVEL 2 (L2) CACHE提供更快速的存取效能。
⑻ 关于CPU 2级缓存是怎么计算的
CPU缓存(Cache Memoney)位于CPU与内存之间的临时存储器,它的容量比内存小但交换速度快。在缓存中的数据是内存中的一小部分,但这一小部分是短时间内CPU即将访问的,当CPU调用大量数据时,就可避开内存直接从缓存中调用,从而加快读取速度。由此可见,在CPU中加入缓存是一种高效的解决方案,这样整个内存储器(缓存+内存)就变成了既有缓存的高速度,又有内存的大容量的存储系统了。缓存对CPU的性能影响很大,主要是因为CPU的数据交换顺序和CPU与缓存间的带宽引起的。
缓存的工作原理是当CPU要读取一个数据时,首先从缓存中查找,如果找到就立即读取并送给CPU处理;如果没有找到,就用相对慢的速度从内存中读取并送给CPU处理,同时把这个数据所在的数据块调入缓存中,可以使得以后对整块数据的读取都从缓存中进行,不必再调用内存。
正是这样的读取机制使CPU读取缓存的命中率非常高(大多数CPU可达90%左右),也就是说CPU下一次要读取的数据90%都在缓存中,只有大约10%需要从内存读取。这大大节省了CPU直接读取内存的时间,也使CPU读取数据时基本无需等待。总的来说,CPU读取数据的顺序是先缓存后内存。
最早先的CPU缓存是个整体的,而且容量很低,英特尔公司从Pentium时代开始把缓存进行了分类。当时集成在CPU内核中的缓存已不足以满足CPU的需求,而制造工艺上的限制又不能大幅度提高缓存的容量。因此出现了集成在与CPU同一块电路板上或主板上的缓存,此时就把 CPU内核集成的缓存称为一级缓存,而外部的称为二级缓存。一级缓存中还分数据缓存(I-Cache)和指令缓存(D-Cache)。二者分别用来存放数据和执行这些数据的指令,而且两者可以同时被CPU访问,减少了争用Cache所造成的冲突,提高了处理器效能。英特尔公司在推出Pentium 4处理器时,还新增了一种一级追踪缓存,容量为12KB.
随着CPU制造工艺的发展,二级缓存也能轻易的集成在CPU内核中,容量也在逐年提升。现在再用集成在CPU内部与否来定义一、二级缓存,已不确切。而且随着二级缓存被集成入CPU内核中,以往二级缓存与CPU大差距分频的情况也被改变,此时其以相同于主频的速度工作,可以为CPU提供更高的传输速度。
二级缓存是CPU性能表现的关键之一,在CPU核心不变化的情况下,增加二级缓存容量能使性能大幅度提高。而同一核心的CPU高低端之分往往也是在二级缓存上有差异,由此可见二级缓存对于CPU的重要性。
CPU在缓存中找到有用的数据被称为命中,当缓存中没有CPU所需的数据时(这时称为未命中),CPU才访问内存。从理论上讲,在一颗拥有二级缓存的CPU中,读取一级缓存的命中率为80%。也就是说CPU一级缓存中找到的有用数据占数据总量的80%,剩下的20%从二级缓存中读取。由于不能准确预测将要执行的数据,读取二级缓存的命中率也在80%左右(从二级缓存读到有用的数据占总数据的16%)。那么还有的数据就不得不从内存调用,但这已经是一个相当小的比例了。目前的较高端的CPU中,还会带有三级缓存,它是为读取二级缓存后未命中的数据设计的—种缓存,在拥有三级缓存的CPU中,只有约5%的数据需要从内存中调用,这进一步提高了CPU的效率。
为了保证CPU访问时有较高的命中率,缓存中的内容应该按一定的算法替换。一种较常用的算法是“最近最少使用算法”(LRU算法),它是将最近一段时间内最少被访问过的行淘汰出局。因此需要为每行设置一个计数器,LRU算法是把命中行的计数器清零,其他各行计数器加1。当需要替换时淘汰行计数器计数值最大的数据行出局。这是一种高效、科学的算法,其计数器清零过程可以把一些频繁调用后再不需要的数据淘汰出缓存,提高缓存的利用率。
CPU产品中,一级缓存的容量基本在4KB到18KB之间,二级缓存的容量则分为128KB、256KB、512KB、1MB等。一级缓存容量各产品之间相差不大,而二级缓存容量则是提高CPU性能的关键。二级缓存容量的提升是由CPU制造工艺所决定的,容量增大必然导致CPU内部晶体管数的增加,要在有限的CPU面积上集成更大的缓存,对制造工艺的要求也就越高。
双核心CPU的二级缓存比较特殊,和以前的单核心CPU相比,最重要的就是两个内核的缓存所保存的数据要保持一致,否则就会出现错误,为了解决这个问题不同的CPU使用了不同的办法:
Intel双核心处理器的二级缓存
目前Intel的双核心CPU主要有Pentium D、Pentium EE、Core Duo三种,其中Pentium D、Pentium EE的二级缓存方式完全相同。Pentium D和Pentium EE的二级缓存都是CPU内部两个内核具有互相独立的二级缓存,其中,8xx系列的Smithfield核心CPU为每核心1MB,而9xx系列的Presler核心CPU为每核心2MB。这种CPU内部的两个内核之间的缓存数据同步是依靠位于主板北桥芯片上的仲裁单元通过前端总线在两个核心之间传输来实现的,所以其数据延迟问题比较严重,性能并不尽如人意。
Core Duo使用的核心为Yonah,它的二级缓存则是两个核心共享2MB的二级缓存,共享式的二级缓存配合Intel的“Smart cache”共享缓存技术,实现了真正意义上的缓存数据同步,大幅度降低了数据延迟,减少了对前端总线的占用,性能表现不错,是目前双核心处理器上最先进的二级缓存架构。今后Intel的双核心处理器的二级缓存都会采用这种两个内核共享二级缓存的“Smart cache”共享缓存技术。
AMD双核心处理器的二级缓存
Athlon 64 X2 CPU的核心主要有Manchester和Toledo两种,他们的二级缓存都是CPU内部两个内核具有互相独立的二级缓存,其中,Manchester核心为每核心512KB,而Toledo核心为每核心1MB。处理器内部的两个内核之间的缓存数据同步是依靠CPU内置的System Request Interface(系统请求接口,SRI)控制,传输在CPU内部即可实现。这样一来,不但CPU资源占用很小,而且不必占用内存总线资源,数据延迟也比Intel的Smithfield核心和Presler核心大为减少,协作效率明显胜过这两种核心。不过,由于这种方式仍然是两个内核的缓存相互独立,从架构上来看也明显不如以Yonah核心为代表的Intel的共享缓存技术Smart Cache。
⑼ 计算机中为什么要采用高速缓存器(CACHE)
是为了解决低速的外设和高速的CPU之间速度不匹配的问题。
主要由三大部分组成:
1、Cache存储体:存放由主存调入的指令与数据块。
2、地址转换部件:建立目录表以实现主存地址到缓存地址的转换。
3、替换部件:在缓存已满时按一定策略进行数据块替换,并修改地址转换部件。
在有高速缓冲存储器的计算机系统中,中央处理器存取主存储器的地址划分为行号、列号和组内地址三个字段。
于是,主存储器就在逻辑上划分为若干行;每行划分为若干的存储单元组;每组包含几个或几十个字。高速存储器也相应地划分为行和列的存储单元组。二者的列数相同,组的大小也相同,但高速存储器的行数却比主存储器的行数少得多。
(9)高速缓存算法扩展阅读
当中央处理器存取主存储器时,高速缓存器首先自动对存取地址的列号字段进行译码,以便将联想存储器该列的全部行号与存取主存储器地址的行号字段进行比较:若有相同的,表明要存取的主存储器单元已在高速存储器中,称为命中,硬件就将存取主存储器的地址映射为高速存储器的地址并执行存取操作。
若都不相同,表明该单元不在高速存储器中,称为脱靶,硬件将执行存取主存储器操作并自动将该单元所在的那一主存储器单元组调入高速存储器相同列中空着的存储单元组中,同时将该组在主存储器中的行号存入联想存储器对应位置的单元内。
当出现脱靶而高速存储器对应列中没有空的位置时,便淘汰该列中的某一组以腾出位置存放新调入的组,这称为替换。确定替换的规则叫替换算法,常用的替换算法有:最近最少使用算法(LRU)、先进先出法(FIFO)和随机法(RAND)等。
替换逻辑电路就是执行这个功能的。另外,当执行写主存储器操作时,为保持主存储器和高速存储器内容的一致性,对命中和脱靶须分别处理。
⑽ 请问高速缓存是什么意思恳请高手指点!回答正确即可被采纳!
高速缓存
缓存(Cache memory)是硬盘控制器上的一块内存芯片,具有极快的存取速度,它是硬盘内部存储和外界接口之间的缓冲器。由于硬盘的内部数据传输速度和外界接口传输速度不同,缓存在其中起到一个缓冲的作用。缓存的大小与速度是直接关系到硬盘的传输速度的重要因素,能够大幅度地提高硬盘整体性能。当硬盘存取零碎数据时需要不断地在硬盘与内存之间交换数据,如果有大缓存,则可以将那些零碎数据暂存在缓存中,减小外系统的负荷,也提高了数据的传输速度。
硬盘的缓存主要起三种作用:一是预读取。当硬盘受到CPU指令控制开始读取数据时,硬盘上的控制芯片会控制磁头把正在读取的簇的下一个或者几个簇中的数据读到缓存中(由于硬盘上数据存储时是比较连续的,所以读取命中率较高),当需要读取下一个或者几个簇中的数据的时候,硬盘则不需要再次读取数据,直接把缓存中的数据传输到内存中就可以了,由于缓存的速度远远高于磁头读写的速度,所以能够达到明显改善性能的目的;二是对写入动作进行缓存。当硬盘接到写入数据的指令之后,并不会马上将数据写入到盘片上,而是先暂时存储在缓存里,然后发送一个“数据已写入”的信号给系统,这时系统就会认为数据已经写入,并继续执行下面的工作,而硬盘则在空闲(不进行读取或写入的时候)时再将缓存中的数据写入到盘片上。虽然对于写入数据的性能有一定提升,但也不可避免地带来了安全隐患——如果数据还在缓存里的时候突然掉电,那么这些数据就会丢失。对于这个问题,硬盘厂商们自然也有解决办法:掉电时,磁头会借助惯性将缓存中的数据写入零磁道以外的暂存区域,等到下次启动时再将这些数据写入目的地;第三个作用就是临时存储最近访问过的数据。有时候,某些数据是会经常需要访问的,硬盘内部的缓存会将读取比较频繁的一些数据存储在缓存中,再次读取时就可以直接从缓存中直接传输。
缓存容量的大小不同品牌、不同型号的产品各不相同,早期的硬盘缓存基本都很小,只有几百KB,已无法满足用户的需求。2MB和8MB缓存是现今主流硬盘所采用,而在服务器或特殊应用领域中还有缓存容量更大的产品,甚至达到了16MB、64MB等。
大容量的缓存虽然可以在硬盘进行读写工作状态下,让更多的数据存储在缓存中,以提高硬盘的访问速度,但并不意味着缓存越大就越出众。缓存的应用存在一个算法的问题,即便缓存容量很大,而没有一个高效率的算法,那将导致应用中缓存数据的命中率偏低,无法有效发挥出大容量缓存的优势。算法是和缓存容量相辅相成,大容量的缓存需要更为有效率的算法,否则性能会大大折扣,从技术角度上说,高容量缓存的算法是直接影响到硬盘性能发挥的重要因素。更大容量缓存是未来硬盘发展的必然趋势。