交叉编译器通常以 arm-none-linux-gnueabi.tar.bz2 这样的名称发布(不同厂家的不同开发平台,交叉编译工具链的实际名称可能有所差别,请以实际为准),解压命令:
vmuser@Linux-host: ~$ tar xjvf arm-none-linux-gnueabi.tar.bz2
如果希望解压到一个指定的目录,可以先将 arm-none-linux-gnueabi.tar.bz2 压缩包复制到目标目录,然后进入目标目录再运行解压命令,也可以在任意目录解压,通过-C 指定目标目录。假定希望解压到“/home/ctools/”目录,则命令如下:
vmuser@Linux-host: ~$ tar xjvf arm-none-linux-gnueabi.tar.bz2 -C /home/ctools/
在终端中添加环境变量,需要每次打开终端都设置,也很麻烦。可以考虑将设置的过程添加到系统配置文件中。/etc/profile 是系统全局的配置文件,在该文件中设置交叉编译器的路径,能够让登录本机的全部用户都可以使用这个编译器。
打开终端,输入“sudo vi /etc/profile”命令,打开/etc/profile 文件,在文件末尾添加:
export PATH=$PATH:/home/ctools/arm-2011.03/bin/
然后输入“. /etc/profile”(点+空格+文件名),执行 profile 文件,使刚才的改动生效。如果没有书写错误,此时打开终端,输入 arm-none-linux-gnueabi-,然后按键盘 TAB 键,同样可以看到很多 arm-none-linux-gnueabi-开头的命令。
这些周立功那边很多的,不知道你有没去看过。
❷ 交叉编译器的交叉编译
在一种计算机环境中运行的编译程序,能编译出在另外一种环境下运行的代码,我们就称这种编译器支持交叉编译。这个编译过程就叫交叉编译。简单地说,就是在一个平台上生成另一个平台上的可执行代码。这里需要注意的是所谓平台,实际上包含两个概念:体系结构(Architecture)、操作系统(Operating System)。同一个体系结构可以运行不同的操作系统;同样,同一个操作系统也可以在不同的体系结构上运行。举例来说,我们常说的x86 Linux平台实际上是Intel x86体系结构和Linux for x86操作系统的统称;而x86 WinNT平台实际上是Intel x86体系结构和Windows NT for x86操作系统的简称。
有时是因为目的平台上不允许或不能够安装我们所需要的编译器,而我们又需要这个编译器的某些特征;有时是因为目的平台上的资源贫乏,无法运行我们所需要编译器;有时又是因为目的平台还没有建立,连操作系统都没有,根本谈不上运行什么编译器。
交叉编译这个概念的出现和流行是和嵌入式系统的广泛发展同步的。我们常用的计算机软件,都需要通过编译的方式,把使用高级计算机语言编写的代码(比如C代码)编译(compile)成计算机可以识别和执行的二进制代码。比如,我们在Windows平台上,可使用Visual C++开发环境,编写程序并编译成可执行程序。这种方式下,我们使用PC平台上的Windows工具开发针对Windows本身的可执行程序,这种编译过程称为native compilation,中文可理解为本机编译。然而,在进行嵌入式系统的开发时,运行程序的目标平台通常具有有限的存储空间和运算能力,比如常见的 ARM 平台,其一般的静态存储空间大概是16到32MB,而CPU的主频大概在100MHz到500MHz之间。这种情况下,在ARM平台上进行本机编译就不太可能了,这是因为一般的编译工具链(compilation tool chain)需要很大的存储空间,并需要很强的CPU运算能力。为了解决这个问题,交叉编译工具就应运而生了。通过交叉编译工具,我们就可以在CPU能力很强、存储空间足够的主机平台上(比如PC上)编译出针对其他平台的可执行程序。
要进行交叉编译,我们需要在主机平台上安装对应的交叉编译工具链(cross compilation tool chain),然后用这个交叉编译工具链编译我们的源代码,最终生成可在目标平台上运行的代码。
❸ 如何构建MIPS交叉编译工具链
第一步 创建目录以及环境变量
在当前用户目录下创建target-project文件夹,在该文件夹下创建mips-mole文件夹,在mips-mole文件夹下创建三个文件夹:build-tools,kernel,tools,最后,在build-tools文件夹下创建build-gcc,build-boot-gcc,build-glibc,build-binutils文件夹。命令如下:
$ cd ~
$ mkdir -p ./target-project/mips-mole/{kernel/,tools/,build-tools/{build-gcc,build-boot-gcc,build-glibc,build-binutils}}
$ tree ./target-project/mips-mole/
使用脚本构建环境变量
#! /bin/bash
注意修改/home/用户名,修改正确后,使用source使脚本生效
$ cd target-project
$ chmod +x mips.sh
$ source mips.sh
可以使用echo査看相关变量名以观察环境变量是否生效。
最后把linux-2.6.38.tar.bz2下载放置在kernel文件夹下,binutils-2.22.tar.gz,gcc-4.6.2.tar.gz,glibc-2.14.tar.gz,glibc-ports-2.14.tar.gz,gmp-5.0.4.tar.gz,mpc-0.9.tar.gz,mpfr-3.0.1.tar.gz下载放置在build-tools文件夹下。
第二步 安装基于MIPS的linux头文件
$ cd $PRJROOT/kernel
$ tar -xjvf linux-2.6.38.tar.bz2
$ cd linux-2.6.38
在指定路径下创建include文件夹,用来存放相关头文件。
$ mkdir -p $TARGET_PREFIX/include
保证linux源码是干净的。
$ make mrproper
生成需要的头文件。
$ make ARCH=mips headers_check
$ make ARCH=mips INSTALL_HDR_PATH=dest headers_install
将dest文件夹下的所有文件复制到指定的include文件夹内。
$ cp -rv dest/include/* $TARGET_PREFIX/include
最后删除dest文件夹
$ rm -rf dest
$ ls -l $TARGET_PREFIX/include
第三步 安装binutils-2.22
$ cd $PRJROOT/build-tools
$ tar -xzvf binutils-2.22.tar.gz
$ cd build-binutils
$ ../binutils-2.22/configure --target=$TARGET --prefix=$PREFIX
$ make
$ make install
再安装automake。
$ tar -xzvf automake-1.11.1.tar.gz
$ cd automake-1.11.1
$ ./configure
$ make
$ sudo make install
下面开始修改相关文件,主要是去掉-Werror。
$ cd $PRJROOT/build-tools/binutils-2.22/gas
$ ge dit configure
将下面内容
# Enable -Werror by default when using gcc
if test "${GCC}" = yes -a -z "${ERROR_ON_WARNING}" ; then
ERROR_ON_WARNING=yes
fi
修改为
# Enable -Werror by default when using gcc
if test "${GCC}" = yes -a -z "${ERROR_ON_WARNING}" ; then
ERROR_ON_WARNING=no
fi
但是,需要重新configure生成Makefile.in。
$ ./configure (在binutils/gas路径下的configure)
$ make distclean (切记)
然后重新执行第三步,这次编译可过。
第四步 安装gcc引导器
$ cd $PRJROOT/build-tools
$ tar -xzvf gcc-4.6.2.tar.gz
$ tar -xjvf gmp-5.0.4.tar.bz2
$ mv gmp-5.0.4 ./gcc-4.6.2/gmp
$ tar -xzvf mpc-0.9.tar.gz
$ mv mpc-0.9 ./gcc-4.6.2/mpc
$ tar -xzvf mpfr-3.0.1.tar.gz
$ mv mpfr-3.0.1 ./gcc-4.6.2/mpfr
$ cd build-boot-gcc
$ ../gcc-4.6.2/configure --target=$TARGET --prefix=$PREFIX --disable-shared <br>--without-headers --with-newlib --enable-languages=c --disable-decimal-float <br>--disable-libgomp --disable-libmudflap --disable-libssp --disable-threads --disable-multilib
编译并安装gcc引导器、libgcc库。
$ make all-gcc
$ make all-target-libgcc
$ make install-gcc
$ make install-target-libgcc
第五步 编译glibc
$ cd $PRJROOT/build-tools
$ tar xzvf glibc-2.14.tar.gz
$ cd glibc-2.14
删除Makefonfig文件中的内容-lgcc_eh。
$ cp -v Makeconfig{,.b肠花斑拘职饺办邪暴矛k}
$ sed -e 's/-lgcc_eh//g' Makeconfig.bk > Makeconfig
$ cd ..
$ tar -xjvf glibc-ports-2.14.tar.bz2
$ mv glibc-ports-2.14 ./glibc-2.14/ports
$ cd build-glibc
$ CC=mipsel-linux--gcc ../glibc-2.14/configure --host=$TARGET --prefix="/usr" <br>--enable-add-ons --with-headers=$TARGET_PREFIX/include libc_cv_forced_unwind=yes <br>libc_cv_c_cleanup=yes
注意:此时如何设置了LD_LIBRARY_PATH环境变量会configure error,需要删除该变量重新configure。
$ make
$ make install_root=$TARGET_PREFIX prefix=”” install
第六步 完全安装gcc
首先,也是很重要的是去掉libc等库文件的绝对路径。
$ cd $TARGET_PREFIX/lib
备份一下。
$ cp libc.so libc.so.bk
$ gedit libc.so
将原内容
GROUP ( /lib/libc.so.6 /lib/libc_nonshared.a AS_NEEDED ( /lib/ld.so.1 ) )
修改为
GROUP ( libc.so.6 libc_nonshared.a AS_NEEDED ( ld.so.1 ) )
$ cp libpthread.so libpthread.so.bk
$ gedit libpthread.so
将原内容
GROUP ( /lib/libpthread.so.0 /lib/libpthread_nonshared.a )
修改为
GROUP ( libpthread.so.0 libpthread_nonshared.a )
然后可以完全编译gcc。
❹ 如何在ubuntu中搭建交叉编译环境toolchain
1.安装交叉编译环境 sudo apt-get install gcc g++ libcc1 libg++ make gdb
2.安装交叉编译器 f
tp:
//ftp.
arm.linux.org.uk/pub/armlinux/toolchain/ 下载 cross -3.2.tar.bz2或者懒得去找干脆
wget f
tp://ftp.
arm.linux.org.uk/pub/armlinux/toolchain/ cross -3.2.tar.bz2
解压
sudo tar jxvf /home/zhaifang/cross -3.2.tar.bz2
sudo mv /home/zhaifang/usr/local/arm /usr/local
3.交叉编译器加入路径 sudo vi /etc/bash.bashrc后面加入
if [ -d /usr/local/arm ] ; then
PATH=/usr/local/arm/bin:'${PATH}'
fi
4.使环境生效 #source /etc/profile
5.检查 echo $PATH 出现/usr/local/arm/bin说明成功了
6.测试 arm-linux-gcc -v
❺ 如何安装交叉编译器 详细�0�3
1.将源码拷至目录文件: a) 使用命令:cp 3.4.1.tar.bz2 /lishangfeng 拷贝交叉工具的文件至目录文件; 2.将源文件进行解压: a) 使用命令:tar xvf 3.4.1.tar.bz2 解压源文件,得到目录文件(3.4.1); 3.查看目录下的文件: a) 使用命令:ls b) arm-linux bin include info lib libexec man tmp 4.修改环境变量: a) 打开终端,查看当前环境变量: b) 输入命令:echo $PATH c) 添加新的环境变量: 使用命令:PATH = $PATH:/lishangfeng/3.4.1/bin (这样添加只针对本终端有用) d) 若想将环境变量永久添加,可以使用以下方法: 1)打开更改脚本文件: 2)使用命令:gedit /root/.bashrc 3)在文件的最后一行加上如下代码: export PATH=$PATH:/lishangfeng/3.4.1/bin 4)保存退出,重新启动linux 系统即可。 5.至此交叉编译器就安装成功了。 制作人:尚贤博学 于2013 年3 月3 号西安石油大学制作完成(希望能帮助到广大热爱嵌入式的朋友们)
❻ 如何构建交叉编译环境。
你说的是我下面的回答吗?下面就一些问题作一个说明,以期抛砖引玉。
基于Linux操作系统的应用开发环境一般是由目标系统硬件(开发板)和宿主PC机所构成。目标硬件开发板用于运行操作系统和系统应用软件,而目标板所用到的操作系统的内核编译、应用程序的开发和调试则需要通过宿主PC机来完成(所以称为交叉编译)。双方之间一般通过串口,并口或以太网接口建立连接关系。
但在此我建议构建如下的交叉编译环境,适合个人或研发小组使用:单独拿出一台PC机(PII以上即可,就用以前淘汰的旧机器就可以),在该PC上安装桌面的Linux操作系统(如Red Hat Linux 8.0及以上),可以采用默认的安装选项(注意要包含FTP服务),这台PC作为Linux服务器,除管理员以外,一般不直接让其他人去操作。
将该Linux服务器接入局域网,并新建一些合法用户,以便其他的PC机(在此我们将其称为工作站)的合法用户能访问到Linux服务器。而其他的PC机(工作站)仍然使用Windows操作系统,原来干啥继续干啥。
需要的软件工具包括:
1、FTP客户端程序(如Cuteftp,可到网上下载)。
2、Telnet工具(如SecureCRT,可到网上下载)。
3、移植到某一特定ARM平台的Linux操作系统内核源码(一般由销售商整理提供)。
4、GNU编译工具,可由相关网站下载,或由销售商整理提供。
在工作站安装:
在某工作站PC上安装FTP客户端程序和Telnet工具,安装完毕后应该可以在该工作站PC和Linux服务器之间进行文件的传输,并在工作站PC可以通过Telnet登陆到Linux服务器(可能需要将Linux服务器的防火墙服务关闭才能完成)。
在Linux服务器安装:
将工作站PC上的Linux操作系统内核源码压缩包和GNU编译工具通过FTP传送到Linux服务器的某个目录(如合法的用户目录),然后在该目录下解压,并将GNU编译工具安装到默认的工作目录即可,以上工作通过在工作站PC使用Telnet工具完成,而不需要在Linux服务器上进行。
Linux操作系统内核的编译:
Linux操作系统内核的编译一般有一个比较固定的步骤,会根据MakeFile文件的不同而略有差异,可参考相关文档,编译的工作在工作站PC使用Telnet工具完成。
❼ 如何在linux平台构建基于newlib工具链
交叉编译通俗地讲就是在一种平台上编译出能运行在体系结构不同的另一种平台上的程式,比如在PC平台(X86 CPU)上编译出能运行在以ARM为内核的CPU平台上的程式,编译得到的程式在X86 CPU平台上是不能运行的,必须放到ARM CPU平台上才能运行,虽然两个平台用的都是Linux系统。这种方法在异平台移植和嵌入式研发时非常有用。相对和交叉编译,平常做的编译叫本地编译,也就是在当前平台编译,编译得到的程式也是在本地执行。用来编译这种跨平台程式的编译器就叫交叉编译器,相对来说,用来做本地编译的工具就叫本地编译器。所以要生成在目标机上运行的程式,必须要用交叉编译工具链来完成。在裁减和制定Linux内核用于嵌入式系统之前,由于一般嵌入式研发系统存储大小有限,通常都要在性能优越的PC上建立一个用于目标机的交叉编译工具链,用该交叉编译工具链在PC上编译目标机上要运行的程式。交叉编译工具链是个由编译器、连接器和解释器组成的综合研发环境,交叉编译工具链主要由binutils、gcc和glibc 3个部分组成。有时出于减小 libc 库大小的考虑,也能用别的 c 库来代替 glibc,例如 uClibc、dietlibc 和 newlib。建立交叉编译工具链是个相当复杂的过程,如果不想自己经历复杂繁琐的编译过程,网上有一些编译好的可用的交叉编译工具链能下载,但就以学习为目的来说读者有必要学习自己制作一个交叉编译工具链。本章通过具体的实例讲述基于ARM的嵌入式Linux交叉编译工具链的制作过程。 构建交叉编译器的第一个步骤就是确定目标平台。在GNU系统中,每个目标平台都有一个明确的格式,这些信息用于在构建过程中识别要使用的不同工具的正确版本。因此,当在一个特定目标机下运行GCC时,GCC便在目录路径中查找包含该目标规范的应用程式路径。GNU的目标规范格式为CPU-PLATFORM-OS。例如x86/i386 目标机名为i686-pc-linux-gnu。本章的目的是讲述建立基于ARM平台的交叉工具链,所以目标平台名为arm-linux-gnu。 通常构建交叉工具链有3种方法。 方法一 分步编译和安装交叉编译工具链所需要的库和原始码,最终生成交叉编译工具链。该方法相对比较困难,适合想深入学习构建交叉工具链的读者。如果只是想使用交叉工具链,建议使用方法二或方法三构建交叉工具链。 方法二 通过Crosstool脚本工具来实现一次编译生成交叉编译工具链,该方法相对于方法一要简单许多,并且出错的机会也非常少,建议大多数情况下使用该方法构建交叉编译工具链。 方法三 直接通过网上(ftp.arm.kernel.org.uk)下载已制作好的交叉编译工具链。该方法的好处不用多说,当然是简单省事,但和此同时该方法有一定的弊端就是局限性太大,因为毕竟是别人构建好的,也就是固定的没有灵活性,所以构建所用的库及编译器的版本也许并不适合你要编译的程式,同时也许会在使用时出现许多莫名的错误,建议读者慎用此方法。 为了让读者真正的学习交叉编译工具链的构建,下面将重点周详地介绍前两种构建ARM Linux交叉编译工具链的方法。 2.2.1 分步构建交叉编译链 分步构建,顾名思义就是一步一步地建立交叉编译链,不同于2.2.2节中讲述的Crosstool脚本工具一次编译生成的方法,该方法适合那些希望深入学习了解构建交叉编译工具链的读者。该方法相对来说难度较大,通常情况下困难重重,犹如唐僧西天取经,不过本文会尽可能周详地介绍构建的每一个步骤,读者完万能根据本节的内容自己独立实践,构建自己的交叉工具链。该过程所需的时间较长,希望读者有较强的耐心和毅力去学习和实践他,通过实践能使读者更加清晰交叉编译器的构建过程及各个工具包的作用。该方法所需资源如表2.1所示。 表2.1 所需资源 安装包 下载地址 安装包 下载地址 linux-2.6.10.tar.gz ftp.kernel.org glibc-2.3.2.tar.gz ftp.gnu.org binutils-2.15.tar.bz2 ftp.gnu.org glibc-linuxthreads-2.3.2.tar.gz ftp.gnu.org gcc-3.3.6.tar.gz ftp.gnu.org 通过相关站点下载以上资源后,就能开始建立交叉编译工具链了。 1.建立工作目录 首先建立工作目录,工作目录就是在什么目录下构建交叉工具链,目录的构建一般没有特别的需求,能根据个人喜好建立。以下所建立的目录是作者自定义的,当前的用户定义为mike,因此用户目录为/home/mike,在用户目录下首先建立一个工作目录(armlinux),建立工作目录的命令行操作如下: # cd /home/mike # mkdir armlinux 再在这个工作目录armlinux下建立3个目录 build-tools、kernel 和 tools。具体操作如下: # cd armlinux # mkdir build-tools kernel tools 其中各目录的作用如下。 ● build-tools 用来存放下载的binutils、gcc、glibc等原始码和用来编译这些原始码的目录; ● kernel 用来存放内核原始码; ● tools 用来存放编译好的交叉编译工具和库文件。 2.建立环境变量 该步骤的目的是为了方便重复输入路径,因为重复操作每件相同的事情总会让人觉得非常麻烦,如果读者不习惯使用环境变量就能略过该步,直接输入绝对路径就能。声明以下环境变量的目的是在之后编译工具库的时候会用到,非常方便输入,尤其是能降低输错路径的风险。 # export PRJROOT=/home/mike/armlinux # export TARGET=arm-linux # export PREFIX=$PRJROOT/tools # export TARGET_PREFIX=$PREFIX/$TARGET # export PATH=$PREFIX/bin:$PATH 注意,用export声明的变量是临时的变量,也就是当注销或更换了控制台,这些环境变量就消失了,如果还需要使用这些环境变量就必须重复export操作,所以有时会非常麻烦。值得庆幸的是,环境变量也能定义在bashrc文件中,这样当注销或更换控制台时,这些变量就一直有效,就不用老是export这些变量了。 3.编译、安装Binutils Binutils是GNU工具之一,他包括连接器、汇编器和其他用于目标文件和档案的工具,他是二进制代码的处理维护工具。安装Binutils工具包含的程式有addr2line、ar、as、c++filt、gprof、ld、nm、obj、objmp、ranlib、readelf、size、strings、strip、libiberty、libbfd和libopcodes。对这些程式的简单解释如下。 ● addr2line 把程式地址转换为文件名和行号。在命令行中给他一个地址和一个可执行文件名,他就会使用这个可执行文件的调试信息指出在给出的地址上是哪个文件及行号。 ● ar 建立、修改、提取归档文件。归档文件是包含多个文件内容的一个大文件,其结构确保了能恢复原始文件内容。 ● as 主要用来编译GNU C编译器gcc输出的汇编文件,产生的目标文件由连接器ld连接。 ● c++filt 连接器使用他来过滤 C++ 和 Java 符号,防止重载函数冲突。 ● gprof 显示程式调用段的各种数据。 ● ld 是连接器,他把一些目标和归档文件结合在一起,重定位数据,并连接符号引用。通常,建立一个新编译程式的最后一步就是调用ld。 ● nm 列出目标文件中的符号。 ● obj 把一种目标文件中的内容复制到另一种类型的目标文件中。 ● objmp 显示一个或更多目标文件的信息。使用选项来控制其显示的信息,他所显示的信息通常只有编写编译工具的人才感兴趣。 ● ranlib 产生归档文件索引,并将其保存到这个归档文件中。在索引中列出了归档文件各成员所定义的可重分配目标文件。 ● readelf 显示elf格式可执行文件的信息。 ● size 列出目标文件每一段的大小及总体的大小。默认情况下,对于每个目标文件或一个归档文件中的每个模块只产生一行输出。 ● strings 打印某个文件的可打印字符串,这些字符串最少4个字符长,也能使用选项-n设置字符串的最小长度。默认情况下,他只打印目标文件初始化和可加载段中的可打印字符;对于其他类型的文件他打印整个文件的可打印字符。这个程式对于了解非文本文件的内容非常有帮助。 ● strip 丢弃目标文件中的全部或特定符号。 ● libiberty 包含许多GNU程式都会用到的函数,这些程式有getopt、obstack、strerror、strtol和strtoul。 ● libbfd 二进制文件描述库。 ● libopcode 用来处理opcodes的库,在生成一些应用程式的时候也会用到他。 Binutils工具安装依赖于Bash、Coreutils、Diffutils、GCC、Gettext、Glibc、Grep、Make、Perl、Sed、Texinfo等工具。 介绍完Binutils工具后,下面将分步介绍安装binutils-2.15的过程。 首先解压binutils-2.15.tar.bz2包,命令如下: # cd $PRJROOT/build-tools # tar -xjvf binutils-2.15.tar.bz2 接着设置Binutils工具,建议建立一个新的目录用来存放设置和编译文件,这样能使源文件和编译文件独立开,具体操作如下: # cd $PRJROOT/build-tools # mkdir build-binutils # cd build-binutils # ../ binutils-2.15/configure --target=$TARGET --prefix=$PREFIX 其中选项?target的意思是制定生成的是 arm-linux 的工具,--prefix 是指出可执行文件安装的位置。执行上述操作会出现非常多check信息,最后产生 Makefile 文件。接下来执行make和安装操作,命令如下: # make # make install 该编译过程较慢,需要数十分钟,安装完成后查看/home/mike/armlinux/tools/bin目录下的文件,如果查看结果如下,表明此时Binutils工具已安装结束。 # ls $PREFIX/bin arm-linux-addr2line arm-linux-ld arm-linux-ranlib arm-linux-strip arm-linux-ar arm-linux-nm arm-linux-readelf arm-linux-as arm-linux-obj arm-linux-size arm-linux-c++filt arm-linux-objmp arm-linux-strings 4.获得内核头文件 编译器需要通过系统内核的头文件来获得目标平台所支持的系统函数调用所需要的信息。对于Linux内核,最佳的方法是下载一个合适的内核,然后复制获得头文件。需要对内核做一个基本的设置来生成正确的头文件;不过,不必编译内核。对于本例中的目标arm-linux,需要以下步骤。 (1)在kernel目录下解压linux-2.6.10.tar.gz内核包,执行命令如下: # cd $PRJROOT/kernel # tar -xvzf linux-2.6.10.tar.gz (2)接下来设置编译内核使其生成正确的头文件,执行命令如下: # cd linux-2.6.10 # make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig 其中ARCH=arm表示是以arm为体系结构,CROSS_COMPILE=arm-linux-表示是以arm-linux-为前缀的交叉编译器。也能用config和xconfig来代替menuconfig,推荐用make menuconfig,这也是内核研发人员用的最多的设置方法。注意在设置时一定要选择处理器的类型,这里选择三星的S3C2410(System Type->ARM System Type->/Samsung S3C2410),如图2.1所示。设置完退出并保存,检查一下内核目录中的include/linux/version.h和include/linux/autoconf.h文件是不是生成了,这是编译glibc时要用到的,如果version.h 和 autoconf.h 文件存在,说明生成了正确的头文件。 screen.width*0.7) {this.resized=true; this.width=screen.width*0.7; this.alt=’Click here to open new window\nCTRL+Mouse wheel to zoom in/out’;}" border=0> 图2.1 Linux 2.6.10内核设置界面 复制头文件到交叉编译工具链的目录,首先需要在/home/mike/armlinux/tools/arm-linux目录下建立工具的头文件目录inlcude,然后复制内核头文件到此目录下,具体操作如下: # mkdir -p $TARGET_PREFIX/include # cp -r $PRJROOT/kernel/linux-2.6.10/include/linux $TARGET_PREFIX/include # cp -r $PRJROOT/kernel/linux-2.6.10/include/asm-arm $TARGET_PREFIX/include/asm 5.编译安装boot-trap gcc 这一步的目的主要是建立arm-linux-gcc工具,注意这个gcc没有glibc库的支持,所以只能用于编译内核、BootLoader等不必C库支持的程式,后面创建C库也要用到这个编译器,所以创建他主要是为创建C库做准备,如果只想编译内核和BootLoader,那么安装完这个就能到此结束。安装命令如下: # cd $PRJROOT/build-tools # tar -xvzf gcc-3.3.6.tar.gz # mkdir build-gcc # cd gcc-3.3.6 # vi gcc/config/arm/t-linux 由于是第一次安装ARM交叉编译工具,没有支持libc库的头文件,所以在gcc/config/arm/t- linux文件中给变量TARGET_LIBGCC2_CFLAGS增加操作参数选项-Dinhibit_libc -D__gthr_ posix_h来屏蔽使用头文件,否则一般默认会使用/usr/inlcude头文件。 将TARGET_LIBGCC2-CFLAGS = -fomit-frame-pointer ?fPIC改为TARGET_LIBGCC2- CFLAGS=-fomit-frame-pointer-fPIC -Dinhibit_libc -D__gthr_posix_h 修改完t-linux文件后保存,紧接着执行设置操作,如下命令: # cd build-gcc # ../ build-gcc /configure --target=$TARGET --prefix=$PREFIX --enable-languages=c --disable-threads --disable-shared 其中选项--enable-languages=c表示只支持C语言,--disable-threads表示去掉thread功能,这个功能需要glibc的支持。--disable-shared表示只进行静态库编译,不支持共享库编译。 接下来执行编译和安装操作,命令如下: # make # make install 安装完成后,在/home/mike/armlinux/tools/bin下查看,如果arm-linux-gcc等工具已生成,表示boot-trap gcc工具已安装成功。 6.建立glibc库 glibc是GUN C库,他是编译Linux系统程式非常重要的组成部分。安装glibc-2.3.2版本之前推荐先安装以下的工具: ● GNU make 3.79或更新; ● GCC 3.2或更新; ● GNU binutils 2.13或更新。 首先解压glibc-2.2.3.tar.gz和glibc-linuxthreads-2.2.3.tar.gz原始码,操作如下: # cd $PRJROOT/build-tools # tar -xvzf glibc-2.2.3.tar.gz # tar -xzvf glibc-linuxthreads-2.2.3.tar.gz --directory=glibc-2.2.3 然后进行编译设置,glibc-2.2.3设置前必须新建一个编译目录,否则在glibc-2.2.3目录下不允许进行设置操作,此处在$PRJROOT/build-tools目录下建立名为build-glibc的目录,设置操作 如下: # cd $PRJROOT/build-tools # mkdir build-glibc # cd build-glibc # CC=arm-linux-gcc ../glibc-2.2.3 /configure --host=$TARGET --prefix="/usr" --enable-add-ons --with-headers=$TARGET_PREFIX/include 选项CC=arm-linux-gcc是把CC(Cross Compiler)变量设成刚编译完的gcc,用他来编译glibc。--prefix="/usr"定义了一个目录用于安装一些和目标机器无关的数据文件,默认情况下是/usr/local目录。--enable-add-ons是告诉glibc用linuxthreads包,在上面已将他放入glibc原始码目录中,这个选项等价于-enable-add-ons=linuxthreads。--with-headers告诉glibc linux内核头文件的目录 位置。 设置完后就能编译和安装 glibc了,具体操作如下: # make # make install 7.编译安装完整的gcc 由于第一次安装的gcc没有交叉glibc的支持,目前已安装了glibc,所以需要重新编译来支持交叉glibc。并且上面的gcc也只支持C语言,目前能让他同时支持C语言还要和C++语言。具体操作如下: # cd $PRJROOT/build-tools/gcc-2.3.6 # ./configure --target=arm-linux --enable-languages=c,c++ --prefix=$PREFIX # make # make install 安装完成后会发目前$PREFIX/bin目录下又多了arm-linux-g++ 、arm-linux-c++等文件。 # ls $PREFIX/bin arm-linux-addr2line arm-linux-g77 arm-linux-gnatbind arm-linux-ranlib arm-linux-ar arm-linux-gcc arm-linux-jcf-mp arm-linux-readelf arm-linux-as arm-linux-gcc-3.3.6 arm-linux-jv-scan arm-linux-size arm-linux-c++ arm-linux-gccbug arm-linux-ld arm-linux-strings arm-linux-c++filt arm-linux-gcj arm-linux-nm arm-linux-strip arm-linux-cpp arm-linux-gcjh arm-linux-obj grepjar arm-linux-g++ arm-linux-gcov arm-linux-objmp jar 8.测试交叉编译工具链 到此为止,已介绍完了用分步构建的方法建立交叉编译工具链。下面通过一个简单的程式测试刚刚建立的交叉编译工具链看是否能够正常工作。写一个最简单的hello.c源文件,内容如下: #include int main( ) { printf(“Hello,world!\n”); return 0; } 通过以下命令进行编译,编译后生成名为hello的可执行文件,通过file命令能查看文件的类型。当显示以下信息时表明交叉工具链正常安装了,通过编译生成了ARM体系可执行的文件。注意,通过该交叉编译链编译的可执行文件只能在ARM体系下执行,不能在基于X86的普通PC上执行。 # arm-linux-gcc -o hello hello.c # file hello hello: ELF 32-bit LSB executable, ARM, version 1 (ARM), for GNU/Linux 2.4.3, dynamically linked (uses shared libs), not stripped 2.2.2 用Crosstool工具构建交叉工具链 Crosstool是一组脚本工具集,可构建和测试不同版本的gcc和glibc,用于那些支持glibc的体系结构。他也是个开源项目,下载地址是http://kegel.com/crosstool。用Crosstool构建交叉工具链要比上述的分步编译容易得多,并且也方便许多,对于仅仅为了工作需要构建交叉编译工具链的读者建议使用此方法。用Crosstool工具构建所需资源如表2.2所示。
❽ cygwin 中如何安装arm-linux-gcc交叉编译器
交叉编译工具链作为嵌入式Linux开发的基础,直接影响到嵌入式开发的项目进度和完成质量。由于目前大多数开发人员使用Windows作为嵌入式开发的宿主机,在Windows中通过安装VMware等虚拟机软件来进行嵌入式Linux开发,这样对宿主机的性能要求极高。Cygwin直接作为Windows下的软件完全能满足嵌入式Linux的开发工作,对硬件的要求低及方便快捷的特点成为嵌入式开发的最佳选择。
目前网络上Cygwin下直接可用的交叉编译器寥寥无几且版本都比较低,不能满足开源软件对编译器版本依赖性的要求(如低版本工具链编译U-Boot出现软浮点问题等);Crosstool等交叉工具链制作工具也是更新跟不上自由软件版本的进度;同时系统介绍Cygwin下制作交叉编译器方面的资料很少。针对上述情况,基于最新版gcc等自由软件构建Cygwin下的交叉编译器显得尤为迫切和重要。
构建前准备工作
首先Cygwin下必须保证基本工具比如make}gcc等来构建bootstrap-gcc编译器,这可以在安装Cygwin时选择安装。参照gcc等安装说明文档来在Cygwin下查看是否已经安装,如输入gcc --v等。
源码下载
gcc-4.5.0的编译需mpc的支持,而mpc又依赖gmp和mpfr库。从各个项目官方网站上下载的最新的源码:
binutils-2.20. l .tar.bz2
gmp-S.O. l .tar.bz2
mpc-0.8.2.tar.gz
mpfr-3.O.O.tar.bz2
gcc-4.S.O.tar.bz2
linux-2.6.34.tar.bz2
glibc-2.11.2.tar.bz2
glibc-ports-2. l l .tar.bz2
gdb-7. l.tar.bz2
设置环境变量
HOST:工具链要运行的目标机器;BUILD:用来建立工具链的机器;TARGET工具链编译产生的二进制代码可以运行的机器。
BUILD=i686-pc-cygwin
HOST=i686-pc-cygwin TARGET=arm-linux
SYSROOT指定根目录,$PREFIX指定安装目录。目标系统的头文件、库文件、运行时对象都将被限定在其中,这在交叉编译中有时很重要,可以防止使用宿主机的头文件和库文件。本文首选$SYSROOT为安装目录,$PREFIX主要作为glibc库安装目录。
SYSROOT=/cross-root
PREFIX=/cross-root/arm-linux
由于GCC-4.5.0需要mpfr,gmp,mpc的支持,而这三个库又不需要交叉编译,仅仅是在编译交叉编译链时使用,所以放在一个临时的目录。
TEMP_PREFIX=/build-temp
控制某些程序的本地化的环境变量:
LC ALL=POSIX
设置环境变量:
PATH=$SYSROOT/bin:儿in:/usr/bin
设置编译时的线程数f31减少编译时间:
PROCS=2
定义各个软件版本:
BINUTILS V=2.20.1
GCC V=4.5.0
GMP V=5.0.1
MPFR V=3.0.0
MPC V二0.8.2
LINUX V二2.6.34
GLIBC V=2.11.2
GLIBC-PORTS V=2.11
GDB V=7.1
构建过程详解
鉴于手工编译费时费力,统一把构建过程写到Makefile脚本文件中,把其同源码包放在同一目录下,执行make或顺次执行每个命令即可进行无人值守的编译安装交叉工具
链。以下主要以Makefile执行过程为主线进行讲解。
执行“make”命令实现全速运行
可在Cygwin的Shell环境下执行“make>make.log 2>&1”命令把编译过程及出现的错误都输出到make.log中,便于查找:
all:prerequest install-deps install-cross-stage-one install-
cross-stage-two
预处理操作
"make prerequest',命令实现单步执行的第一步,实现输出变量、建立目录及解压源码包等操作。0'set十h”关闭bash的Hash功能,使要运行程序的时候,shell将总是搜索PATH里的目录[4]。这样新工具一旦编译好,shell就可以在$(SYSROOT)/bin目录里找到: prerequest:
set +h&&mkdir -p $(SYSROOT)/bin&&
mkdir -p $(PREFIX)/include&&
mkdir -p $(TEMP一REFIX)&&
export PATH LCes ALL&&
tar -xvf gmp-$(GMP_V).tar.bz2&&
tar -xvf mpfr-$(MPFR_V).tar.bz2&&
tar -xvf mpc-$(MPC_V).tar.gz&&
tar -xvf binutils-$(BINUTILS_V).tar.bz2&&
tar -xvf gcc-$(GCC_V).tar.bz2&&
tar -xvf linux-$(LINUX_V).tar.bz2&&
tar -xvf glibc-$(GLIBC_V).tar.bz2&&
tar -xvf glibc-ports-$(GLIBC-PORTS_V).tar.bz2&&
my glibc-ports-$(GLIBC-PORTS_V)
glibc-$(GLIBC_V)/ports&&
tar -xvf gdb-$(GDB V).tar.bz2
非交叉编译安装gcc支持包mpc
00make install-deps”命令实现单步执行的第二步,实现mpc本地编译,mpc依赖于gmp和mpfr
install-deps:gmp mpfr mpc
gmp:gmp-$(GMP_V)
mkdir -p build/gmp&&cd build/gmp&&
../../gmp-*/configure
--disable-shared --prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS)&&$(MAKE) install
mpfr:mpfr-$(MPFR_V)
mkdir -p b-uild/mpfr&&cd build/mpfr&&
../..//mpfr-*/configure
LDF'LAGS="-Wl,-search_paths_first”--disable-shared
--with-gmp=$(TEMP_PREFIX)
--prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS) all&&$(MAKE) install
mpc: mpc-$(MPC_V) gmp mpfr
mkdir -p build/mpc&&cd build/mpc&&
../../mpc-*/configure
--with-mpfr=$(TEMP PREFIX)
--with-gmp=$(TEMP_PREFIX)
--prefix=$(TEMP_PREFIX)&&
$(MAKE)一$(PROCS)&&$(MAKE) install
交叉编译第一阶段
"make install-cross-stage-one',命令实现单步执行的第三步,编译安装binutils,bootstrap-gcc和获取Linux内核头文件:
install-cross-stage-one:cross-binutils cross-gcc get-kernel-headers
编译安装binutils
cross-binutils: binutils-$(BINUTILS_ V)
mkdir -p build/binutils&&cd build/binutils&&
../..//binutils-*/configure --prefix=$(SYSROOT)
--target=$(TARGET)--disable-nls&&
$(MAKE)j$(PROCS)&&$(MAKE) install
编译安装bootstrap-gcc。使用一disable-shared参数的意思是不编译和安装libgcc_ eh.a文件。glibc软件包依赖这个库,因为它使用其内部的一lgcc_eh来创建系统[6]。这种依赖
性,可通过建立一个指向libgcc.a符号链接得到满足,因为该文件最终将含有通常在libgcc- eh.a中的对象(也可通过补丁文件实现)。
cross-gcc:gcc-$(GCC_V)
mkdir -p build/gcc&&cd build/gcc&&
二//gcc-*/configure
--target=$(TARGET)--prefix=$(SYSROOT)
--disable-nls --disable-shared --disable-multilib
--disable-decimal-float--disable-threads
--disable-libmudflap --disable-libssp
--disable-libgomp --enable-languages=c
--with-gmp=$(TEMP_PREFIX)
--with-mpfr=$(TEMP_PREFIX)
--with-mpc=$(TEMP_PREFIX)&&
$(MAKE) -j$(PROCS)&&$(MAICE) install&&
In -vs libgcc.a'arm-linux-gcc -print-libgcc-file-name I
sed's/libgcc/& eh/'}
获取Linux内核头文件:
get-kernel-headersainux-$(LINUX_V)
cd linux-$(LINUX_V)&&
$(MAICE) mrproper&&$(MAKE) headers check&&
$(MAKE) ARCH=arm&&
INSTALLes HDR_ PATH=dest headers_ install&&
find dest/include
(-name .install一。-name ..installNaNd)-delete&&
cp -rv desdinclude/* $(PREFIX)/include
交叉编译第二阶段
编译安装glibc、重新编译安装binutils、完整编译安装gcc和编译安装gdb o "make install-cross-stage-two',命令实现单步执行的第四步: install-cross-stage-two:cross-glibc cross-rebinutils cross-g++ cross-gdb
编译安装glibca glib。的安装路径特意选为$(PREFIX),与gcc更好找到动态链接库也有关系,选在$(SYSROOT)提示找不到crti.o; glibc已经不再支持i386; glibc对ARM等的处理器的支持主要通过glibc-ports包来实现;正确认识大小写敏感(Case Sensitive)和大小写不敏感(CaseInsensitive)系统,大小写敏感问题主要影响到glibc,是交叉编译glibc成功的关键:Cygwin帮助手册中可知Cygwin是默认大小写不敏感的n},但是UNIX系统是大小写敏感的,这也是Cygwin和UNIX类系统的一个区别。通过作者自行参考制作的glibc-2.11.2-cygwin.patch补T使glibc变为Case-Insensitive,此补丁主要是对大小写敏感问题改名来实现。
交叉编译过程中安装的链接器,在安装完Glibc以前都无法使用。也就是说这个配置的forced unwind支持测试会失败,因为它依赖运行中的链接器。设置libc_ cvforced unwind=yes这个选项是为了通知configure支持force-unwind,而不需要进行测试。libc cv_c_cleanup=yes类似的,在configure脚本中使用libc_cv_c cleanup=yes,以便配置成跳过测试而支持C语言清理处理。
cross-glibc:glibc-$(GLIBC_V)
cd glibc-$(GLIBC_V)&&
patch -Np 1 –i...//glibc-2.11.2-cygwin.patch&&
cd..&&mkdir -p build/glibc&&
cd build/glibc&&
echo"libc cv_forcedes unwind=yes">config.cache&&
echo "libc cv_c_cleanup=yes">>config.cache&&
echo "libc cv_arm_tls=yes">>config.cache&&
../../glibc-*/configure --host=$(TARGET)
--build=$(../OneScheme/glibc-2.11.2/scripts/config.guess)
--prefix=$(PREFIX)--disable-profile
--enable-add-ons --enable-kernel=2.6.22.5
--with-headers=$(PREFIX)/include
--cache-file=config.cache&&
$(MAKE)&&$(MAKE) install
重新编译安装binutils。编译之前要调整工具链,使其
指向新生成的动态连接器。
调整工具链:
SPECS=
'dirname $(arm-linux-gcc -print-libgcc-file-name)'/specs
arm-linux-gcc -mpspecs
sed -e 's@/lib(64)\?/ld@$(PREFTX)&@g' -e ,}/}}*cPP}$/{n;s,$,-isystem $(PREFIX)/include,}"
>$SPECS
echo "New specs file is: $SPECS"
unset SPECS
测试调整后工具链:
echo 'main(川’>mmy.c
arm-linux-gcc
-B/cross-root/arm-linux/lib mmy.c
readelf -1 a.out I grep’:/cross-roobarm-linux'
调整正确的输出结果:
[Requesting program interpreter: /tools/lib/ld-linux.so.2j
一切正确后删除测试程序:
rm -v mmy.c a.out
重新编译binutils。指定--host,--build及--target,否则配置不成功,其config.guess识别能力不如gcc做的好。
cross-rebinutils: binutils-$(BINUTILS_V)
mkdir -p build/rebinutils&&
cd build/rebinutils&&CC="$(TARGET)-gcc
-B/cross-roodarm-linux/lib/"&&AR=$(TARGET)-ar&&
RANLIB=$(TARGET)-ranlib&&../..//binutils-*/configure
--host=$(HOST)--build=$(BUILD)--target=$(TARGET)
--prefix=$(SYSROOT)--disable-nls
--with-lib-path=$(PREFIX)/lib&&
$(MAKE)--$(PROCS)&&$(MAKE) install
高于4.3版的gcc把这个编译当作一个重置的编译器,并且禁止在被一prefix指定的位置搜索startfiles。因为这次不是重置的编译器,并且$(SYSROOT)目录中的startfiles对于创
建一个链接到$$(SYSROOT)目录库的工作编译器很重要,所以我们使用下面的补丁,它可以部分还原gcc的老功能tai . patch -Npl –i../gcc-4.5.0-startfiles_fix-l.patch
在正常条件下,运行gcc的fixincludes脚本,是为了修复可能损坏的头文件。它会把宿主系统中已修复的头文件安装到gcc专属头文件目录里,通过执行下面的命令,可以抑
制fixincludes脚本的运行[9](此时目录为/gcc-4.5.0)。
cp -v gcc/Makefile.in{,.orig}
sed 's@\./fixinc\.sh@-c true@'
gcc/Makefile.in.orig > gcc/Makefile.in
下面更改gcc的默认动态链接器的位置,使用已安装在/cross-root/ann-linux目录下的链接器,这样确保在gcc真实的编译过程中使用新的动态链接器。即在编译过程中创建的所有
二进制文件,都会链接到新的glibc文件
for file in
$(find gcc/config -name linux64.h-o -name linux.h –o -name sysv4.h)
do cp -uv $file{,.orig}
sed -a 's@/lib(64)?(32)?/Id@/cross-root/arm-linux&@g’-e's@/usr@/cross-rootlarm-linux@g' $file.orig>$file echo‘
#undef STANDARD INCLUDE DIR
#define STANDARD_ INCLUDE DIR "/cross-root/arm-linux/include"
#define STANDARD STARTFILE PREFIX 1 "/cross-root/arm-linux/lib"
#define STANDARD_ STARTFILE_ PREFIX_ 2””’>>$file
touch $file.orig done
完整编译安装gcc。最好通过指定--libexecdir更改libexecdir到atm-linux目录下。--with-local-prefix选项指定gcc本地包含文件的安装路径此处设为$$(PREFIX),安装后就会在内核头文件的路径下。路径前指定$(Pwd)则以当前路径为基点,不指定则默认以/home路径为基点,这点要注意。
cross-g++:gcc-$(GCC-)
mkdir -p build/g十+&&cd build/g++&&
CC="$(TARGET)-gcc AR=$(TARGET)-ar&&
-B/cross-roodarm-linux/lib/"&&
RANLIB=$(TARGET)-ranlib&&
..//gcc-*/configure
--host=$(HOST)--build=$(BUILD)--target=$(TARGET)
--prefix=$(SYSROOT)--with-local-prefix=$(PREFIX)
--enable-clocale=gnu --enable-shared
--enable-threads=posix --enable -cxa_atexit
--enable-languages=c,c++--enable-c99
--enable-long-long --disable-libstdcxx-pch
--disable-libunwind-exceptions
--with-gmp=$(TEMP_PREFIX)
--with-mpfr=$(TEMP_PREFIX)
--with-mpc=$(TEMP_PREFIX)&&
$(MAKE) LD_IBRARY_ATH=
$(pwd)/$(../../gcc-4.5.0/config.guess)/libgcc&&
$(MAKE) install
编译安装gdb,至此完成整个工具链的制作。
cross-gdb: gdb-$(GDB V)
mkdir -p build/gdb&&cd build/gdb&&
../../gdb-*/configure --prefix=$(SYSROOT)
--target=$(TARGET)--disable-werror&&
$(MAKE)-j$(PROCS)&&$(MAKE) install
“make clean”命令清除编译生成的文件和创建解压的文件夹
.PHONY:clean
dean:
rm -fr $(TEMP_PREFIX) build
binutils-$(BINUTIL,S_V) gcc-$(GCC_V)
glibc-$(NEWL.IB_V) gdb-$(GDB_V)
gmp-$(GMP_V) mpc-$(MPC_V) mpfr-$(MPFR_V)
工具链测试
命令行中输入以下内容:
echo 'main(){}’>mmy.c
arm-linux-gcc -o mmy.exe mmy.c
file mmy.exe
运行正常的结果:
mmy.exe: ELF 32-bit LSB executable, ARM, version 1,for GNU/Linux 2.6.22, dynamically linked (uses shared libs),not stripped.
❾ 嵌入式ARM linux操作系统中如何构建交叉开发环境
这个问题相当专业了,之前我去周立功那边了解过的。
按照以下步骤进行安装:
1) 安装32位的兼容库和libncurses5-dev库
在安装交叉编译工具之前需要先安装32位的兼容库和libncurses5-dev库,安装32兼容库需要从ubuntu的源库中下载,所以需要在Linux主机系统联网的条件下,通过终端使用如下命令安装:
vmuser@Linux-host ~$sudo apt-get install ia32-libs
若Linux主机系统没有安装32位兼容库,在使用交叉编译工具的时候可能会出现错误:
-bash: ./arm-fsl-linux-gnueabi-gcc: 没有那个文件或目录
在终端中使用如下命令则可以安装libncurses5-dev库。
vmuser@Linux-host ~$sudo apt-get install libncurses5-dev
如果没有安装此库,在使用make menucofig时出现如下所示的错误:
*** Unableto find the ncurses libraries or the
*** required headerfiles.
*** 'makemenuconfig' requires the ncurses libraries.
***
Installncurses (ncurses-devel) and try again.
***
make[1]: *** [scripts/kconfig/dochecklxdialog] 错误 1
make: *** [menuconfig] 错误 2
2) 安装交叉编译工具链
将交叉编译工具“gcc-4.4.4-glibc-2.11.1-multilib-1.0_EasyARM-iMX283.tar.bz2”文件通过U盘的方式拷贝到Linux主机的“/tmp”目录下,然后执行如下命令进行解压安装交叉编译工具链:
vmuser@Linux-host ~$ cd /tmp
vmuser@Linux-host ~$ sudo tar -jxvfgcc-4.4.4-glibc-2.11.1-multilib-1.0_EasyARM-iMX283.tar.bz2 -C /opt/
vmuser@Linux-host /tmp$ # 输入vmuser用户的密码“vmuser”
执行完解压命令后,交叉编译工具链将被安装到“/opt/gcc-4.4.4-glibc-2.11.1-multilib-1.0”目录下。交叉编译器的具体目录是“/opt/gcc-4.4.4-glibc-2.11.1-multilib-1.0/arm-fsl-linux-gnueabi/bin”,为了方便使用,还需将该路径添加到PATH环境变量中,其方法为:修改“/etc/profile”文件,具体操作方法如下:
在终端中输入如下指令
vmuser@Linux-host ~$ sudo vi /etc/profile # 若提示输入密码,则输入“vmuser”
用vi编辑器打开“/etc/profile”文件后,在文件末尾增加如下一行内容:
export PATH=$PATH:/opt/gcc-4.4.4-glibc-2.11.1-multilib-1.0/arm-fsl-linux-gnueabi/bin
文件修改并保存后,再在终端中输入如下指令,更新环境变量,使设置生效。
vmuser@Linux-host ~$source /etc/profile
在终端输入arm-fsl-linux-gnueabi-并按TAB键,如果能够看到很多arm-fsl-linux-gnueabi-前缀的命令,则基本可以确定交叉编译器安装正确,如下图所示。
❿ arm-linux-gcc交叉编译器的制作,以及版本选择问题。
,需要必须有足够动经验来支持。
另外,用 RH9 的都是高手,我想你的知识不需要来提问了吧?
1、在 PC 上编译 arm 的程序当然需要较差编译器,这个需要自己安装,或者着现成的交叉编译器环境,一般是一个特殊参数编译出来的 gcc + binutils + glibc + linux-header。这个每个人动环境不同,一般都需要自己编译一个,当然没有特殊需求,也可以找现成的。不过很难找,因为这套环境还要和你动系统搭配,不然环境不匹配,连这个环境都不能运行,那就更谈不上编译东西了。
有关自己编译搭建交叉编译环境,可以看看一个特殊的 Linux 发行版 LFS 的分支: CLFS 。
2、移植分很多意思,移植有可能就意味着这套源代码不能在目标系统上面编译,需要你根据相应的知识去修改源代码来让这套代码适应目标编译器的要求,比如源代码有 SSE4 的优化,这套程序在非 SSE4 CPU 上无法编译运行,但目标机器连 SSE1 都不支持。那么就需要移植。
或者移植仅仅是根据新的环境进行编译,不需要进行源代码修改,只需要进行一下编译就能运行的程序,也可以称为移植,就是从一个环境、架构 -》另一个环境、架构。都可以称为移植,但真正的移植意味着修改程序源代码来适应新环境。你说的这种移植是最简单的移植。
3、决定目标硬件环境 -》搭建目标编译器 -》制作目标环境(内核,基础软件库)-》进行应用移植(移植需要的软件、主应用程序)-》搭建系统文件系统 -》导入目标系统-》启动目标系统&应用。说起来很简单,因为这是完全没有问题的条件下。
至于超级终端。那是用来控制目标系统的。目标系统有可能不能插键盘鼠标显示器,这就需要一个远程网络链接来进行控制。以及通过远程链接来发送数据。这都需要终端的支持。
虚拟机下面进行开发,不能发挥你的计算机的性能。而且因为隔着 VMware 的软件模拟层,可能还不会很方便的让你链接目标设备。
至于用 socket ,我还没见到你的目标需要这个东西,因为所有的东西都是现成的源代码。不需要你从 0 开始写,当然你想自己写一个系统内核,或者服务器程序,或者全套的系统+应用,我绝对不拦你,但希望你写完这套东西,能把源代码发布出来。
ads 可以认为是一个支持环境,他本身不是一个系统的开发 SDK 。
-------------------------------------
ads 没用过,印象里他还有模拟器,调试器什么的程序。功能上要比 Linux 开发环境,WinCE 环境下面的东西更多更偏向于硬件方面,毕竟 ads 是 arm 出品的,不太可能偏向于软件部分设计。Linux 和 WinCE 都是系统而不是硬件工具。
你可以认为交叉编译器是一个应用程序,一个输出器。把源代码输出为 arm 的代码,这个应用程序的输出,是靠他自己的环境,而不是当前系统的环境的。
当前系统的各个软件的版本,不能影响交叉编译器输出的环境(理论上,现实有的时候总是从别的地方给你打击……),交叉编译器一般至少有 gcc 、binutils 、glibc 库、linux kernel 头文件。
在软件需求上。
头文件谁都不依赖,glibc 只需要内核头文件,其他程序全都依赖于 glibc 。也就是所有程序都不依赖内核,仅仅是依赖于内核头文件。
gcc 和 binutils 是把程序源代码根据上面各个环节的需提供的功能来输出为上面环节里面的二进制程序。依赖你当前环境的,只有 gcc 和 binutils 两个程序的执行、控制环节。只有他们两个依赖的,而不是你的交叉编译后的程序。
至于编译器版本的选择,新版本功能更好,旧版本兼容更好。
这个要看你的实际需要了。应用程序源代码也调编译器的,同时也依赖于软件库的功能。
arm 开发建议稳定、兼容优先。当然也可以尝试最新的编译环境,来获取更好的优化(前提是还有什么代码优化的话)。
另外,团IDC网上有许多产品团购,便宜有口碑