A. 论淘宝搜索推荐算法排序机制及2021年搜索的方向。
[写在前面]淘宝搜索引擎至今反复多次,搜索顺序也从最初的统计模型升级到机械学习模型,到2010年为止没有标签没有基础标签,随着计算能力的提高,2010年后开始挖掘用户的基础标签,从3年到2013年开始使用大规模的机械学习和实时特征
但你有没有想过为什么2016-2017年的两年是各种各样的黑搜索盛行的一年,为什么今天几乎消失了?
最根本的原因是从统计算法模型到机械学习模型的转型期。
说白了,这时不收割就没有收割的机会。因为统计模型即将退出历史舞台。
因此,各路大神各自扩大了统计模型算法中的影响因素。统计算法无论在哪里,点击率和坑产都很容易搜索。
那两年成了中小卖家的狂欢盛宴,很多大神的烟火也是旺盛的。
今天推荐算法的第三代使用后,加上疫情的影响进行了鲜明的比较,真的很感慨。
淘宝真的没有流量了吗?电器商务真的做不到吗?还是大家的思维没有改变,停留在2016-2017年的黑搜宴会上不想醒来?
2017年、2018年、2019年是淘宝推荐算法反复最快的3年,每年的算法升级都不同,整体上到2019年9月为止统计算法模型的影响因素还很大,从2019年下半年开始第三代推荐算法后,全面的真正意义进入了以机械学习模型为中心的推荐算法时代。
各路大神也无法验证,加上百年疫情的影响,很多大神的隐蔽布也泄露了。
基本上以统计模型为主,训练基本上没有声音,典型的是坑产游戏。
如果现在还能看到的话,基本上可以判断他不是在训练,而是在制作印刷用纸,一定会推荐使用资源,资源是多么安全。
刷子的生产增加真的没有效果吗?不是我以前的文章说:不是不行,而是从坑产的角度思考,而是从改变竞争环境的角度思考,用补充书改变竞争环境,改变场地,有新的天地,任何手段都要为商业本质服务。
正文
概述统计算法模型时代。
统计模型时代搜索引擎的排名是最原始的排名思考,如果你的类别不错,关键词比较正确,就能得到很大的流量,当时产品需求少,只要上下架的优化就能使产品上升。
到2016年为止没有坑产游戏吗?黑色搜索的效果不好吗?其实,什么时候坑产是最核心的机密,谁来教大家,什么时候教的最多的是类别优化,关键词优化,大部分优化都围绕关键词,电器商的老人想起了你什么时候得到关键词的人得到了世界。
有人告诉我做坑产,关键词找到生意也来了。什么时候知道坑产也没有人给你刷子,大规模的补充书也出现在黑色搜索盛行的时期。
为什么关键词者得天下?
搜索关键词是用户目前意图最直观的表达,也是用户表达意图最直接的方式。
搜索的用户购物意图最强,成交意愿也最强,现在搜索也是转化率最高的流量来源。
统计时代关键词背后直接依赖的是类别商品,只要制作类别和关键词分词即可,哪个时代最出现的黑马通常是类别机会、关键词机会、黑科学技术机会。
最基本的是商业本质,什么时候产品需求少,没有很多现在的类别,自己找类别,现在想想什么概念。
记得什么时候类别错了,搜索也可以来。如果你的商品点击反馈好的话,错误的类别没有什么影响,现在试试吧
搜索类是搜索的基础。
什么时候能称霸,背后有商业逻辑,用户行为数据好就行了。
但无论如何发展检索都离不开关键词。例如,上述关键词是用户表达意图的最直接的方法,是当前消费者的检索行为和购买行为发生了根本性的变化。
检索依然根据消费者的行为数据和关键词来判断需求,这就是机械学习模型时代。
机器学习模式时代-推荐搜索算法。
现在的商品体积和消费者购物行为的丰富性,统计算法不能满足检索的本质要求。
所以现在搜索引擎开始发展深度学习模式更精细的建模-推荐搜索算法,搜索排名更智能。
在此重点讨论推荐检索算法,
2017、2018、2019是推荐检索算法真正意义发展的3年,3年3个系统版本每年更换一次,很多电器商人都不知道头脑。
推荐检索算法和统计算法模型的最大区别在于,Query的处理能力和算法有召回机制
简单表示推荐算法的程序:
1:对检索关键词进行分词、重写的处理进行类别预判
2:根据用户信息,即用户以前的行为数据记录和预测的性别、年龄、购买力、店铺喜好、品牌喜好、实时行动作等信息存档
3:根据检索用户信息,根据检索用户以前的行为数据检索引擎和预测的性别、年龄、购买力、店铺喜好、品牌喜好、实时行动作为等信息存档3:根据检索用户信息的检索用户信息
也就是说,在第一关召回阶段基本上与统计模型时代的最佳化途径相同,核心是标题分词和类别,现在最大的区别是根据用户信息推荐最佳化,这是标签和正确人群标签图像最佳化的基本意义。
为什么现在一直在谈论标签,谈论人标签图像?入池实际上是为了匹配真正的消费者用户信息,通过直通车测试来判断人群也是为了通过性别、年龄和购买力来优化匹配真正的消费者。
召回机制:
通过构建子单元索引方式加快商品检索,不必经历平台上亿级的所有商品。该索引是搜索引擎中的倒置索引,利用倒置索引初始筛选商品的过程是召回阶段。
在这个阶段,不会进行复杂的计算,主要是根据现在的搜索条件进行商品候选集的快速圈定。
之后再进行粗排和精排,计算的复杂程度越来越高,计算的商品集合逐渐减少,最后完成整个排序过程。
主要召回路径分为
1:语言召回
2:向量召回
这些都是商业秘密不方便的说明,有兴趣的是学习我们的在线会员课程标签重叠游戏6是基于语言和向量召回的基础逻辑实战落地的课程。
下一阶段进入粗行列,粗行列受这些因素的影响:
粗行列作为召回后的第一个门槛,希望用户体验以时间低的模型快速排序和筛选商品,第一关系将过滤到不适合本次检索词要求的商品
为了实现这个目的,首先要明确影响粗排名得分的因素
1:类别匹配得分和文本匹配得分,
2:商品信息质量(商品发布时间、商品等级、商品等级)
3:商品组合得分
点击得分
交易得分卖方服务商业得分
在粗排列框架下,系统粗排列算法根据商品类别的预测得分进行得分
点击得分交易得分
交易得分卖方服务商业得分粗排列框架下,系统粗排列的大排列
最后是精排,检索顺序的主要目标是高相关性、高个性化的正确性。
每个用户的喜好不同,系统会根据每个用户的Query结合用户信息进行召回。然后通过粗排后,商品数量从万级下降到千级。
千级商品经排后直接向用户展示,搜索过程中商品集合的思考和具体变化如下图
前面的召回、粗排主要解决主题相关性,通过主题相关性的限制,首先缩小商品集合和我们的在线会员课程标签
精排阶段系是真正系统推荐算法发挥真正威力时,应根据用户行为反馈迅速进行机械学习建模,判断用户真实性、准确性和可持续控制性。
为什么现在的游戏和黑色技术暂时出现,核心是系统算法模型机械学习模型,系统分析用户有问题,不正确,不稳定,维持性差,可以迅速调整。
也就是说,即使发现脆弱性,研究快速有效的方法,系统也会根据你精排阶段的用户行为迅速分析学习建模,发现模型有问题,你的玩法就结束了。
猜机器学习建模的速度有多快?
想玩黑色的东西早点死去吧。
现在使用的检索顺序模型主要是
CTR模型和CVR模型,具体模型过于复杂也不需要深入,但影响这两种模型的最基本因素是用户行为数据
真的不能假的,假的也不能假的算法模型越来越智能化,算法越来越强,只有回归商业本质才能真正解决算法模型背后真正想解决的问题,算法基于商业逻辑。
2021年搜索向哪个方向发生变化:
2020年电器商人和蚂蚁是不平凡的一年。2020年也是蚂蚁从神坛上拉下来的元年,现在蚂蚁有各种各样的黑色。
基于中小卖家的走势无疑是阿里必须正面面对的现实。
如何让中小卖家回流或留在平台上,搜索该怎么做?
检索一定是基于三方的考虑,买方、卖方和平台本身,现在市场上又开始提倡坑产搜索逻辑,坑产妖风又开始,根据推荐搜索算法逻辑来谈这个问题。
为什么坑产思维是不死的小强,每次危机都会跳出来。
以统计模型为中心的坑产时代是淘宝从2003年到2015年一直使用的搜索算法模型长达13年。
同时也是淘宝和中国网分红的野蛮生长期,统计算法模式让太多电商赚钱。除了
之外,十年的奴役思维已经习惯了,在电器商圈,坑产游戏一定有人相信,其他人不一定被认可。所以,我们夹着尾巴发展的原因,时间真的可以证明一切,不用多说,做自己。
习惯性思维加上特殊时期的赚钱蝴蝶效应,使许多电器商人活在历史的长梦中。正确地说,统计算法模型的真正废除是在2019年下半年。
同学说坑产永远有效,我也这么想。
永远有效的是起爆模型坑产权重驱动和统计算法模型中的坑产排名不同。
起爆模型的坑产要素永远有效,这永远不会改变。
但是,如何有效地加上这个起爆模型的坑产权重,并不像模仿购物的意图那么简单。
坑产游戏在2021年绝对不行。淘宝不会把现在的算法系统换成15年前的。
基于三方利益:
购买者体验
卖方利益
平台的发展
搜索肯定会向高精度和高控制性发展。以标签为中心的用户标签图像仍然是影响流量精度的基本因素。
必须从标签的角度考虑和优化种子组的图像。
通过种子组的图像向相似人扩展到叶类人,业界喜好人最后向相关人扩展也是扩大流量的过程渠道。
基于推荐搜索算法逻辑:
精密排列阶段算法更强,精度更高,转化率更高,持续稳定性更强。
基于中小卖方流通的现状,优化精排阶段并非中小卖方能够简单接触。
推荐算法从搜索排名阶段出现在哪个阶段?
个人判断
一是召回阶段
二是粗排阶段
上述提到召回阶段的算法简单复盖商品为万级,排序规则也比较简单,中小卖方在召回阶段提高精度尤为重要。
在这个万级商品库中,如上下架的权重上升,中小卖方有机会上升到主页,从子单元的索引召回中寻找机会。
或者根据中小卖方的新产品和中小卖方的店铺水平进行特别优先搜索推荐,使中小卖方的新产品在低销售状态下显示,可以实现锦囊算法。
中小卖方有机会搜索主页,不调用用户信息直接打开主页的展示权可能是中小卖方最大的支持。
根据召回阶段的用户行为数据,在粗排阶段以比例融入用户信息,即标签的影响。
在初始召回阶段,类别和分词权重,看业者主图场景反应背后的人们反馈,用系统引导,给中小卖方真正参考的流量方向和成交方向。
谁疯狂地印刷用纸直接关闭黑屋,理解印刷用纸优化竞争场景,从优化人群的角度出发,适当放宽处罚。
通过召回阶段,得到的用户信息会影响粗体结果。在这个阶段,用户信息的权重比例不应该太大,流量卡也不应该太死。
在各检索顺序阶段用户信息,即用户标签对检索的影响权重的问题。
这个方向我的个人观点是可能的。
B. 机器学习有哪些算法
1. 线性回归
在统计学和机器学习领域,线性回归可能是最广为人知也最易理解的算法之一。
2. Logistic 回归
Logistic 回归是机器学习从统计学领域借鉴过来的另一种技术。它是二分类问题的首选方法。
3. 线性判别分析
Logistic 回归是一种传统的分类算法,它的使用场景仅限于二分类问题。如果你有两个以上的类,那么线性判别分析算法(LDA)是首选的线性分类技术。
4.分类和回归树
决策树是一类重要的机器学习预测建模算法。
5. 朴素贝叶斯
朴素贝叶斯是一种简单而强大的预测建模算法。
6. K 最近邻算法
K 最近邻(KNN)算法是非常简单而有效的。KNN 的模型表示就是整个训练数据集。
7. 学习向量量化
KNN 算法的一个缺点是,你需要处理整个训练数据集。
8. 支持向量机
支持向量机(SVM)可能是目前最流行、被讨论地最多的机器学习算法之一。
9. 袋装法和随机森林
随机森林是最流行也最强大的机器学习算法之一,它是一种集成机器学习算法。
想要学习了解更多机器学习的知识,推荐CDA数据分析师课程。CDA(Certified Data Analyst),即“CDA 数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。点击预约免费试听课。
C. 历史上第一个机器学习算法是什么
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用adaboost分类器可以排除一些不必要的训练数据特征,并将关键放在关键的训练数据上面。
D. 机器学习应该看哪些书籍
1、人工智能编程范例
以前,我一直是讨厌推荐“For mmies”系列的书籍,因为它们都太过简单直白。但是,由于这本书的作者都是经验丰富的数据科学家,我决定破一次例。
即使是零基础,傻瓜机器学习这本书也能让读者快速体验到机器学习的魅力。尽管书中的例子是用 python 语言写的,但是其实你并不需要了解 python 的语法。
在本书中,你将了解到机器学习的历史以及机器学习与人工智能的不同。作者为我们详尽地讲解了每一个知识点。
在读本书之前,你只需要一些数学和逻辑方面的基本知识,而并不需要编程的经验。如果你在读这本书前从没接触过算法,可能你会有点痛苦,不过仍然可以做一些互补的研究。
E. 机器学习算法和图论算法有什么不同
机器学习算法和图论算法有什么不同
或者,算法是怎么分类的?首先想到的,处理的数据量上的不同。比如传统的一个道路规划问题,涉及到的对象在百数量级上是很正常的现象,而现在数据产生的速度太快了,数据太多了,对于一个网络优化问题可能涉及的对象是几个亿,比如facebook。但是这还是不能回答我最开始的问题,即便是百万,十万对象的网络,比如约会网站吧,在这个数量级差不多,它会涉及到推荐算法,推荐的方法的话是用概率模型去做的,可以用机器学习的方法学习出一些结果;那么对一个同量级的对象,会需要一个图论算法去做解决什么问题吗?个人觉得机器学习主要在于解决问题的思路不同,态度更开放,我晓得的一些图论算法就是针对一个对于全局有了很稳定认识的解决方法,而比如一个线上的机器学习算法,它的预测结果直接影响新数据的产生。基本上这样的方法是可靠的,对于任意一个全局的算法,可以用开放的眼光看它,即用机器学习的方法适用它将它应用到新的有大量数据支持的适宜的问题中的。
这个时代的困难在于,我们不能用自己大脑在一瞬间可以理解的范围之内全面的理解一个问题,我们把大家的大脑都连起来了,我们也需要更强大的工具理解前所未有的问题。比如,从远古,理解若干个事件交织的复杂的问题是有困难的,我们利用文氏图清晰地显示多于4、5个事件之间的逻辑关联。现在是几十亿人,不知多少事件的关联,利用文氏图都不够了,但是我们总是可以找到合适的切入点提纲契领的理解总体的事物,我们的工具变成了高等数学,可靠的矩阵运算。所以,我自己倾向于将机器学习看成可靠地帮助我们理解新事物的方法,它使用的工具来自我们可靠的数学观点。
所以,机器学习的想法最重要,可以从任何一种现有的可靠的观点指导下,拓展我们理解世界的方式。我想把它解释为一种群体智慧的形成机制,为什么是群体智慧,我做为个人不需要识别一万张脸与他们的名字对应,但是做为一个公司却有需要在一秒钟之内认出自己的客户并且向他问好,提供服务。也就是说,我们生活的时代群体智慧起不可估量的作用,向四周一看你就明白你所用物品大部分不是来自认识和亲近的人。其实也是观念的成长,中国很长一段时间的小农经济自给自足,如果你吃的竟然是别人种的粮食,穿是别人织布剪裁,这在当时会是让你很不适应的。这个如今排斥Google的街景车来保卫自己的隐私这有啥差别呢?再到离我们更近一点的历史,更多的是群体智慧具象化的产品的传播,而如今呢更直接的就是群体智慧的传播。
机器学习背后的Philosophy应该是这样一种开放的面向未来的态度,我自己挺认同,也希望能把群体智慧开掘出来,产生前所未有商业价值。
F. 如何做好“推荐算法”有哪些常见的错误需要避免
在这里share一下。
1、推荐算法的构成
一套标准的推荐算法,需要四个组成部分
第一:数据源,行为基础数据的筛选;通常,推荐算法来源于用户行为的采集,简单说就是行为数据越丰富,样本覆盖率越全面,结果越准确;如果采样有偏差,那么结果就会有偏差。
举例1:游戏推荐算法,我们之前限于采样技术水平和处理能力,用的是登陆用户玩过的游戏历史,那么推荐结果就会偏重于需要登陆的游戏。而随着技术提升用全部用户玩过的游戏历史,就更全面了。
举例2:在搜索引擎中,对关键词做推荐,有两种方案,一种是基于广告主的竞价记录;另一种是基于网民的搜索行为;前一种专业性更强,噪音小;后一种覆盖面广,噪音大,各有利弊,根据业务诉求选择。
推荐算法,通常来源于用户的行为记录,比如关键词推荐用用户搜索历史,电商推荐用用户购物历史,游戏推荐用玩家玩游戏的历史,然后基于算法给出相关度,再排序展示 ;但这不绝对,也有并非基于用户行为记录的推荐原理,比如基于用户身份特征或其他地区、网络环境等特征,限于篇幅和常见的业务诉求,这里就不展开说明了。
行为基础数据必要时要做一些去除噪音的工作,比如你通过日志分析玩家游戏历史,或用户购物历史,至少知道把各搜索引擎和工具的抓取痕迹过滤出去,否则结果是很难看的。
算法很多种,网上可以搜到很多,就算搜不到,或者搜到了看不懂,自己编也不难的(我就编过,效果自以为还不错,但是的确不如人家专业的算法效果好,所以适合练手,不适合出去吹牛)
不同算法差异还是蛮大的,需要理解一下业务诉求和目标特征来选择。这个我真心不是高手,我们同事讲的算法我都没能理解,就不多说了。微博上的“张栋_机器学习"和"梁斌penny"都是算法高手,大家可以多关心他们的微博。
第三:参数!
绝对不要认为用到了好的算法就可以了!算法往往会基于一些参数来调优,这些参数哪里来?很不好意思的告诉你,大部分是拍脑袋出来的。但是你拍脑袋出来后,要知道去分析结果,去看哪里对,哪里错,哪里可以改,好的算法可以自动调优,机器学习,不断自动调整参数达到最优,但是通常可能需要你不断手工去看,去看badcase,想想是什么参数因素导致的,改一下是否变好?是否引入新的bad case?
第四:校验!
校验一种是人工做盲测,A算法,B算法的结果混淆,选案例集,看哪个效果好;或A参数、B参数混淆,同理测试。通过盲测选择认为更合理的算法、更适宜的参数.
以上是个人认为,做好推荐算法的步骤
下面说一下常见问题
1、以为有了算法就ok了,不对参数优化,不做后续的校验和数据跟踪,效果不好就说算法有问题,这种基本属于工作态度的问题了。
2、对样本数据的筛选有问题,或缺乏必要的噪音筛查,导致结果噪音多。比如你有个推广位天天摆着,导致用户点击多,然后导致后台行为数据里它和谁的关联都高,然后不管用户到哪里都推荐这个玩意,这就是没有足够筛查。
3、热度影响
我说一下最简单的推荐算法
同时选择了A和B的人数作为A与B的关联度。
这个实现最简单,也最容易理解,但是很容易受热度影响
我曾经注意过某个热门图书电商网站,推荐的关联书籍一水的热门书籍,就是这个问题。
这些是非常简单但是又非常容易出现的,关联误区。
4、过于求全
现在也遇到一些朋友,一提到推荐算法或者推荐系统,就说我这个要考虑,那个要考虑,不管是行为记录,还是用户特征,以至于各种节日效应,等等等等,想通过一个推荐系统完全搞定,目标很大,所以动作就极慢,构思洋洋洒洒做了很多,实现起来无从下手,或者难以寸进;我觉得,还是量力而行,从最容易下手的地方开始,先做到比没有强,然后根据不断地数据校验跟踪,逐渐加入其他考虑因素,步步前进,而不要一上来就定一个宏伟的庞大的目标;此外要考虑实现成本和开发周期,对于大部分技术实力没有网络,腾讯,淘宝那么强的公司而言,先把简单的东西搞好,已经足够有效了,然后在运营数据的基础上逐次推进,会越来越好;有些公司是被自己宏大的目标搞的焦头烂额,最后说,哎,没牛人搞不定啊。嗯,反正他们的目标,我显着是搞不定的。就这些,希望有所帮助
G. 机器学习的发展史
机器学习是人工智能研究较为年轻的分支,它的发展过程大体上可分为4个时期。
第一阶段是在20世纪50年代中叶到60年代中叶,属于热烈时期。
第二阶段是在20世纪60年代中叶至70年代中叶,被称为机器学习的冷静时期。
第三阶段是从20世纪70年代中叶至80年代中叶,称为复兴时期。
机器学习的最新阶段始于1986年。
机器学习进入新阶段的重要表现在下列诸方面:
(1) 机器学习已成为新的边缘学科并在高校形成一门课程。它综合应用心理学、生物学和神经生理学以及数学、自动化和计算机科学形成机器学习理论基础。
(2) 结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。特别是连接学习符号学习的耦合可以更好地解决连续性信号处理中知识与技能的获取与求精问题而受到重视。
(3) 机器学习与人工智能各种基础问题的统一性观点正在形成。例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。类比学习与问题求解结合的基于案例方法已成为经验学习的重要方向。
(4) 各种学习方法的应用范围不断扩大,一部分已形成商品。归纳学习的知识获取工具已在诊断分类型专家系统中广泛使用。连接学习在声图文识别中占优势。分析学习已用于设计综合型专家系统。遗传算法与强化学习在工程控制中有较好的应用前景。与符号系统耦合的神经网络连接学习将在企业的智能管理与智能机器人运动规划中发挥作用。
(5) 与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。
H. 机器学习的研究方向有哪些,刚上研一,大方向是机器学习,有懂的人可以推荐介绍一个具体的研究方向,参考
近年来,有很多新型的机器学习技术受到人们的广泛关注,也在解决实际问题中,提供了有效的方案。这里,我们简单介绍一下深度学习、强化学习、对抗学习、对偶学习、迁移学习、分布式学习、以及元学习,让大家可以明确机器学习的方向都有哪些,这样再选择自己感兴趣或擅长的研究方向,我觉得这是非常理智的做法。
▌深度学习
不同于传统的机器学习方法,深度学习是一类端到端的学习方法。基于多层的非线性神经网络,深度学习可以从原始数据直接学习,自动抽取特征并逐层抽象,最终实现回归、分类或排序等目的。在深度学习的驱动下,人们在计算机视觉、语音处理、自然语言方面相继取得了突破,达到或甚至超过了人类水平。深度学习的成功主要归功于三大因素——大数据、大模型、大计算,因此这三个方向都是当前研究的热点。
在过去的几十年中,很多不同的深度神经网络结构被提出,比如,卷积神经网络,被广泛应用于计算机视觉,如图像分类、物体识别、图像分割、视频分析等等;循环神经网络,能够对变长的序列数据进行处理,被广泛应用于自然语言理解、语音处理等;编解码模型(Encoder-Decoder)是深度学习中常见的一个框架,多用于图像或序列生成,例如比较热的机器翻译、文本摘要、图像描述(image captioning)问题。
▌强化学习
2016 年 3 月,DeepMInd 设计的基于深度卷积神经网络和强化学习的 AlphaGo 以 4:1 击败顶尖职业棋手李世乭,成为第一个不借助让子而击败围棋职业九段棋手的电脑程序。此次比赛成为AI历史上里程碑式的事件,也让强化学习成为机器学习领域的一个热点研究方向。
强化学习是机器学习的一个子领域,研究智能体如何在动态系统或者环境中以“试错”的方式进行学习,通过与系统或环境进行交互获得的奖赏指导行为,从而最大化累积奖赏或长期回报。由于其一般性,该问题在许多其他学科中也进行了研究,例如博弈论、控制理论、运筹学、信息论、多智能体系统、群体智能、统计学和遗传算法。
▌迁移学习
迁移学习的目的是把为其他任务(称其为源任务)训练好的模型迁移到新的学习任务(称其为目标任务)中,帮助新任务解决训练样本不足等技术挑战。之所以可以这样做,是因为很多学习任务之间存在相关性(比如都是图像识别任务),因此从一个任务中总结出来的知识(模型参数)可以对解决另外一个任务有所帮助。迁移学习目前是机器学习的研究热点之一,还有很大的发展空间。
▌对抗学习
传统的深度生成模型存在一个潜在问题:由于最大化概率似然,模型更倾向于生成偏极端的数据,影响生成的效果。对抗学习利用对抗性行为(比如产生对抗样本或者对抗模型)来加强模型的稳定性,提高数据生成的效果。近些年来,利用对抗学习思想进行无监督学习的生成对抗网络(GAN)被成功应用到图像、语音、文本等领域,成为了无监督学习的重要技术之一。
▌对偶学习
对偶学习是一种新的学习范式,其基本思想是利用机器学习任务之间的对偶属性获得更有效的反馈/正则化,引导、加强学习过程,从而降低深度学习对大规模人工标注数据的依赖。对偶学习的思想已经被应用到机器学习很多问题里,包括机器翻译、图像风格转换、问题回答和生成、图像分类和生成、文本分类和生成、图像转文本和文本转图像等等。
▌分布式学习
分布式技术是机器学习技术的加速器,能够显着提高机器学习的训练效率、进一步增大其应用范围。当“分布式”遇到“机器学习”,不应只局限在对串行算法进行多机并行以及底层实现方面的技术,我们更应该基于对机器学习的完整理解,将分布式和机器学习更加紧密地结合在一起。
▌元学习
元学习(meta learning)是近年来机器学习领域的一个新的研究热点。字面上来理解,元学习就是学会如何学习,重点是对学习本身的理解和适应,而不仅仅是完成某个特定的学习任务。也就是说,一个元学习器需要能够评估自己的学习方法,并根据特定的学习任务对自己的学习方法进行调整。