导航:首页 > 文档加密 > DES的加密例子

DES的加密例子

发布时间:2022-06-21 03:00:08

1. java的 DES 加密解密方法 求对应php的加密解密方法!!!!急切

DES是一种标准的数据加密算法,关于这个算法的详细介绍可以参考wiki和网络:

php中有一个扩展可以支持DES的加密算法,是:extension=php_mcrypt.dll

在配置文件中将这个扩展打开还不能够在windows环境下使用

需要将PHP文件夹下的 libmcrypt.dll 拷贝到系统的 system32 目录下,这是通过phpinfo可以查看到mcrypt表示这个模块可以正常试用了。

下面是PHP中使用DES加密解密的一个例子:

//$input-stufftodecrypt
//$key-thesecretkeytouse

functiondo_mencrypt($input,$key)
{
$input=str_replace(""n","",$input);
$input=str_replace(""t","",$input);
$input=str_replace(""r","",$input);
$key=substr(md5($key),0,24);
$td=mcrypt_mole_open('tripledes','','ecb','');
$iv=mcrypt_create_iv(mcrypt_enc_get_iv_size($td),MCRYPT_RAND);
mcrypt_generic_init($td,$key,$iv);
$encrypted_data=mcrypt_generic($td,$input);
mcrypt_generic_deinit($td);
mcrypt_mole_close($td);
returntrim(chop(base64_encode($encrypted_data)));
}
//$input-stufftodecrypt
//$key-thesecretkeytouse

functiondo_mdecrypt($input,$key)
{
$input=str_replace(""n","",$input);
$input=str_replace(""t","",$input);
$input=str_replace(""r","",$input);
$input=trim(chop(base64_decode($input)));
$td=mcrypt_mole_open('tripledes','','ecb','');
$key=substr(md5($key),0,24);
$iv=mcrypt_create_iv(mcrypt_enc_get_iv_size($td),MCRYPT_RAND);
mcrypt_generic_init($td,$key,$iv);
$decrypted_data=mdecrypt_generic($td,$input);
mcrypt_generic_deinit($td);
mcrypt_mole_close($td);
returntrim(chop($decrypted_data));
}

参考自:http://www.cnblogs.com/cocowool/archive/2009/01/07/1371309.html

2. DES是一种什么加密算法,其密钥长度为56 bit,3DES是基于DES的加密方式,对明文

des是一直对称加密算法,就是加密的密钥和解密的密钥是一样的。DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,来生成最大64bit的分组大小。
DES 的常见变体是3 DES,使用 168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容 DES。

3. 求一简单的 DES加密实例。要c#.net实现!

public sealed class DES
{
private static string iv = "123456789";
private static string key = "12345678"; /// <summary>
/// DES加密偏移量,必须是>=8位长的字符串
/// </summary>
public string IV
{
get { return iv; }
set { iv = value; }
} /// <summary>
/// DES加密的私钥,必须是8位长的字符串
/// </summary>
///
public string Key
{
get { return key; }
set { key = value; }
} /// <summary>
/// 对字符串进行DES加密
/// </summary>
/// <param name="sourceString">待加密的字符串</param>
/// <returns>加密后的BASE64编码的字符串</returns> public static string Encrypt(string sourceString)
{
if (sourceString != "")
{
byte[] btKey = Encoding.Default.GetBytes(key);
byte[] btIV = Encoding.Default.GetBytes(iv);
DESCryptoServiceProvider des = new DESCryptoServiceProvider();
using (MemoryStream ms = new MemoryStream())
{
byte[] inData = Encoding.Default.GetBytes(sourceString);
try
{
using (CryptoStream cs = new CryptoStream(ms, des.CreateEncryptor(btKey, btIV), CryptoStreamMode.Write))
{
cs.Write(inData, 0, inData.Length);
cs.FlushFinalBlock();
}
return Convert.ToBase64String(ms.ToArray());
}
catch
{
throw;
}
}
}
else
return "";
} /// <summary>
/// 对DES加密后的字符串进行解密
/// </summary>
/// <param name="encryptedString">待解密的字符串</param>
/// <returns>解密后的字符串</returns> public static string Decrypt(string encryptedString)
{
if (encryptedString != "")
{
byte[] btKey = Encoding.Default.GetBytes(key);
byte[] btIV = Encoding.Default.GetBytes(iv);
DESCryptoServiceProvider des = new DESCryptoServiceProvider();
using (MemoryStream ms = new MemoryStream())
{
byte[] inData = Convert.FromBase64String(encryptedString);
try
{
using (CryptoStream cs = new CryptoStream(ms, des.CreateDecryptor(btKey, btIV), CryptoStreamMode.Write))
{
cs.Write(inData, 0, inData.Length);
cs.FlushFinalBlock();
}
return Encoding.Default.GetString(ms.ToArray());
}
catch
{
throw;
}
}
}
else
return "";
}}

4. 求DES加密算法详解拜托了各位 谢谢

DES加密算法是分组加密算法,明文以64位为单位分成块。64位数据在64位密钥的控制下,经过初始变换后,进行16轮加密迭代:64位数据被分成左右两半部分,每部分32位,密钥与右半部分相结合,然后再与左半部分相结合,结果作为新的右半部分;结合前的右半部分作为新的左半部分。这一系列步骤组成一轮。这种轮换要重复16次。最后一轮之后,再进行初始置换的逆置换,就得到了64位的密文。 DES的加密过程可分为加密处理,加密变换和子密钥生成几个部分组成。 1.加密处理过程 (1)初始变换。加密处理首先要对64位的明文按表1所示的初始换位表IP进行变换。表中的数值表示输入位被置换后的新位置。例如输入的第58位,在输出的时候被置换到第1位;输入的是第7位,在输出时被置换到第64位。 (2)加密处理。上述换位处理的输出,中间要经过16轮加密变换。初始换位的64位的输出作为下一次的输入,将64位分为左、右两个32位,分别记为L0和R0,从L0、R0到L16、R16,共进行16轮加密变换。其中,经过n轮处理后的点左右32位分别为Ln和Rn,则可做如下定义: Ln=Rn-1 Rn=Ln-1 其中,kn是向第n轮输入的48位的子密钥,Ln-1和Rn-1分别是第n-1轮的输出,f是Mangler函数。 (3)最后换位。进行16轮的加密变换之后,将L16和R16合成64位的数据,再按照表2所示的 最后换位表进行IP-1的换位,得到64位的密文,这就是DES算法加密的结果。 2.加密变换过程 通过重复某些位将32位的右半部分按照扩展表3扩展换位表扩展为48位,而56位的密钥先移位然后通过选择其中的某些位减少至48位,48位的右半部分通过异或操作和48位的密钥结合,并分成6位的8个分组,通过8个S-盒将这48位替代成新的32位数据,再将其置换一次。这些S-盒输入6位,输出4位。 一个S盒中具有4种替换表(行号用0、1、2、3表示),通过输入的6位的开头和末尾两位选定行,然后按选定的替换表将输入的6位的中间4位进行替代,例如:当向S1输入011011时,开头和结尾的组合是01,所以选中编号为1的替代表,根据中间4位1101,选定第13列,查找表中第1行第13列所示的值为5,即输出0101,这4位就是经过替代后的值。按此进行,输出32位,再按照表4 单纯换位表P进行变换,这样就完成了f(R,K)的变换 3.子密钥生成过程 钥通常表示为64位的自然数,首先通过压缩换位PC-1去掉每个字节的第8位,用作奇偶校验,因此,密钥去掉第8、16、24……64位减至56位,所以实际密钥长度为56位,而每轮要生成48位的子密钥。 输入的64位密钥,首先通过压缩换位得到56位的密钥,每层分成两部分,上部分28位为C0,下部分为D0。C0和D0依次进行循环左移操作生成了C1和D1,将C1和D1合成56位,再通过压缩换位PC-2输出48位的子密钥K1,再将C1和D1进行循环左移和PC-2压缩换位,得到子密钥K2......以此类推,得到16个子密钥。密钥压缩换位表如表6所示。在产生子密钥的过程中,L1、L2、L9、L16是循环左移1位,其余都是左移2位,左移次数如表7所示。 详细信息见 http://www.studa.net/yingyong/100126/11085967.html

5. 什么是DES加密

一种对称加密算法,DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环,使用异或,置换,代换,移位操作四种基本运算。

6. des和aes 加解密算法具体步骤有例子最好

随着计算机网络和计算机通讯技术的发展,计算机密码学得到前所未有的重视并迅速普及和发展起来。由于密码系统的各种性能主要由密码算法所决定,不同的算法决定了不同的密码体制,而不同的密码体制又有着不同的优缺点:有的密码算法高速简便,但加解密密钥相同,密钥管理困难;有的密码算法密钥管理方便安全,但计算开销大、处理速度慢。基于此,本文针对两种典型的密码算法DES和RSA的特点进行讨论分析,并提出一种以这两种密码体制为基础的混合密码系统,来实现优势互补。
1 密码系统简介
1.1 密码系统分类
密码系统从原理上可分为两大类,即单密钥系统和双密钥系统。单密钥系统又称为对称密码系统,其加密密钥和解密密钥或者相同,或者实质上相同,即易于从一个密钥得出另一个,如图1所示。双密钥系统又称为公开密钥密码系统,它有两个密钥,一个是公开的,用K1表示,谁都可以使用;另一个是私人密钥,用K2表示,只由采用此系统的人掌握。从公开的密钥推不出私人密钥,如图2所示。

1.2 两种密码系统分析
1.2.1 对称密码系统(单钥密码系统)
对称密码系统中加密和解密均采用同一把密钥,而且通信双方必须都要获得这把密钥。这就带来了一系列问题。首先,密钥本身的发送就存在着风险,如果在发送中丢失,接受方就不可能重新得到密文的内容;其次,多人通信时密钥的组合的数量会出现爆炸性的膨胀,N个人两两通信,需要N*(N-1)/2把密钥,增加了分发密钥的代价和难度;最后,由于通信双方必须事先统一密钥,才能发送保密的信息,这样,陌生人之间就无法发送密文了。
1.2.2 公开密钥密码系统(双钥密码系统)
公开密钥密码系统中,收信人生成两把数学上关联但又不同的公钥和私钥,私钥自己保存,把公钥公布出去,发信人使用收信人的公钥对通信文件进行加密,收信人收到密文后用私钥解密。公开密钥密码系统的优势在于,首先,用户可以把用于加密的钥匙公开地发给任何人,并且除了持有私有密钥的收信人之外,无人能解开密文;其次,用户可以把公开钥匙发表或刊登出来,使得陌生人之间可以互发保密的通信;最后,公开密钥密码系统提供了数字签字的公开鉴定系统,而这是对称密码系统不具备的。
1.3 典型算法
对称密码系统的算法有DES,AES,RC系列,DEA等,公开密钥密码系统的算法有RSA,Diffie-Hellman, Merkle-Hellman等。
2 DES算法
DES (Data Encryption Standard,数据加密标准)是一个分组加密算法,它以64 bit位(8 byte)为分组对数据加密,其中有8 bit奇偶校验,有效密钥长度为56 bit。64 位一组的明文从算法的一端输入,64 位的密文从另一端输出。DES算法的加密和解密用的是同一算法,它的安全性依赖于所用的密钥。DES 对64位的明文分组进行操作,通过一个初始置换,将明文分组成左半部分和右半部分,各32位长。然后进行16轮完全相同的运算,这些运算被称为函数f,在运算过程中数据与密钥结合。经过16轮后,左、右半部分合在一起经过一个末置换(初始置换的逆置换),完成算法。在每一轮中,密钥位移位,然后再从密钥的56位中选出48位。通过一个扩展置换将数据的右半部分扩展成48位,并通过一个异或操作与48位密钥结合,通过8个s盒将这48位替代成新的32位数据,再将其置换一次。这些运算构成了函数f。然后,通过另一个异或运算,函数f输出与左半部分结合,其结果即成为新的右半部分, 原来的右半部分成为新的左半部分。将该操作重复16次,实现DES的16轮运算。
3 RSA算法
RSA算法使用两个密钥,一个公共密钥,一个私有密钥。如用其中一个加密,则可用另一个解密。密钥长度从40到2048 bit可变。加密时把明文分成块,块的大小可变,但不能超过密钥的长度,RSA算法把每一块明文转化为与密钥长度相同的密文块。密钥越长,加密效果越好,但加密解密的开销也大,所以要在安全与性能之间折衷考虑,一般64位是较合适的。RSA算法利用了陷门单向函数的一种可逆模指数运算,描述如下:(1)选择两个大素数p和q;(2)计算乘积n=pq和φ(n)=(p-1)(q-1);(3)选择大于1小于φ(n)的随机整数e,使得
gcd(e,φ(n))=1;(4)计算d使得de=1modφ(n);(5)对每一个密钥k=(n,p,q,d,e),定义加密变换为Ek(x)=xemodn,解密变换为Dk(y)=ydmodn,这里x,y∈Zn;(6)以{e,n}为公开密钥,{p,q,d}为私有密钥。
4 基于DES和RSA的混合密码系统
4.1 概述
混合密码系统充分利用了公钥密码和对称密码算法的优点,克服其缺点,解决了每次传送更新密钥的问题。发送者自动生成对称密钥,用对称密钥按照DES算法加密发送的信息,将生成的密文连同用接受方的公钥按照RSA算法加密后的对称密钥一起传送出去。收信者用其密钥按照RSA算法解密被加密的密钥来得到对称密钥,并用它来按照DES算法解密密文。
4.2 具体实现步骤
(1)发信方选择对称密钥K(一般为64位,目前可以达到192位)
(2)发信方加密消息:对明文按64位分组进行操作,通过一个初始置换,将明文分组成左半部分和右半部分。然后进行16轮完全相同的运算,最后,左、右半部分合在一起经过一个末置换(初始置换的逆置换),完成算法。在每一轮中,密钥位移位,然后再从密钥的56位中选出48位。通过一个扩展置换将数据的右半部分扩展成48位,并通过一个异或操作与48位密钥结合,通过8个S盒将这48位替代成新的32位数据,再将其置换一次。然后通过另一个异或运算,输出结果与左半部分结合,其结果即成为新的右半部分,原来的右半部分成为新的左半部分。如图3所示。

(3)收信方产生两个足够大的强质数p、q,计算n=p×q和z=(p-1)×(q-1),然后再选取一个与z互素的奇数e,从这个e值找出另一个值d,使之满足e×d=1 mod (z)条件。以两组数(n,e) 和 (n,d)分别作为公钥和私钥。收信方将公钥对外公开,从而收信方可以利用收信方的公钥对 (1)中产生的对称密钥的每一位x进行加密变换Ek(x)=xemodn;
(4)发信方将步骤(2)和(3)中得到的消息的密文和对称密钥的密文一起发送给收信方;
(5)收信方用(3)中得到的私钥来对对称密钥的每一位y进行解密变换Dk(y)=ydmodn,从而得到(1)中的K;
(6)收信方用对称密钥K和DES算法的逆步骤来对消息进行解密,具体步骤和(2)中恰好相反,也是有16轮迭代。
(7)既可以由收信方保留对称密钥K来进行下一次数据通信,也可以由收信方产生新的对称密钥,从而使K作废。
4.3 两点说明
4.3.1 用公钥算法加密密钥
在混合密码系统中,公开密钥算法不用来加密消息,而用来加密密钥,这样做有两个理由:第一,公钥算法比对称算法慢,对称算法一般比公钥算法快一千倍。计算机在大约15年后运行公开密钥密码算法的速度才能比得上现在计算机运行对称密码的速度。并且,随着带宽需求的增加,比公开密钥密码处理更快的加密数据要求越来越多。第二,公开密钥密码系统对选择明文攻击是脆弱的。密码分析者只需要加密所有可能的明文,将得到的所有密文与要破解的密文比较,这样,虽然它不可能恢复解密密钥,但它能够确定当前密文所对应的明文。
4.3.2 安全性分析
如果攻击者无论得到多少密文,都没有足够的信息去恢复明文,那么该密码系统就是无条件安全的。在理论上,只有一次一密的系统才能真正实现这一点。而在本文所讨论的混合密码系统中,发信方每次可以自由选择对称密钥来加密消息,然后用公钥算法来加密对称密钥,即用户可以采用一次一密的方式来进行数据通信,达到上述的无条件安全。
5 小结
基于DES和RSA的混合密码系统结合了公钥密码体制易于密钥分配的特点和对称密码体制易于计算、速度快的特点,为信息的安全传输提供了良好的、快捷的途径,使数据传输的密文被破解的几率大大降低,从而对数据传输的安全性形成更有力的保障,并且发信方和收信方对密钥的操作自由度得到了很大的发挥。

7. 关于DES加密算法

数据加密算法
数据加密算法DES
数据加密算法(Data Encryption Algorithm,DEA)的数据加密标准(Data Encryption Standard,DES)是规范的描述,它出自 IBM 的研究工作,并在 1997 年被美国政府正式采纳。它很可能是使用最广泛的秘钥系统,特别是在保护金融数据的安全中,最初开发的 DES 是嵌入硬 件中的。通常,自动取款机(Automated Teller Machine,ATM)都使用 DES。
DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环。
攻击 DES 的主要形式被称为蛮力的或彻底密钥搜索,即重复尝试各种密钥直到有一个符合为止。如果 DES 使用 56 位的密钥,则可能的密钥数量是 2 的 56 次方个。随着计算机系统能力的不断发展,DES 的安全性比它刚出现时会弱得多,然而从非关键性质的实际出发,仍可以认为它是足够的。不过 ,DES 现在仅用于旧系统的鉴定,而更多地选择新的加密标准 — 高级加密标准(Advanced Encryption Standard,AES)。
DES 的常见变体是三重 DES,使用 168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容 DES。
IBM 曾对 DES 拥有几年的专利权,但是在 1983 年已到期,并且处于公有范围中,允许在特定条件下可以免除专利使用费而使用。

8. DES加密算法的测试数据示例

其实你只要再写个解密的过程看看加密完能不能还原回去就好了。。解密过程和加密过程基本一样,就是使用子密钥时的顺序是倒着的。
明文是 testdata,密钥是mydeskey 正确的des加密后二进制密文:
用base64编码形成的密文是:4wynQOzDaiA=
解密后:

9. des的具体应用是什么

数据加密标准DES
数据加密算法(Data Encryption Algorithm,DEA)的数据加密标准(Data Encryption Standard,DES)是规范的描述,它出自 IBM 的研究工作,并在 1997 年被美国政府正式采纳。它很可能是使用最广泛的秘钥系统,特别是在保护金融数据的安全中,最初开发的 DES 是嵌入硬 件中的。通常,自动取款机(Automated Teller Machine,ATM)都使用 DES。
DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环。
攻击 DES 的主要形式被称为蛮力的或彻底密钥搜索,即重复尝试各种密钥直到有一个符合为止。如果 DES 使用 56 位的密钥,则可能的密钥数量是 2 的 56 次方个。随着计算机系统能力的不断发展,DES 的安全性比它刚出现时会弱得多,然而从非关键性质的实际出发,仍可以认为它是足够的。不过 ,DES 现在仅用于旧系统的鉴定,而更多地选择新的加密标准 — 高级加密标准(Advanced Encryption Standard,AES)。
DES 的常见变体是三重 DES,使用 168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容 DES。
IBM 曾对 DES 拥有几年的专利权,但是在 1983 年已到期,并且处于公有范围中,允许在特定条件下可以免除专利使用费而使用。
由于DES是加(解)密64位明(密)文,即为8个字节(8*8=64),可以据此初步判断这是分组加密,加密的过程中会有16次循环与密钥置换过程,据此可以判断有可能是用到DES密码算法,更精确的判断还得必须懂得一点DES的加密过程。
Crackme实例分析
本期Crackme用到MD5及DES两种加密算法,难度适中。这次我们重点来看一下DES的加密过程及注册算法过程。用调试器载入程序,下GegDlgItemTextA断点,可以定位到下面代码,我们先来看一下整个crackme的注册过程:
由于代码分析太长,故收录到光盘中,请大家对照着分析(请见光盘“code1.doc”)
从上面分析可以看出,注册过程是类似:f(机器码,注册码)式的两元运算。机器码是经过md5算法得到的中间16位值,注册码是经过DES解密过程取得16位注册码,然后两者比较,如相等,则注册成功。机器码的运算过程可以参照上一期的MD5算法来理解。下面重点来说一下注册码DES的运算过程。

参考:http://ke..com/view/7510.htm

10. DES 加密算法是怎样的一种算法要通俗解释..

1977年1月,美国政府颁布:采纳IBM公司设计的方案作为非机密数据的正式数据加密标准(DES枣Data Encryption Standard)。

目前在国内,随着三金工程尤其是金卡工程的启动,DES算法在POS、ATM、磁卡及智能卡(IC卡)、加油站、高速公路收费站等领域被广泛应用,以此来实现关键数据的保密,如信用卡持卡人的PIN的加密传输,IC卡与POS间的双向认证、金融交易数据包的MAC校验等,均用到DES算法。
DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。
DES算法是这样工作的:如Mode为加密,则用Key 去把数据Data进行加密, 生成Data的密码形式(64位)作为DES的输出结果;如Mode为解密,则用Key去把密码形式的数据Data解密,还原为Data的明码形式(64位)作为DES的输出结果。在通信网络的两端,双方约定一致的Key,在通信的源点用Key对核心数据进行DES加密,然后以密码形式在公共通信网(如电话网)中传输到通信网络的终点,数据到达目的地后,用同样的Key对密码数据进行解密,便再现了明码形式的核心数据。这样,便保证了核心数据(如PIN、MAC等)在公共通信网中传输的安全性和可靠性。
通过定期在通信网络的源端和目的端同时改用新的Key,便能更进一步提高数据的保密性,这正是现在金融交易网络的流行做法。

DES算法详述
DES算法把64位的明文输入块变为64位的密文输出块,它所使用的密钥也是64位,整个算法的主流程图如下:

其功能是把输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位,其置换规则见下表:
58,50,12,34,26,18,10,2,60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6,64,56,48,40,32,24,16,8,
57,49,41,33,25,17, 9,1,59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,63,55,47,39,31,23,15,7,
即将输入的第58位换到第一位,第50位换到第2位,...,依此类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0 是右32位,例:设置换前的输入值为D1D2D3......D64,则经过初始置换后的结果为:L0=D58D50...D8;R0=D57D49...D7。
经过16次迭代运算后。得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置的逆运算,例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如下表所示:
40,8,48,16,56,24,64,32,39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58 26,33,1,41, 9,49,17,57,25,
放大换位表
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10,11,
12,13,12,13,14,15,16,17,16,17,18,19,20,21,20,21,
22,23,24,25,24,25,26,27,28,29,28,29,30,31,32, 1,
单纯换位表
16,7,20,21,29,12,28,17, 1,15,23,26, 5,18,31,10,
2,8,24,14,32,27, 3, 9,19,13,30, 6,22,11, 4,25,
在f(Ri,Ki)算法描述图中,S1,S2...S8为选择函数,其功能是把6bit数据变为4bit数据。下面给出选择函数Si(i=1,2......8)的功能表:
选择函数Si
S1:
14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7,
0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8,
4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0,
15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13,
S2:
15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10,
3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5,
0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15,
13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9,
S3:
10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8,
13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1,
13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7,
1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12,
S4:
7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15,
13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9,
10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4,
3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14,
S5:
2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9,
14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6,
4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14,
11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3,
S6:
12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11,
10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8,
9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6,
4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13,
S7:
4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1,
13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6,
1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2,
6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12,
S8:
13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7,
1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2,
7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8,
2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11,
在此以S1为例说明其功能,我们可以看到:在S1中,共有4行数据,命名为0,1、2、3行;每行有16列,命名为0、1、2、3,......,14、15列。
现设输入为: D=D1D2D3D4D5D6
令:列=D2D3D4D5
行=D1D6
然后在S1表中查得对应的数,以4位二进制表示,此即为选择函数S1的输出。下面给出子密钥Ki(48bit)的生成算法
从子密钥Ki的生成算法描述图中我们可以看到:初始Key值为64位,但DES算法规定,其中第8、16、......64位是奇偶校验位,不参与DES运算。故Key 实际可用位数便只有56位。即:经过缩小选择换位表1的变换后,Key 的位数由64 位变成了56位,此56位分为C0、D0两部分,各28位,然后分别进行第1次循环左移,得到C1、D1,将C1(28位)、D1(28位)合并得到56位,再经过缩小选择换位2,从而便得到了密钥K0(48位)。依此类推,便可得到K1、K2、......、K15,不过需要注意的是,16次循环左移对应的左移位数要依据下述规则进行:
循环左移位数
1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1
以上介绍了DES算法的加密过程。DES算法的解密过程是一样的,区别仅仅在于第一次迭代时用子密钥K15,第二次K14、......,最后一次用K0,算法本身并没有任何变化。

阅读全文

与DES的加密例子相关的资料

热点内容
自己购买云主服务器推荐 浏览:422
个人所得税java 浏览:761
多余的服务器滑道还有什么用 浏览:192
pdf劈开合并 浏览:28
不能修改的pdf 浏览:752
同城公众源码 浏览:489
一个服务器2个端口怎么映射 浏览:298
java字符串ascii码 浏览:79
台湾云服务器怎么租服务器 浏览:475
旅游手机网站源码 浏览:332
android关联表 浏览:945
安卓导航无声音怎么维修 浏览:333
app怎么装视频 浏览:430
安卓系统下的软件怎么移到桌面 浏览:96
windows拷贝到linux 浏览:772
mdr软件解压和别人不一样 浏览:904
单片机串行通信有什么好处 浏览:340
游戏开发程序员书籍 浏览:860
pdf中图片修改 浏览:288
汇编编译后 浏览:491