① 求解:怎样使用MATLAB中的遗传算法计算器Optimization Tool中的GA——Genetic Algorithm,如图,重谢
比如通过MATLAB遗传算法的思想求解f(x)=x*sin(10pi*x)+2.0,-1<=x<=2的最大值问题,结果精确到3位小数。
首先在matlab命令窗口输入f=@(x)-(x*sin(10*pi*x)+2) 输出结果为
>> f=@(x)-(x*sin(10*pi*x)+2)
f =
@(x)-(x*sin(10*pi*x)+2)
接着输入gatool会打开遗传算法工具箱
显示51代之后算法终止,最小结果为-3.85027334719567,对应的x为1.851,由于自定义函数加了负号,所以原式的最大值为3.85027334719567,对应的x为1.851。
不过这是遗传算法得到的结果,每次运行的结果可能会有所不同,而且不一定是确切的最大值。
遗传算法适合应用在一些求最优解比较复杂的问题(常规的算法运算时间过长,甚至无法解决)。
② MATLAB遗传算法
function ret=Code(lenchrom,bound)
%本函数将变量编码成染色体,用于随机初始化一个种群
% lenchrom input : 染色体长度
% bound input : 变量的取值范围
% ret output: 染色体的编码值
flag=0;
while flag==0
pick=rand(1,length(lenchrom));
ret=bound(:,1)'+(bound(:,2)-bound(:,1))'.*pick; %线性插值
flag=test(lenchrom,bound,ret); %检验染色体的可行性
end
function ret=Cross(pcross,lenchrom,chrom,sizepop,bound)
%本函数完成交叉操作
% pcorss input : 交叉概率
% lenchrom input : 染色体的长度
% chrom input : 染色体群
% sizepop input : 种群规模
% ret output : 交叉后的染色体
for i=1:sizepop
% 随机选择两个染色体进行交叉
pick=rand(1,2);
while prod(pick)==0
pick=rand(1,2);
end
index=ceil(pick.*sizepop);
% 交叉概率决定是否进行交叉
pick=rand;
while pick==0
pick=rand;
end
if pick>pcross
continue;
end
flag=0;
while flag==0
% 随机选择交叉位置
pick=rand;
while pick==0
pick=rand;
end
pos=ceil(pick.*sum(lenchrom)); %随机选择进行交叉的位置,即选择第几个变量进行交叉,注意:两个染色体交叉的位置相同
pick=rand; %交叉开始
v1=chrom(index(1),pos);
v2=chrom(index(2),pos);
chrom(index(1),pos)=pick*v2+(1-pick)*v1;
chrom(index(2),pos)=pick*v1+(1-pick)*v2; %交叉结束
flag1=test(lenchrom,bound,chrom(index(1),:)); %检验染色体1的可行性
flag2=test(lenchrom,bound,chrom(index(2),:)); %检验染色体2的可行性
if flag1*flag2==0
flag=0;
else flag=1;
end %如果两个染色体不是都可行,则重新交叉
end
end
ret=chrom;
clc
clear all
% warning off
%% 遗传算法参数
maxgen=50; %进化代数
sizepop=100; %种群规模
pcross=[0.6]; %交叉概率
pmutation=[0.1]; %变异概率
lenchrom=[1 1]; %变量字串长度
bound=[-5 5;-5 5]; %变量范围
%% 个体初始化
indivials=struct('fitness',zeros(1,sizepop), 'chrom',[]); %种群结构体
avgfitness=[]; %种群平均适应度
bestfitness=[]; %种群最佳适应度
bestchrom=[]; %适应度最好染色体
% 初始化种群
for i=1:sizepop
indivials.chrom(i,:)=Code(lenchrom,bound); %随机产生个体
x=indivials.chrom(i,:);
indivials.fitness(i)= (x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% 这个是我的测试函数
% 如果有这个函数的话,可以得到最优值
end
%找最好的染色体
[bestfitness bestindex]=min(indivials.fitness);
bestchrom=indivials.chrom(bestindex,:); %最好的染色体
avgfitness=sum(indivials.fitness)/sizepop; %染色体的平均适应度
% 记录每一代进化中最好的适应度和平均适应度
trace=[];
%% 进化开始
for i=1:maxgen
% 选择操作
indivials=Select(indivials,sizepop);
avgfitness=sum(indivials.fitness)/sizepop;
% 交叉操作
indivials.chrom=Cross(pcross,lenchrom,indivials.chrom,sizepop,bound);
% 变异操作
indivials.chrom=Mutation(pmutation,lenchrom,indivials.chrom,sizepop,[i maxgen],bound);
% 计算适应度
for j=1:sizepop
x=indivials.chrom(j,:);
indivials.fitness(j)=(x(1)*exp(-(x(1)^2 + x(2)^2)));
%-20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289
% -20*exp(-0.2*sqrt((x(1)^2+x(2)^2)/2))-exp((cos(2*pi*x(1))+cos(2*pi*x(2)))/2)+20+2.71289;
end
%找到最小和最大适应度的染色体及它们在种群中的位置
[newbestfitness,newbestindex]=min(indivials.fitness);
[worestfitness,worestindex]=max(indivials.fitness);
% 代替上一次进化中最好的染色体
if bestfitness>newbestfitness
bestfitness=newbestfitness;
bestchrom=indivials.chrom(newbestindex,:);
end
indivials.chrom(worestindex,:)=bestchrom;
indivials.fitness(worestindex)=bestfitness;
avgfitness=sum(indivials.fitness)/sizepop;
trace=[trace;avgfitness bestfitness]; %记录每一代进化中最好的适应度和平均适应度
end
%进化结束
%% 结果显示
[r c]=size(trace);
figure
plot([1:r]',trace(:,1),'r-',[1:r]',trace(:,2),'b--');
title(['函数值曲线 ' '终止代数=' num2str(maxgen)],'fontsize',12);
xlabel('进化代数','fontsize',12);ylabel('函数值','fontsize',12);
legend('各代平均值','各代最佳值','fontsize',12);
ylim([-0.5 5])
disp('函数值 变量');
% 窗口显示
disp([bestfitness x]);
③ 用matlab遗传算法解决函数优化问题
在使用MATLAB中的遗传算法解决函数优化问题时,我们需要运用GA函数,这是遗传算法的具体实现。GA函数的调用格式是:X = GA(FITNESSFCN,NVARS,A,b,Aeq,beq,lb,ub,NONLCON,options)。其中,FITNESSFCN代表待优化的函数,NVARS表示变量的数量,lb和ub分别是变量的下界和上界。对于特定问题,你需要提供这四个参数的值,而其他参数可以暂时用[]代替。
需要注意的是,MATLAB的GA函数默认是寻找函数的最小值。如果你的目标是找到函数的最大值,则需要将待优化的函数取负数,即编写如下函数:
function y=myfun(x)
y=-x.*sin(10*pi.*x)-2;
将这个函数保存为myfun.m文件,然后在MATLAB命令行中输入以下代码:x=ga(@myfun,1,[],[],[],[],[1],[2])。执行后,可能会看到这样的输出结果:Optimization terminated: average change in the fitness value less than options.TolFun. x = 1.8506
这是因为遗传算法实际上是在指定的取值范围内随机选取初始值,然后通过遗传操作来寻找最优解。因此,每次运行的结果可能会有所不同。例如,再次运行相同的代码,你可能会得到类似的结果:Optimization terminated: average change in the fitness value less than options.TolFun. x = 1.6507
具体原因可以参考遗传算法的相关资料,了解其背后的原理和机制。
④ matlab编写遗传算法
你看可以吗?
%function [CC,Paa]=ChannelCap(P,k)
P=input('P=')
K=input('K=')
% 提示错误信息
if (length(find(P<0)) ~=0)
error('Not a prob.vector,negative component'); % 判断是否符合概率分布条件
end
if (abs(sum(P')-1)>10e-10)
error('Not a prob.vector,component do not add up to 1') % 判断是否符合概率和为1
end
% 1)初始化Pa
[r,s]=size(P);
Pa=(1/(r+eps))*ones(1,r); %最佳输入分布
sumrow=zeros(1,r);
Pba=P;
% 2)进行迭代计算
n=0;
C=0;
CC=1;
while abs(CC-C)>=k
n=n+1;
% (1)先求Pb
Pb=zeros(1,s);
for j=1:s
for i=1:r
Pb(j)=Pb(j)+Pa(i)*Pba(i,j);
end
end
% (2)再求Pab
suma=zeros(1,s);
for j=1:s
for i=1:r
Pab(j,i)=Pa(i)*Pba(i,j)/(Pb(j)+eps);
suma(j)=suma(j)+Pa(i)*Pba(i,j)*log2((Pab(j,i)+eps)/(Pa(i)+eps));
end
end
% 3)求信道容量C
C=sum(suma);
% 4)求下一次Pa,即Paa
L=zeros(1,r);
sumaa=0;
for i=1:r
for j=1:s
L(i)=L(i)+Pba(i,j)*log(Pab(j,i)+eps);
end
a(i)=exp( L(i));
end
sumaa=sum(a);
for i=1:r
Paa(i)=a(i)/(sumaa+eps);
end
% 5)求下一次C,即CC
CC=log2(sumaa);
Pa=Paa;
end
% 打印输出结果
s0='很好!输入正确,迭代结果如下:';
s1='最佳输入概率分布Pa:';
s2='信道容量C:';
s3='迭代次数n:';
s4='输入符号数r:';
s5='输出符号数s:';
s6='迭代计算精度k:';
for i=1:r
B{i}=i;
end
disp(s0);
disp(s1),disp(B),disp(Paa);
disp(s4),disp(r);
disp(s5),disp(s);
disp(s2),disp(CC);
disp(s6),disp(k);
disp(s3),disp(n);
%初始化输入
P=input('P=')
k=input('k=')
% 提示错误信息
if (length(find(P<0)) ~=0)
error('Not a prob.vector,negative component'); % 判断是否符合概率分布条件
end
if (abs(sum(P')-1)>10e-10)
error('Not a prob.vector,component do not add up to 1') % 判断是否符合概率和为1
end
% 1)初始化Pa
[r,s]=size(P);
Pa=(1/(r+eps))*ones(1,r); %最佳输入分布
sumrow=zeros(1,r);
Pba=P;
% 2)进行迭代计算
n=0;
C=0;
CC=1;
while abs(CC-C)>=k
n=n+1;
% (1)先求Pb
Pb=zeros(1,s);
for j=1:s
for i=1:r
Pb(j)=Pb(j)+Pa(i)*Pba(i,j);
end
end
% (2)再求Pab
suma=zeros(1,s);
for j=1:s
for i=1:r
Pab(j,i)=Pa(i)*Pba(i,j)/(Pb(j)+eps);
suma(j)=suma(j)+Pa(i)*Pba(i,j)*log2((Pab(j,i)+eps)/(Pa(i)+eps));
end
end
% 3)求信道容量C
C=sum(suma);
% 4)求下一次Pa,即Paa
L=zeros(1,r);
sumaa=0;
for i=1:r
for j=1:s
L(i)=L(i)+Pba(i,j)*log(Pab(j,i)+eps);
end
a(i)=exp( L(i));
end
sumaa=sum(a);
for i=1:r
Paa(i)=a(i)/(sumaa+eps);
end
% 5)求下一次C,即CC
CC=log2(sumaa);
Pa=Paa;
end
% 打印输出结果
s0='很好!输入正确,迭代结果如下:';
s1='最佳输入概率分布Pa:';
s2='信道容量C:';
s3='迭代次数n:';
s4='输入符号数r:';
s5='输出符号数s:';
s6='迭代计算精度k:';
for i=1:r
B{i}=i;
end
disp(s0);
disp(s1),disp(B),disp(Paa);
disp(s4),disp(r);
disp(s5),disp(s);
disp(s2),disp(CC);
disp(s6),disp(k);
disp(s3),disp(n);
样本熵代码
function [shang]=jss(xdate)
m=2;
n=length(xdate);
r=0.2*std(xdate);
cr=[];
gn=1;
gnmax=m;
while gn<=gnmax
x2m=zeros(n-m+1,m);%存放变换后的向量
d=zeros(n-m+1,n-m);% 存放距离结果的矩阵
cr1=zeros(1,n-m+1);%存放
k=1;
for i=1:n-m+1
for j=1:m
x2m(i,j)=xdate(i+j-1);
end
end
x2m;
for i=1:n-m+1
for j=1:n-m+1
if i~=j
d(i,k)=max(abs(x2m(i,-x2m(j,));%计算各个元素和响应元素的距离
k=k+1;
end
end
k=1;
end
d;
for i=1:n-m+1
[k,l]=size(find(d(i,<r));%将比R小的个数传送给L
cr1(1,i)=l;
end
cr1;
cr1=(1/(n-m))*cr1;
sum1=0;
for i=1:n-m+1
if cr1(i)~=0
sum1=sum1+log(cr1(i));
end
end
cr1=1/(n-m+1)*sum1;
cr(1,gn)=cr1;
gn=gn+1;
m=m+1;
end
cr;
shang=cr(1,1)-cr(1,2);
function [shang]=ybs(xdate)
m=2;
n=length(xdate);
r=0.2*std(xdate);
cr=[];
gn=1;
gnmax=m;
while gn<=gnmax
x2m=zeros(n-m+1,m);%存放变换后的向量
d=zeros(n-m+1,n-m);% 存放距离结果的矩阵
cr1=zeros(1,n-m+1);%存放
k=1;
for i=1:n-m+1
for j=1:m
x2m(i,j)=xdate(i+j-1);
end
end
x2m;
for i=1:n-m+1
for j=1:n-m+1
if i~=j
d(i,k)=max(abs(x2m(i,-x2m(j,));%计算各个元素和响应元素的距离
k=k+1;
end
end
k=1;
end
d;
for i=1:n-m+1
[k,l]=size(find(d(i,<r));%将比R小的个数传送给L
cr1(1,i)=l;
end
cr1;
cr1=(1/(n-m))*cr1;
sum1=0;
for i=1:n-m+1
sum1=sum1+cr1(i);
end
end
cr1=1/(n-m+1)*sum1;
cr(1,gn)=cr1;
gn=gn+1;
m=m+1;
end
cr;
shang=-log(cr(1,1)/cr(1,2));
⑤ matlab 遗传算法
function m_main()
clear
clc
Max_gen=100;% 运行代数
pop_size=100;%种群大小
chromsome=10;%染色体的长度
pc=0.9;%交叉概率
pm=0.25;%变异概率
gen=0;%统计代数
%初始化
init=40*rand(pop_size,chromsome)-20;
pop=init;
fit=obj_fitness(pop);
[max_fit,index_max]=max(fit);maxfit=max_fit;
[min_fit,index_min]=min(fit);best_indiv=pop(index_max,:);
%迭代操作
while gen<Max_gen
gen=gen+1; bt(gen)=max_fit;
if maxfit<max_fit;maxfit=max_fit;pop(index_min,:)=pop(index_max,:);best_indiv=pop(index_max,:);end
best_indiv_tmp(gen)=pop(index_max);
newpop=ga(pop,pc,pm,chromsome,fit);
fit=obj_fitness(newpop);
[max_fit,index_max]=max(fit);
[min_fit,index_min]=min(fit);
pop=newpop;
trace(1,gen)=max_fit;
trace(2,gen)=sum(fit)./length(fit);
end
%运行结果
[f_max gen_ct]=max(bt)%求的最大值以及代数
maxfit
best_indiv
%画图
% bt
hold on
plot(trace(1,:),'.g:');
plot( trace(2,:),'.r-');
title('实验结果图')
xlabel('迭代次数/代'),ylabel('最佳适应度(最大值)');%坐标标注
plot(gen_ct-1,0:0.1:f_max+1,'c-');%画出最大值
text(gen_ct,f_max+1, '最大值')
hold off
function [fitness]=obj_fitness(pop)
%适应度计算函数
[r c]=size(pop);
x=pop;
fitness=zeros(r,1);
for i=1:r
for j=1:c
fitness(i,1)=fitness(i,1)+sin(sqrt(abs(40*x(i))))+1-abs(x(i))/20.0;
end
end
function newpop=ga(pop,pc,pm,chromsome,fit);
pop_size=size(pop,1);
%轮盘赌选择
ps=fit/sum(fit);
pscum=cumsum(ps);%size(pscum)
r=rand(1,pop_size);qw=pscum*ones(1,pop_size);
selected=sum(pscum*ones(1,pop_size)<ones(pop_size,1)*r)+1;
newpop=pop(selected,:);
%交叉
if pop_size/2~=0
pop_size=pop_size-1;
end
for i=1:2:pop_size-1
while pc>rand
c_pt=round(8*rand+1);
pop_tp1=newpop(i,:);pop_tp2=newpop(i+1,:);
newpop(i+1,1:c_pt)=pop_tp1(1,1:c_pt);
newpop(i,c_pt+1:chromsome)=pop_tp2(1,c_pt+1:chromsome);
end
end
% 变异
for i=1:pop_size
if pm>rand
m_pt=1+round(9*rand);
newpop(i,m_pt)=40*rand-20;
end
end