导航:首页 > 文件处理 > 压缩感知重建算法

压缩感知重建算法

发布时间:2022-04-16 09:29:49

1. 什么是“压缩感知”

压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist
采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。他在
信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。
压缩感知理论的核心思想主要包括两点。

第一个是信号的稀疏结构。传统的Shannon
信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由
度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种
信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压
缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关
的。压缩感知压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里
恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。

2. 我的毕业设计是:基于凸优化方法的压缩感知信号重建。 寻找相关资料及代码,谢谢

这个方面资料很多了,主流分为l1_magic程序包和SparseLab系列程序包,信号重建仅仅应用的话还是很简单的,去下资料看吧

3. 毕业设计--基于压缩感知的重构算法性能比较(贪婪算法和凸优化算法)求指导

于压缩感知的重构算法性能比较(贪婪算法和凸优化算
肯定

4. 压缩感知是什么

压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业的界的广泛关注。他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。
压缩感知理论的核心思想主要包括两点。
第一个是信号的稀疏结构。传统的Shannon 信号表示方法只开发利用了最少的被采样信号的先验信息,即信号的带宽。但是,现实生活中很多广受关注的信号本身具有一些结构特点。相对于带宽信息的自由度,这些结构特点是由信号的更小的一部分自由度所决定。换句话说,在很少的信息损失情况下,这种信号可以用很少的数字编码表示。所以,在这种意义上,这种信号是稀疏信号(或者近似稀疏信号、可压缩信号)。
另外一点是不相关特性。稀疏信号的有用信息的获取可以通过一个非自适应的采样方法将信号压缩成较小的样本数据来完成。理论证明压缩感知的采样方法只是一个简单的将信号与一组确定的波形进行相关的操作。这些波形要求是与信号所在的稀疏空间不相关的。压缩感知压缩感知方法抛弃了当前信号采样中的冗余信息。它直接从连续时间信号变换得到压缩样本,然后在数字信号处理中采用优化方法处理压缩样本。这里恢复信号所需的优化算法常常是一个已知信号稀疏的欠定线性逆问题。

5. 压缩感知的基本信息

压缩感知(Compressed sensing),也被称为压缩采样(Compressive sampling),稀疏采样(Sparse sampling) ,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号 。压缩感知理论一经提出,就引起学术界和工业界的广泛关注。他在信息论、图像处理、地球科学、光学/微波成像、模式识别、无线通信、大气、地质等领域受到高度关注, 并被美国科技评论评为2007年度十大科技进展。

6. 如何在压缩感知中正确使用阈值迭代算法

如何在压缩感知中正确使用阈值迭代算法? 测量[2]。重构算法是依据对信号的测量和问题的稀疏性重构原始信号的技术。上述过程可以描述为 如下数学模型:设s ∈ RN 为原始信号,该信号在某组基{ψi }N 下具有稀疏表示s = Ψx,其中Ψ = i=1 [ψ1 , ψ2 , . . . , ψN ], = [x1 , x2 , . . . , xN ] ;给定测量矩阵Θ ∈ RM ×N , Θ可得到信号s的观测值y, x 由 即 y = Θs = ΘΨx 其中Φ = ΘΨ ∈ RM ×N 称为传感矩阵, 为采样数;则从观测数据y来恢复未知的稀疏向量x, M 进而恢 复原始信号s的问题可建模为下述L0 问题: x∈RN min x 0 s.t. y = Φx (1.1) 这里 x 0 为x的非零分量的个数。显然L0 问题是一个组合优化问题(NP难问题[11]) 通常将其转化到 , 一个稀疏优化问题求解: x∈RN min S(x) s.t. y = Φx (1.2) 这里S(x)是x的某个稀疏度量[16],例如对给定的q ∈ (0, 1],取S(x) = x q ,其中 x q 是x的q?准范 q 数。L0 问题(1.1)和稀疏优化问题(1.2)通常都纳入如下的正则化框架来加以研究: x∈RN min Cλ (x) y ? Φx 2 + P (x; λ) (1.3) 其中λ > 0为正则化参数, (x; λ)为罚函数。 P 不同的罚函数对应不同的压缩感知模型, 例如, (x; λ) = P 1/2 λ x 0 对应L0 问题; (x; λ) = λ x 1 对应L1 问题[8], (x; λ) = λ x 1/2 对应L1/2 问题[9], P P 等等。正则化 框架提供了压缩感知研究的一般模型。通常,我们要求罚函数P (x; λ)具有某些特别性质,例如,我们 假设: (i) 非负性: (x; λ) P 0, ?x ∈ RN ; c}有界; 0; (ii) 有界性:对任何正常数c, 集合{x : P (x; λ) (iii) 可分性: (x; λ) = P N i=1 λp(xi ), p(xi ) 且 (iv) 原点奇异性: (x; λ)在x = 0处不可导, P 但在其它点处处可导。 本文目的是:从正则化框架(1.3)出发,研究并回答以下有关压缩感知应用的四个基本问题:如 何从给定的罚函数导出压缩感知问题的阈值表示?如何根据阈值表示设计阈值迭代算法并建立其收 敛性理论? 如何应用阈值迭代算法到压缩感知问题? 如何针对不同特征的压缩传感问题选择不同形式 的阈值迭代算法?所获结论期望为压缩感知中如何正确使用阈值迭代算法提供理论依据。 2 阈值迭代算法与压缩传感 本节讨论前三个问题。作为预备, 我们首先简要介绍阈值函数与阈值迭代算法。 2.1 阈值函数 高效、 快速、 高精度的重构算法是压缩感知广泛应用的前提。 阈值迭代算法 Thresholding Iterative ( Algorithms)正是这样一类十分理想的压缩感知重构算法,它因迭代简单、可单分量处理、能有效 2 中国科学 第 40 卷 第 1 期 用于大规模高维问题而得到普遍推崇。Blumensath等[14]提出了求解近似L0 问题的Hard阈值迭代算 法, Daubechies等[15]提出了求解L1 问题的Soft阈值迭代算法, 徐宗本等[9, 10, 16]提出了求解L1/2 问题 的Half和Chalf阈值迭代算法。

7. 压缩感知的介绍

压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。压缩感知理论一经提出,就引起学术界和工业界的广泛关注。它在信息论、图像处理、地球科学、光学、微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。

8. 如何理解压缩感知

压缩感知,又称压缩采样,压缩传感。它作为一个新的采样理论,它通过开发信号的稀疏特性,在远小于Nyquist 采样率的条件下,用随机采样获取信号的离散样本,然后通过非线性重建算法完美的重建信号。 压缩感知理论一经提出,就引起学术界和工业界的广泛关注。它在信息论、图像处理、地球科学、光学、微波成像、模式识别、无线通信、大气、地质等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。

9. 压缩感知重构OMP算法代码

%A-稀疏系数矩阵
%D-字典/测量矩阵(已知)
%X-测量值矩阵(已知)
%K-稀疏度
function A=OMP(D,X,L)
[n,P]=size(X);
[n,K]=size(D);
for k=1:P
a=[];
x=X(:,k);
resial=x;%残差
indx=zeros(L,1);%索引集
for j=1:L
proj=D'*resial;%D转置与resial相乘,得到与resial与D每一列的内积值
pos=find(abs(proj)==max(abs(proj)));%找到内积最大值的位置
pos=pos(1);%若最大值不止一个,取第一个
indx(j)=pos;%将这个位置存入索引集的第j个值
a=pinv(D(:,indx(1:j)))*x;%indx(1:j)表示第一列前j个元素
resial=x-D(:,indx(1:j))*a;
end
temp=zeros(K,1);
temp(indx)=a;
A(:,k)=temp;%只显示非零值及其位置
end

阅读全文

与压缩感知重建算法相关的资料

热点内容
windows下编译python 浏览:607
linux蓝牙连接 浏览:898
安卓qq邮箱格式怎么写 浏览:431
如何电信租用服务器吗 浏览:188
编程中计算根号的思维 浏览:183
可爱的程序员16集背景音乐 浏览:446
软件代码内容转换加密 浏览:797
什么app看电视不要钱的 浏览:16
乌班图怎么安装c语言编译器 浏览:278
plc通讯块编程 浏览:923
我的世界服务器怎么清地皮 浏览:421
ftp服务器如何批量改名 浏览:314
网易我的世界服务器成员如何传送 浏览:268
公司云服务器远程访问 浏览:633
法哲学pdf 浏览:638
清大阅读app是什么 浏览:447
怎么用qq浏览器整体解压文件 浏览:587
肺组织压缩15 浏览:271
安卓手机为什么换电话卡没反应 浏览:797
诸子集成pdf 浏览:340