Ⅰ 甲醇合成设备作用
甲醇合成所需设备有:
德士古造气炉:这种造气炉采用纯氧燃烧,用以制造煤气。
合成塔:用以合成气体,2H2 + CO → CH3OH
合成气压缩机:将合成气压缩输送
汽轮机:又称蒸汽透平,用于输出动力。
预塔,加压塔,常压塔:用于制备的各个功能塔,从名字可以看出用途。
甲醇中间槽:由于制备出来的甲醇压力有点不一,在中间槽储存是比较稳妥的。
甲醇贮槽,地下槽:如其名。
Ⅱ 压缩机的工作原理
用在空压机上面主要是来调节空压机的起停状态,通过调节储气罐内的压力来让空压机停机休息,对机器有保养作用,在空压机工厂调试的时候,根据客户需要调节到指定压力,然后设定一个压差。
例如压缩机开始启动,向储气罐 打气,到压力10kg的时候,空压机停机或者卸载,当压力到7kg的时候空压机又开始启动,此间有一个压力差,这个过程就可以让压缩机休息一下,达到保护空压机的作用。
(2)合成气压缩机原始试驾扩展阅读
制冷和空调行业中采用的压缩机有5大类型:往复式、螺杆式、回转式、涡旋式和离心式,其中往复式是小型和中型商用制冷系统中应用最多的一种压缩机。
螺杆式压缩机主要用于大型商用和工业系统。回转式压缩机、涡旋式压缩机主要用于家用和小容量商用空调装置,离心式压缩机则广泛用于大型楼宇的空调系统。
参考资料来源:网络-压缩机
Ⅲ 谁能找到合成气压缩机的剖面图
不知道贵厂合成气压缩机用的是往复式还是离心式?楼主在论坛上搜一下,两种类型的资料都挺多的。
Ⅳ 合成气压缩机式进口气体组分变化对压缩机有什么影响如何处理 止推轴承温度升高是什么原因如何处理
1.缩机进口气体组成是必须有严格的保证,即氢氮比为三比一。
2.如果氮气组分增多,压缩机的轴向推力将增大,压缩压力将下降,调整不及时有可能发生喘振,伤害机器。
3.如果氢气组分增多,机组有可能造成“飞车”,造成系统停车。
4.以上情况,应该迅速恢复调整比例,如果难以迅速恢复,应减负荷生产。
5.轴承温升:负荷过重的应适当降速,油温过高或者该路油管被油泥堵塞,造成节流,油压过低,这些应调油温或油量、油压。要是推力瓦块因磨损造成的,只能降低负荷,并且随时做停车准备。
Ⅳ 合成气膨胀节泄露如何处理
(1) 合成气压缩机汽轮机凝气器段膨胀节疲劳裂口.导致真空度急剧下降,这是这次事故的直接原因。
(2) 操作人员应加强监控,及时发现和处理问题。
(3) 现场巡检人员加强巡检。
(4) 本次故障中发现一期合成气压缩机无汽轮机真空度跳车连锁,空分车间,仪控车间、生产部、机动部应尽快确定方案,增加此连锁。
三、处理结果。
(1) 此次故障因膨胀节长期温差变化拉伸,焊缝疲劳破裂所致,属设备损坏,为突爱性敌障,不按事故考核。但空分车间长期未对该部位检查,在膨胀节轻微泄漏时未能及时发现,应吸取教训,今后应定期对膨胀节变形、泄漏做认真检查,发现泄漏及时处理,避免此类故障再度发生,鉴于空分车间检查不到位,考核空分车间300元。
(2) 当班中控操作工吕某监盘认真,及时发现故障,处理果断,避免了事故扩大,给予500元奖励,并提出表扬。
Ⅵ 合成气压缩机水冷器管束应选什么材质氢脆如何避免是否用白钢管
压缩机段间排气温度都不会太高,不然密封跟润滑油受不了,碳钢只有温度不高于210度都可用,不存在氢腐蚀,因此也没必要去提高管束材质增加投资。
Ⅶ 针对1000MW超临界机组的汽轮机,如何具体表述其工作过程
这个是高压缸整体发运。
高压缸采用双层缸设计。外缸为桶形设计,由垂直径向中分面分为进汽缸和排汽缸。内缸为垂直纵向平分面结构。由于缸体为旋转对称,使得机组在启动停机或快速变负荷时缸体的温度梯度很小。
是汽轮机的一个组成部分,有单流和双流两种,就像汽轮机一样,在国外汽轮机被称为蒸汽涡轮发动机。
高压缸有的缸体采用防腐蚀的中碳钢材料,法兰带外螺纹固定有单,双臂。缸径从25-40不等;分单动式和往复式;转角从0-180度。
转角缸能将压臂自动转到工件上,自动进行夹紧,工件加工完后压臂能自动卸载并转回原位。高压转角缸适用于需要很大夹紧力的场合,适合夹紧大型的工件,适用于机加工时切削力较大的场合,广泛应用于批量生产,自动化程度高,夹具空间小的工作场合。
高压缸是主蒸汽进入汽缸的最初阶段,此时的蒸汽压力大,温度高,所以相对应的高压缸叶片短,叶轮直径大。
总结如下:
当合成气压缩机发现高压缸干气密封泄漏严重, 手动停车。事故原因可以追溯到之前的低压缸入口压力低联锁停车, 在停车过程中, 高压缸转子上产生的轴向力导致止推盘从原装配位置退出, 同时在驱动端干气密封部位发生了碰摩。驱动端干气密封压缩量的增加和干气密封部位的碰摩, 最终造成了驱动端干气密封损坏。
Ⅷ 空气压缩机工作原理
压缩机工作原理:无油空气压缩机是属于微型往复式活塞式压缩机,电机单轴驱动对称分布曲柄摇杆机械结构,主运动付为活塞环,副运动付为铝合金圆柱面,运动付之间同活塞环自润滑而不添加任何润滑剂。压缩机通过曲柄摇杆的往复运动使圆柱面气缸的容积发生周期性变化,电机运转一周气缸容积有两次方向相反的变化。当正方向是气缸容积扩展方向时,气缸容积为真空,大气压大于气缸内气压,空气通过朝气阀门进入气缸,此时为吸气过程:当反方向是容积缩小方向时,进入气缸内的气体受到压缩,容积内的压力迅速增加,当大于大气压力时,排气阀门被打开,此时为排气过程。单轴双缸的结构布置使压缩机气体流量在额定转速一定时为单缸的两倍,并使得单缸压缩机产生的振动噪音得到很好的解决,整体结构更加紧凑。
整机工作原理:
空气由进气管进入压缩机内,电机的转动,使活塞往返运动,把空气压缩,使压力气体由出气口通过高压软管打开单向阀进入储气罐,压力表指针显示随之上升到8BAR,大于8BAR,压力开关自动关闭,电机停止工作,同时电磁阀通过泄压气管,将压缩机机头内气压减为0.此时空气开关压力、储气罐内气体压力仍为8KG,气体通过过滤调压阀、排气开关排气。储气罐内气压下降至5kg,时,压力开关自动开启,压缩机重新开始工作
Ⅸ 合成气压缩机原始试车用氮气可以吗
取决于你用的压缩机类型,在国内,合成气压缩机好多用的是往复式压缩机,这种压缩机最大的特点就是实际压缩过程中,气体的打量基本上是一定的。估计你们是原始开工阶段,用氮气做单机试车时个很安全的气体,但是需要你注意的是:合成气的成分中,有大量的氢气,合成气的密度要比氮气低很多。因为往复式压缩机打量基本不变,所以使用气体的密度发生变化,那么压缩机做功也会发生变化。
可能存在的风险就是试机过程中,因气体密度大,造成压缩机负荷比设计值高,压缩机发热量大,压缩机有可能缸体超温。更重要的是,有可能会造成电机过载。
不过这只是理论上的,实际不一定如此,因为本身设计时,都要留一定的设计余量,另外,气体密度对压缩机做功的影响,最好是理论计算下。
所以我的建议是:跟设计人员沟通下,确认用氮气时的压缩机做功和设计合成气密度时的压缩机做功,如果都在压缩机的输出功率内,那就可以放心了。
除非你们有钱,可以在氮气里面兑入些氦气,这样密度问题解决,安全问题解决,呵呵
Ⅹ 化工装置试车总体方案
φ1400合成系统试车开车方案
(一)开工前应具备的条件
1、±建基础、厂房、设备二次灌浆工作完毕,有合格的交工验收文件。
2、设备、管道安装完毕,质量达标,有合格齐全的安装竣工资料。
3、设备、管道、阀门有强度试验记录,其中冷交内件、热交内件、塔内换热器内件、废锅高压管、合成塔内件筒体、冷管束、中心管、氨冷器高压管、水冷器高压管必须经过单体设备试压,达到合格。
4、电炉经过塔外升温试验,调压器、风机经单体试车连续运行8小时达到合格,有交工验收文件。
5、仪表控制系统安装完毕、齐全,经检查验收合格、满足生产要求。
6、设备、管道、阀门,有材质检验合格证,设备、管道、焊缝有磁粉、射线探伤检验合格文件。
7、循环机系统经过单体试车有交工验收合格证、安全阀必须经过调试。
8、设备、管道、管架固定牢固,安全装置齐全好用,防毒器材、消防用具存放合理位置,使用方便。交通、照明,操作室清洁文明,符合生产要求。
9、制订好φ1400合成系统开车方案,操作规程,触媒填装及升温还原方案,有关人员培训学习、考核合格。
10、准备好新系统投产的一切工具、备品、备件、用具、记录报表、升温曲线图表等。
11、开车前所属设备、管道、阀门、电仪、工艺流程等经公司试车领导小组到现场验收确认具备试车条件。
(二)φ1400合成系统水压试验方案
1、水压强度试验目的:是考验设备、管道、阀门等承受负荷的能力,即宏观强度,保证生产安全。
设备、管道强度试验是在系统安装工作完毕,对待开车生产的设备、管道、阀门、液面计、电仪、分析控制系统进行水压试验,水压试验在设备保温、防腐前进行。
2、水压试验的内容及范围
自循环机出口至循环机进口整个系统均要进行水压试验。
主要设备:油分、冷交、合成塔、热交、氨冷器、废锅、氨分离器、合成水冷器等容器需单体试压或具备单体试压合格证。
冷交内件、氨冷器壳程、合成塔触媒筐、塔内换热器列管、热交列管、废锅壳程亦要进行单体试压或具备试压合格证书,其中合成塔内件必须用氮气试压试漏。
以上试压均在最高操作压力或压差的1.5倍来进行,试压合格后要将积水放尽。
3、试压的方法及步骤
试压时详细检查,确认与醇烃化用盲板安全可靠隔离。
①31.4MPa操作压力工艺气体管道试压47MPa,保持15分钟,目测无泄漏,变形为合格。
其中对于高温管道试压要达到59MPa,保持15分钟,目测无泄漏,变形为合格。
②除水冷器、油分、氨分离器外,不得带其它设备进行水压试验,单体设备及内件应单独试压,或具备试压合格证书。
③气氨管线、液氨管线水压试验压力为操作压力的1.5倍。
④蒸汽管线、脱盐水管线水压试验压力为1.25倍。
⑤全部高中压管道、阀门、管件、包括放油水管、放空管等,必须逐段全部试压,不得遗漏。
⑥水压试验完毕后,立即对设备管道、阀门进行空气吹扫,排除水份,防止锈蚀,应特别注意吹干油分内件及各阀门积水。
⑦对于DN80以下的管道,必须按规定做通球试验。
(三)设备管道的吹除
1、吹除的目的,是将设备管道内的铁锈、灰尘、焊渣、积水等杂物吹净,防止杂物进入设备、管道、阀门中或进入触媒中造成堵塞,严重影响正常生产和触媒的寿命。
2、吹除的介质:空气(开一台新压缩机)。
3、吹除压力:管道<1.0MPa。
4、设备清扫包括新安装的静止设备、传动设备,有内件的设备在安装前必须清洗干净,设备内件不准残存油、水及其它杂物。内部情况不明的设备,必须重新打开检查。
5、吹除的方法和原则:按流程先后顺序进行,凡遇阀门、设备之前法兰必须拆开,用铁板挡住另一端,防止异物进入管内及设备中或打坏密封球面,吹除时用白布检查是否干净,白布上无脏点为止,连好法兰,再进行下一步吹扫,每段吹除结束要拆开清理可能积存异物的角落。
6、吹附前要联系协调好,吹风口严禁有人。
7、绘出吹除流程图(现场定)。
(四)触媒的装填
合成塔的内件较为复杂,触媒的装填需按其结构形式制定装填方案,故按湖南安淳公司制定的方案执行。
(五)触媒升温还原
1、升温还原前的准备工作
①根据内件和催化剂的技术特征制定适合的触媒升温还原方案,并成立触媒升温还原领导小组,负责协调解决触媒升温还原过程中的有关事宜。
②生产部合成车间要组织参与合成触媒升温还原的操作人员学习,了解φ1400合成塔内件结构,合成系统管道流程及其控制点和触媒的性能,升温还原过程的原理,操作要点和挖制手段,熟悉掌握升温还原方法和步骤,参与升温还原的操作人员要职责分明,分工协作,确保一次开车成功。
③生产部及合成车间应对有关设备、阀门、仪表、管道进行一次全面检查,并将阀门调整为开车位置,符合开车要求,并准备好升温还原曲线图、记录纸、安全照明、防护器材、消防设施、工器具等。
④电炉和调压设备处于完好状态,电炉需经塔外升温试验合格,使用时要选派人员监护。
⑤醇烃化与合成系统按两系**立的要求在有关部位插上盲板,场地清扫干净。
⑥各分析仪器齐备、出水计量器具齐备、水汽浓度取样接管、出水取出点接管畅通。
⑦安质部完成触媒成份分析及理论出水量的计算。
2、系统置换与触媒灰的吹除
系统置换与触媒灰的吹除用合格的精炼气进行,其步骤如下:
①在氨冷器(气体)进出口法兰处上盲板,并关死所有放空阀(氢氮气)、水冷器进口阀和系统近路阀。
②第一段“69”送气,用<0.6MPa的压力,从氨分离器输氨阀后排水排气(事先拆开阀后法兰,用石棉板挂住),取样分析O2<0.2%为合格后,连接好该法兰,并关死输氨阀。
第二段“69”送气,用<0.6MPa的压力吹扫氨分离器→冷交→系统进口阀(循环机进出口关死)→油分离器(出口阀关死)→从排污阀排水排气,取样分析O2<0 .2%为合格。
第三段“69”送气,用<0.6MPa的压力吹扫氨分离器→冷交→油分离器(出口阀打开)→气体分别从“30”伐后,层间冷激阀后,零米冷激阀后,热付阀前,冷管束阀前阀后等法兰处排放(事先拆开法兰,用石棉板挡住,用阀门分别控制进行吹除,热交换器进口阀关死),取样分析O2<0.2%为合格后,连接好所有法兰,关死上述吹除用的阀门,打开热交换器进口阀。
第四段,用<0.6MPa的压力吹扫氨分离器→冷交→油分离器→热交换器→合成塔底部法兰处排放(事先拆开此法兰,用石棉板挡住),取样分析O2<0 .2%为合格后,连接好该法兰。
第五段,用<0.6MPa的压力吹扫氨分离器→冷交→油分离器→热交换器→合成塔塔内换热器管外→中心管→触媒层→塔内换热器管内→塔出口吹除触媒灰,用白布检查无污物(塔出口事先拆开,并用石棉板挡住),取样分析O2<0 .2%为合格后,连接好该法兰,并打开水冷器进口阀。
第六段,用<0.6MPa的压力吹扫,路线同第五段一样,进入废锅→热交换器→水冷器→冷交→从输氨阀阀后排水排气(事先拆开阀后法兰,并用石棉板挡住),取样分析O2<0 .2%为合格后,连接好法兰,关死该阀门,抽掉氨冷器进口法兰处盲板,并断开用石棉板挡住。
第七段,用<0.6MPa的压力,路线同第六段一样,进入氨冷器进口法兰排水排气,取样分析O2<0 .2%为合格后,连接好该法兰,抽掉氨冷器出口法兰盲板并断开,用石棉板挡住。
第八段,用<0.6MPa的压力吹扫,路线同第七段一样,进入氨冷器→从出口法兰处排水排气,取样分析O2<0 .2%为合格后,连接好该法兰。
③冷交、氨分离器的输氨、管输氨总管的置换,可利用合成塔试压试漏的气体进行置换,排放口在排气考克和氨罐排污阀处,同时要对各样气、压力表考克进行数次排放。
④废锅壳程、氨冷器壳程、闪蒸槽、输氨管、气氨管、脱盐水管、蒸汽管的置换,可用蒸汽进行置换,积水及水蒸汽可从各排污阀处排放,同时可用蒸汽进行试压试漏工作。
⑤吹除置换前,关闭室外所有照明,以防火灾。
⑥循环机内部置换利用充压阀和放空阀来进行,必要时可以拆除活门来进行吹扫。
3、试压试漏
①应开的阀门:系统近路阀、油分出口阀、热交进口阀、水冷器进口阀、“30”阀(开30%)、冷管束调节阀,各压力表考克,当系统压力充至2.0MPa时,开输氨总出口阀,联系氨库打开总进阀和一个氨罐进口阀,以防低压系统超压。
②应关的阀门:零米付线阀、层间冷激阀、热付阀、一、二级氨分离器根部阀,切断阀和调节阀,所有放空阀和各样气考克,补气阀。
③联系压缩机向合成系统充压进行气密试验,开补气阀,压力达到5.0MPa、10.0MPa、20.0MPa、30.0MPa时停止充压,分别检查系统有无泄漏,检查的重点是法兰、盲板、阀门填料、容器大盖、电炉丝堵头、温度计套管、仪表表接头等,检查方法以手摸、耳听为主,也可用肥皂水检查。
④发现有泄漏,不能带压松紧螺栓,可作好记号,若泄漏不严重,则继续试压检查,待试压完毕后,一起处理。若泄漏严重,则应立即卸压处理,当压力达30.0MPa时,保压30分钟,全面检查一次,经有关人员确认合格为止,然后根据氨库要求,利用系统内压力对输氨总管及氨库各罐进行置换,取样分析O2<0.2%为合格后,则将压力卸至零,即可进行系统充氨工作。
⑤气密试验时,升降至速率≤0.4MPa/分钟,高低压连接部分不能串气,静止一段时间再加压,使系统压力达到平衡,值得注意的是,卸压时一律用塔后放空阀卸压,不得用塔前放空阀卸压,以防止触媒灰倒流,引起电炉短路。
4、系统充氨
系统充氨的目的是防止系统中的水份在低温下结冰,堵塞管道,故在升温还原前,系统必须充氨以降低冰点,其步骤如下:
①输氨前联系氨库,输氨罐液位做好记录,合成系统压力卸至零(塔后放空阀不能关),自氨罐倒输至氨分离器,用手摸氨分离器有氨的感觉,待输氨罐液位下降4.0m3后,停止充氨,关死塔后放空阀和氨分离器输氨阀。
②系统充压至5.0MPa,启动循环机投入系统,使系统氨混合均匀,1小时后取样分析NH3含量达到2~3%为充氨合格。
③若氨含量低,要重新充氨,若氨含量高充氢氮气稀释,此时调整阀门位置:“30”阀开50%,热付阀全开,冷管束调节阀,零米冷激阀,层间冷激阀关死。
④废锅倒入蒸汽进行预热。
⑤联系电仪送电,做好开电炉的准备工作,并检查废锅预热是否正常。
⑥电炉送好电后,按规程启动电炉,先进行暖炉15分钟即可按规程升电压。
5、升温还原操作要点
①还原条件采用“三高三低法”,即高氢、高循环量、高电炉功率(中、低下部触媒还原而言),低水汽浓度、低还原温度、低氨冷温度。
②还原应在尽可能低的温度下进行,以确保触媒的低温活性,还原主期控制在430—460℃,最高还原温度控制不超过495℃,并稳定6小时以上,以确保触媒达到较高的还原度。在还原末期触媒层底部温度尽可能达到475℃以上。
③还原过程中,采取尽可能大的空速,以确保水汽浓度还超过2.5g/m3。
④整个还原过程中,要尽可能地降低氨冷器温度,即降低入塔气的水汽浓度和氨含量,减少已还原的触媒因被反复氧化还原而活性下降,同时又可利用反应热,用以加大循环量。
⑤操作中应尽可能控制平面温差<5℃。
⑥用层间冷凝阀或冷管束调节阀控制顶底温差,以达到分层还原的目的。
⑦在升温还原中,精炼气要根据H2含量和惰性气的高低视情况补气或排放。
⑧在具体操作中应在保证还原条件的前提下,对触媒进行分层还原。
A、在分层还原中,可以保证第一段触媒各点在其所要求的最高还原温度下还原彻底,提高一段触媒的利用率。
B、分层还原不强调缩小顶底温差,反而要适当拉开层与层之间的温差,当上层触媒正在大量出水时,下段触媒还未或刚进入还原初期,这样可使下层触媒不致反复氧化还原,影响还原后的活性,因此分层还原更能有效地确保触媒还原的质量。
C、利用上层己还原触媒的合成氨反应热、弥补电炉功率的不足,完成下部触媒的升温还原。
6、触媒的分层还原操作
①升温期(常温~380℃)
此阶段触媒热点由室温升至380℃,升温速率40~45℃/h,热点控制在一层,底部温度<280℃,触媒热点温度达到350℃时,升温速率降至20~30℃/h。
当水冷器出口气体温度达40℃开冷却水。
压力控制在5.0MPa,循环量不宜太大,应根据触媒层顶底温差调整循环量,冷激阀和冷管阀关闭。
热点300℃左右,排放物理水(作好记录,不计入出水总量中),当触媒温度升至350℃以上时,开始还原出水,此时要及时降低氨冷温度,排放出水。氨冷温度控制在<-5℃以下,放水频率1次/h,水汽浓度分析频次2次/h。
时间按排10小时。
②上层还原期(380~430℃)
热点温度升到380℃,开始上层触媒的还原,上层触媒还原是从初期、主期到末期,基本做到一次性还原好。
工艺条件:压力5.0~7.0MPa,循环氢>75%,氨冷温度<-10℃,调节系统近路控制循环量稳定。
上层触媒的升温还原分三个阶段进行。
第一阶段触媒热点温度由380~430℃,底层温度控制在≤280℃,升温速率9℃/h,压力5.0MPa,氨冷温度控制在-10℃以下。
时间按排6小时。
第二阶段触媒层热点温度由430~460℃,底层温度<300℃,升温速率2~3℃/h,压力5.0MPa,氨冷器温度控制在-10~-15℃以下。
时间按排10小时。
第三阶段触媒层热点温度由460~495℃,底层温度控制在≤320℃,升温速率3~4℃/h,压力5.5MPa,氨冷温度控制在-10℃~-15℃以下。
时间按排10小时。
当触媒层热点温度495℃时,恒温8小时,底部温度<350℃,压力5.5~7.0MPa,氨冷器温度-10~-15℃以下。
此阶段时间共按排34小时。
此阶段要求:稳定循环量和系统压力,以升降电炉电压为调温手段,开冷管阀2~3圈,将第二层以下触媒温度控制在380℃以下,冷管阀开启,分流开始,零米温度上升较快,应增加空速,控制好升温速率;当零米温度在485~495℃维持6h以上,才考虑提压,上层的中部温度达到495℃、6h以上,同平面温差<5℃,压力才能逐步提至7.0MPa;上层下部温度达到495℃,继续缓慢提压,增加空速,将热点移至上层下部,开始中层触媒的还原。
③中层还原期
工艺条件:压力7.0~9.0MPa,循环量逐渐加满,电炉维持最高,循环氢>75%,氨冷温度-10℃~-15℃以下。
上层下部升到495℃,中层进入还原初期,上层下部温度在495℃恒温6~8h后,适当增加循环量将上层下部温度压低一些,电炉功率加满。
还原中层以下的触媒,操作要点是:
a、增加循环量,将电炉功率顶满。
b、当电炉功率开满后,适当提压(每次提压0.2MPa/h),增加
上层触媒反应热,增加循环量,将下层触媒温度带上来。
c、逐步关小冷管阀,冷管阀每关小一次,要观察水汽浓度的变化,升温的速率主要视水汽浓度而定,中层各点温度都达到495℃。
d、以控制水汽浓度≤2.5g/Nm3为主,当水汽浓度≤1.8g/Nm3时提压,否则就暂缓提压。
此阶段触媒层热点温度控制在495~498℃,底部温度控制≤420℃,水汽浓度应严格控制在≤2.5g/Nm3以内,升温速率主要视水汽浓度而定,可采取增大循环量,逐渐加满电炉功率,或将系统压力提升至9.0MPa等手段,控制住上层触媒热点温度,逐步提升中层触媒层温度。
此阶段还原时间按排50小时。
④下层还原期
工艺条件:压力9.0~12.0MPa,循环量视情况增开一台或两台循环机,循环氢>70%,氨冷温度-10℃~-15℃以下。
中层下部温度升到495℃,可逐步提压,下层进入还原初期。
操作要点:
a、继续提压,增加循环量,逐渐关小冷管阀,直至关死,使中层热点温度下移,有利于提高底部温度。
b、提压或提循环量要以稳定上层或中层热点温度为前提。
下层触媒还原时,触媒层温度控制在495~498℃,出塔水汽浓度应≤2.5g/Nm3。在下层触媒还原过程中,可采取逐步提升压力,增大循环量,关死冷管阀(塔壁温度<120℃),降低入塔H2含量,加大合成氨反应,利用其反应热,使底部温度逐步提至475℃以上(必要时热点温度可控制在500℃),并稳定7~8小时,压力控制在9.0~12.0MPa之间。
此阶段还原时间约需58小时。
在触媒分层还原过程中,各层触媒都要经过升温期、还原初期、还原主期和还原末期几个阶段,在还原主期热点的升温速率主要视出塔水汽浓度而定,当出塔水汽浓度超标时,应采取恒温操作,在还原中各段触媒的温度既要拉开差距,又要有机衔接,当上段触媒还原结束时,下段触媒开始进入还原初期,同时要注意氨冷温度的控制,尽可能降低氨冷温度,避免上层触媒的反复氧化还原,降低其活性,同时为了获得较高的还原度,各点应尽可能按要求温度恒温6~8小时。
当底部温度达到475℃以上时,维持7~8小时,出塔水汽浓度连续4小时<0.2g/Nm3,氨浓度>96%,即可认为触媒升温还原结束。
⑤轻负荷生产
为了使还原后的触媒结晶稳定,还原结束后,至少要维持一天以上轻负荷生产,系统压力控制在15.0MPa左右,H2/N2=3.0,其余各项指标均趋近于正常指标。至此合成系统投入正常生产。
(六)、升温还原期间特殊情况的处理
①循环机跳车
a、首先切断电炉,以确保电炉安全。
b、系统采用塔后放空,以降低塔内水汽浓度。
c、启用备用循环机,恢复正常还原操作。
②水汽浓度超标
a、适当增加循环量。
b、适当退电炉功率,将热点温度下降5℃,再恒温操作。
(七)、其它注意事项
①开电炉之前,先测对地绝缘电阻,电阻>0.2兆欧为合格。
②循环机运行正常后才能开电炉;若循环机跳车,必须紧急停电炉;若电炉出故障,循环机应继续运行一段时间。
③电炉功率的调节应小幅度进行,切忌猛升猛降。
④废锅在开车前要预热好,提高升温起始温度。
⑤排气置换时,一定要将容器、管道内的积水排净,不能带入塔内。
⑥严禁铜液、油污带入塔内。
⑦精炼气中CO+CO2<25ppm,严防还原好的触媒中毒。
⑧还原好的触媒不能长时间地在其最高还原温度下操作,以免影响其活性。
⑨严禁触媒温度猛升猛降,转入轻负荷生产时,降温速率≤15℃/h。
⑩在升温还原过程中,若遇循环机跳车,则应立即停电炉,绝不能保温保压,而应该开塔后放空阀,保持气体的流动。
⑾热点温度升至330℃开始进行出塔水汽浓度的分析,每小时2次。
⑿当热点温度升至250℃之前,氨冷器严禁加氨。
⒀氨冷器冷凝温度、系统循环量是升温还原的关键因素,因此要求冰机、循环机要有足够的备用机。
⒁其它的操作按《安全操作规程》执行。
篇幅限制,删掉了前一篇,给你个网址,你可以去下载。
http://www.qihoo.com/wenda.php?kw=%BB%AF%B9%A4%20%B7%BD%B0%B8%20%CA%D4%B3%B5&do=search&noq=q