⑴ 金属材料压缩试验中,铸铁的破坏形式说明了什么问题
说明了铸铁这种脆性材料的断裂形式,表征了脆性材料断裂的特征,比如断面齐整、没有塑性变形、沿晶断裂等等。
⑵ 压缩实验适用于哪些金属材料的塑性测试
压缩试验主要适用于脆性材料,如铸铁、轴承合金和建筑材料等。
⑶ 在做金属材料拉伸与压缩实验中,试件截面直径相同而标据不同,试件的延伸率和截面收缩率是否相同
答:拉伸试验中延伸率的大小与材料有关,同时与试件的标距长度有关,试件局部变形较大的断口部分,在不同长度的标距中所占比例也不同,因此,拉伸试验中必须采用标准试件或比例试件,这样其相关性质才具有可比性。材料相同而长短不同的试件延伸率通常情况下是不相同的(横截面面积与长度存在某种特殊比例关系的除外)。
⑷ 金属材料的拉伸与压缩实验中为什么试件一定要与上下夹头同心
上下同心,则受力均匀。受力全部集中在拉伸/压缩方向,避免对材料产生切向应力,导致测试数据不准
⑸ 金属材料检测主要检测项目有哪些
一、主要测试内容:
强度、硬度、刚性、塑性和韧性等。
二、主要检测项目:
弯曲试验:弯曲、反复弯曲
拉伸试验:高温、室温、低温拉伸试验
硬度实验:洛氏硬度试验、布氏硬度试验、维氏硬度试验
冲击试验:室温冲击试验、低温冲击试验、高温冲击测试
压缩试验:压缩屈服点,抗压强度,规定非比例压缩应力,规定总压缩应力,压缩弹性模量
焊接件机械性能测试:变形,断裂,粘连,蠕变,疲劳等
紧固件机械性能测试:拉伸试验,保证载荷,楔负载试验,扭矩试验,扩孔试验,扭矩系数,抗滑移系数 等。
性能测试:拉断荷重,应力松弛试验,镀锌量测试,附着力测试,浸铜试验等。
其他:金属粉末防爆性检测、弹性模量、扭矩系数、导热系数、失效分析、盐雾试验、疲劳测试、SN曲线、金相分析、无损探伤、断裂伸长率、磁粉探伤、线膨胀系数等。
常规元素分析
无损检验:X射线无损探伤、电磁超声、超声波、涡流探伤、漏磁探伤、渗透探伤、磁粉探伤
太多了具体还要看您的需要
⑹ 低碳钢和铸铁的抗拉,抗压,抗剪切等性能的分析实验
一、实验目的:
1、比较低碳钢和铸铁压缩变形和破坏现象。
2、测定低碳钢的屈服极限σs和铸铁的强度极限σb。
3、比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。
二、验仪器和设备:
1、万能材料试验机。
2、游标卡尺。
三、 试件介绍:
根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。
四、实验原理:
压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较。
压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。
摩擦力的存在会影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。
五、实验结果:
1、低碳钢:试样逐渐被压扁,形成圆鼓状。这种材料延展性很好,不会被压断,压缩时产生很大的变形,上下两端面受摩擦力的牵制变形小,而中间受其影响逐渐减弱。
2、铸铁:压缩时变形很小,承受很大的力之后在大约45度方向产生剪切断裂,说明铸铁材料受压时其抗剪能力小于抗压能力。
⑺ 金属材料拉伸与压缩试验σs和σb是试样屈服和破坏时的真实应力吗
屈服强度σs和抗拉强度σb是两种重要的材料性能指标,它的值是经过足够多的试验后而得出的真实压力的平均值,可以作为大多数应用场合设计依据。其中的抗拉强度σb在工程中应用最多,最有代表性。但是有些材料的屈服点非常不明显,σs值的测量值反复较大,那么就有了条件屈服强度之说。
⑻ 起始位置对压缩实验的意义是什么
起始位置对压缩实验的意义是:试件放好后试件上表面与上压头没有空隙时上下压缩平台的间距。
压缩试验是测定材料在轴向静压力作用下的力学性能的试验,是材料机械性能试验的基本方法之一。
力学性能:
1、脆性脆性是指材料在损坏之前没有发生塑性变形的一种特性。它与韧性和塑性相反。脆性材料没有屈服点,有断裂强度和极限强度,并且二者几乎一样。铸铁、陶瓷、混凝土及石头都是脆性材料。与其他许多工程材料相比,脆性材料在拉伸方面的性能较弱,对脆性材料通常采用压缩试验进行评定。
2、强度:金属材料在静载荷作用下抵抗永久变形或断裂的能力.同时,它也可以定义为比例极限、屈服强度、断裂强度或极限强度。没有一个确切的单一参数能够准确定义这个特性。因为金属的行为随着应力种类的变化和它应用形式的变化而变化。强度是一个很常用的术语。
⑼ 金属材料压缩试验*1,在压缩试验中,对压缩试样有何要求为什么
有直径与高度要求,按照实验要求准备试样。