1. python处理图片数据
目录
1.机器是如何存储图像的?
2.在Python中读取图像数据
3.从图像数据中提取特征的方法#1:灰度像素值特征
4.从图像数据中提取特征的方法#2:通道的平均像素值
5.从图像数据中提取特征的方法#3:提取边缘
是一张数字8的图像,仔细观察就会发现,图像是由小方格组成的。这些小方格被称为像素。
但是要注意,人们是以视觉的形式观察图像的,可以轻松区分边缘和颜色,从而识别图片中的内容。然而机器很难做到这一点,它们以数字的形式存储图像。请看下图:
机器以数字矩阵的形式储存图像,矩阵大小取决于任意给定图像的像素数。
假设图像的尺寸为180 x 200或n x m,这些尺寸基本上是图像中的像素数(高x宽)。
这些数字或像素值表示像素的强度或亮度,较小的数字(接近0)表示黑色,较大的数字(接近255)表示白色。通过分析下面的图像,读者就会弄懂到目前为止所学到的知识。
下图的尺寸为22 x 16,读者可以通过计算像素数来验证:
图片源于机器学习应用课程
刚才讨论的例子是黑白图像,如果是生活中更为普遍的彩色呢?你是否认为彩色图像也以2D矩阵的形式存储?
彩色图像通常由多种颜色组成,几乎所有颜色都可以从三原色(红色,绿色和蓝色)生成。
因此,如果是彩色图像,则要用到三个矩阵(或通道)——红、绿、蓝。每个矩阵值介于0到255之间,表示该像素的颜色强度。观察下图来理解这个概念:
图片源于机器学习应用课程
左边有一幅彩色图像(人类可以看到),而在右边,红绿蓝三个颜色通道对应三个矩阵,叠加三个通道以形成彩色图像。
请注意,由于原始矩阵非常大且可视化难度较高,因此这些不是给定图像的原始像素值。此外,还可以用各种其他的格式来存储图像,RGB是最受欢迎的,所以笔者放到这里。读者可以在此处阅读更多关于其他流行格式的信息。
用Python读取图像数据
下面开始将理论知识付诸实践。启动Python并加载图像以观察矩阵:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)
#checking image shape
image.shape, image
(28,28)
矩阵有784个值,而且这只是整个矩阵的一小部分。用一个LIVE编码窗口,不用离开本文就可以运行上述所有代码并查看结果。
下面来深入探讨本文背后的核心思想,并探索使用像素值作为特征的各种方法。
方法#1:灰度像素值特征
从图像创建特征最简单的方法就是将原始的像素用作单独的特征。
考虑相同的示例,就是上面那张图(数字‘8’),图像尺寸为28×28。
能猜出这张图片的特征数量吗?答案是与像素数相同!也就是有784个。
那么问题来了,如何安排这784个像素作为特征呢?这样,可以简单地依次追加每个像素值从而生成特征向量。如下图所示:
下面来用Python绘制图像,并为该图像创建这些特征:
image = imread('puppy.jpeg', as_gray=True)
image.shape, imshow(image)
(650,450)
该图像尺寸为650×450,因此特征数量应为297,000。可以使用NumPy中的reshape函数生成,在其中指定图像尺寸:
#pixel features
features = np.reshape(image, (660*450))
features.shape, features
(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])
这里就得到了特征——长度为297,000的一维数组。很简单吧?在实时编码窗口中尝试使用此方法提取特征。
但结果只有一个通道或灰度图像,对于彩色图像是否也可以这样呢?来看看吧!
方法#2:通道的平均像素值
在读取上一节中的图像时,设置了参数‘as_gray = True’,因此在图像中只有一个通道,可以轻松附加像素值。下面删除参数并再次加载图像:
image = imread('puppy.jpeg')
image.shape
(660, 450, 3)
这次,图像尺寸为(660,450,3),其中3为通道数量。可以像之前一样继续创建特征,此时特征数量将是660*450*3 = 891,000。
或者,可以使用另一种方法:
生成一个新矩阵,这个矩阵具有来自三个通道的像素平均值,而不是分别使用三个通道中的像素值。
下图可以让读者更清楚地了解这一思路:
这样一来,特征数量保持不变,并且还能考虑来自图像全部三个通道的像素值。
image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape
(660, 450)
现有一个尺寸为(660×450×3)的三维矩阵,其中660为高度,450为宽度,3是通道数。为获取平均像素值,要使用for循环:
for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)
新矩阵具有相同的高度和宽度,但只有一个通道。现在,可以按照与上一节相同的步骤进行操作。依次附加像素值以获得一维数组:
features = np.reshape(feature_matrix, (660*450))
features.shape
(297000,)
方法#3:提取边缘特征
请思考,在下图中,如何识别其中存在的对象:
识别出图中的对象很容易——狗、汽车、还有猫,那么在区分的时候要考虑哪些特征呢?形状是一个重要因素,其次是颜色,或者大小。如果机器也能像这样识别形状会怎么样?
类似的想法是提取边缘作为特征并将其作为模型的输入。稍微考虑一下,要如何识别图像中的边缘呢?边缘一般都是颜色急剧变化的地方,请看下图:
笔者在这里突出了两个边缘。这两处边缘之所以可以被识别是因为在图中,可以分别看到颜色从白色变为棕色,或者由棕色变为黑色。如你所知,图像以数字的形式表示,因此就要寻找哪些像素值发生了剧烈变化。
假设图像矩阵如下:
图片源于机器学习应用课程
该像素两侧的像素值差异很大,于是可以得出结论,该像素处存在显着的转变,因此其为边缘。现在问题又来了,是否一定要手动执行此步骤?
当然不!有各种可用于突出显示图像边缘的内核,刚才讨论的方法也可以使用Prewitt内核(在x方向上)来实现。以下是Prewitt内核:
获取所选像素周围的值,并将其与所选内核(Prewitt内核)相乘,然后可以添加结果值以获得最终值。由于±1已经分别存在于两列之中,因此添加这些值就相当于获取差异。
还有其他各种内核,下面是四种最常用的内核:
图片源于机器学习应用课程
现在回到笔记本,为同一图像生成边缘特征:
#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline
#reading the image
image = imread('puppy.jpeg',as_gray=True)
#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)
imshow(edges_prewitt_vertical, cmap='gray')
2. python如何处理大量excel数据
使用pip install openpyxl即可,但是在windows下安装的是2.2.6版本,但是centos自动安装的是4.1版本。
from xlwt import Workbook, Formula
import xlrd
book = Workbook()
sheet1 = book.add_sheet('Sheet 1')
sheet1.write(0,0,10)
sheet1.write(1,0,Formula('A1/B1'))
sheet2 = book.add_sheet('Sheet 2')
row = sheet2.row(0)
row.write(2,Formula("$A$1+$B$1*SUM('ShEEt 1'!$A$1:$b$2)"))
book = xlrd.open_workbook('formula.xls')
sheet = book.sheets()[0]
for i in range(nrows):
print (sheet.cell(i,j).value)
Python
是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。
3. 如何用python处理数据
在python项目中,新建python文件,并依次导入xlrd和xlwt接着调用open_workbook()方法,打开一个excel文件
4. 如何利用python进行数据分析
作者Wes McKinney是pandas库的主要作者,所以本书也可以作为利用Python实现数据密集型应用的科学计算实践指南。本书适合刚刚接触Python的分析人员以及刚刚接触科学计算的Python程序员。
•将IPython这个交互式Shell作为你的首要开发环境。
•学习NumPy(Numerical Python)的基础和高级知识。
•从pandas库的数据分析工具开始。
•利用高性能工具对数据进行加载、清理、转换、合并以及重塑。
•利用matplotlib创建散点图以及静态或交互式的可视化结果。
•利用pandas的groupby功能对数据集进行切片、切块和汇总操作。
•处理各种各样的时间序列数据。
•通过详细的案例学习如何解决Web分析、社会科学、金融学以及经•济学等领域的问题。
5. python数据分析干什么
随着大数据时代的来临和Python编程语言的火爆,Python数据分析早已成为现在职场人的必备核心技能。
1、检查数据表
Python中使用shape函数来查看数据表的维度,也就是行数和列数。
2、数据表清洗
Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充。
3、数据预处理
数据预处理是对清洗完的数据进行整理以便后期的统计和分析工作,主要包括数据表的合并、排序、数值分列、数据分组及标记等工作。
4、数据提取
主要是使用三个函数:loc、iloc和ix,其中loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。
5、数据筛选汇总
Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和 count函数还能实现excel中sumif和countif函数的功能。
希望可以帮到你
6. 如何用python进行数据分析
1、Python数据分析流程及学习路径
数据分析的流程概括起来主要是:读写、处理计算、分析建模和可视化四个部分。在不同的步骤中会用到不同的Python工具。每一步的主题也包含众多内容。
根据每个部分需要用到的工具,Python数据分析的学习路径如下:
相关推荐:《Python入门教程》
2、利用Python读写数据
Python读写数据,主要包括以下内容:
我们以一小段代码来看:
可见,仅需简短的两三行代码即可实现Python读入EXCEL文件。
3、利用Python处理和计算数据
在第一步和第二步,我们主要使用的是Python的工具库NumPy和pandas。其中,NumPy主要用于矢量化的科学计算,pandas主要用于表型数据处理。
4、利用Python分析建模
在分析和建模方面,主要包括Statsmdels和Scikit-learn两个库。
Statsmodels允许用户浏览数据,估计统计模型和执行统计测试。可以为不同类型的数据和每个估算器提供广泛的描述性统计,统计测试,绘图函数和结果统计列表。
Scikit-leran则是着名的机器学习库,可以迅速使用各类机器学习算法。
5、利用Python数据可视化
数据可视化是数据工作中的一项重要内容,它可以辅助分析也可以展示结果。
7. 新手Python数据分析如何入门
1、数据获取Python具有灵活易用,便利读写的特点,其能够非常便利地调用数据库和本地的数据,同时,Python也是当下网络爬虫的首选东西。Scrapy爬虫,Python开发的一个快速、高层次的屏幕抓取和web抓取框架,用于抓取web站点并从页面中提取结构化的数据。Scrapy用途广泛,能够用于数据挖掘、监测和自动化测验。
2、数据整理NumPy供给了许多高档的数值编程东西,如:矩阵数据类型、矢量处理,以及精密的运算库。专为进行严格的数字处理而产生。多为很多大型金融公司运用,以及核心的科学核算组织如:Lawrence
Livermore,NASA用其处理一些原本运用C++,Fortran或Matlab等所做的使命。PandasPandas是根据NumPy的一种东西,该东西是为了处理数据剖析使命而创立的。Pandas纳入了大量库和一些标准的数据模型,供给了高效地操作大型数据集所需的东西。pandas供给了大量能使咱们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强壮而高效的数据剖析环境的重要因素之一。
3、建模剖析Scikit-learn从事数据剖析建模必学的包,供给及汇总了当时数据剖析范畴常见的算法及处理问题,如分类问题、回归问题、聚类问题、降维、模型挑选、特征工程。
4、数据可视化如果在Python中看可视化,你可能会想到Matplotlib。除此之外,Seaborn是一个类似的包,这是用于统计可视化的包。关于自学python入门,Python数据剖析怎么入门,以上就是一个根本的学习路线规划了。
8. python可以做数据分析,好处是什么呢怎么学习
链接:https://pan..com/s/1FJZAznKSbwv-X52AM7uSfg
炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。
课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。
课程目录:
Python基础
Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符
了解Python流程控制——条件、循环语句与其他语句
常用函数——函数的定义与使用方法、主要内置函数的介绍
.....
9. python数据处理问题
for i in range(1,101):
eval(f'lis.append(a{i})')
注:list是保留字,变量名不要使用奥
10. python做数据分析主要干哪些事情
第一、检查数据表
Python中使用shape函数来查看数据表的维度,也就是行数以及列数。你可以使用info函数来查看数据表的整体信息,使用dtype函数来返回数据格式;lsnull是Python中检验空值的函数,可以对整个数据表进行检查,也可以单独对某一行进行空值检查,返回的结构是逻辑值,包含空值返回true,不包含则返回false。
第二、数据清洗
Python可以进行数据清洗,Python中处理空值的方法比较灵活,可以使用Dropna函数用来删除数据表中包含空值的数据,也可以使用fillna函数对空值进行填充;Python中dtype是查看数据格式的函数,与之对应的是astype函数,用来更改数据格式,Rename是更改列名称的函数,drop_plicates函数删除重复值,replace函数实现数据替换。
第三、数据提取
进行数据提取时,主要使用三个函数:loc、iloc以及ix。Loc函数按标签进行提取,iloc按位置进行提取,ix可以同时按照标签和位置进行提取。除了按标签和位置提取数据之外,还可以按照具体的条件进行提取,比如使用loc和isin两个函数配合使用。
第四、数据筛选
Python数据分析还可以进行数据筛选,Python中使用loc函数配合筛选条件来完成筛选功能,配合sum和count函数还能实现Excel中sumif和countif函数的功能。使用的主要函数是groupby和pivot_table;groupby是进行分类汇总的函数,使用方法比较简单,groupby按列名称出现的顺序进行分组。