导航:首页 > 编程语言 > cudu编程

cudu编程

发布时间:2022-04-18 17:24:37

❶ 有没有一本讲解gpu和CUDA编程的经典入门书籍

CUDA自带的编程手册就是最好的书籍,因为目前市场上你看到的精典书籍,对于一些架构的描述都已经过时了,怕你看完,如果对架构原理了解不透彻,反而容易误入歧途,走火入魔。

❷ CUDA编程

cuda的文件以.cu结尾,cpp是肯定不行的,建议你用别人样例的代码然后自己修改,这样至少这些环境配置都是对的

❸ cuda编程

从字面上解释。。。应该是使用了太多的本地数据。。。。

使用的本地数据占了0x706c bytes
但是最大只有0x4000 bytes

希望对你有点帮助。。。。

❹ cuda编程,把CPU转到CUDA的编程,这算法有点不正确!求解

cuda是基于标准c语言的,你先把c语言的基础学好,然后动手自己写一些c语言的程序,等对c语言有一定的功底之后,再看cuda,cuda与c语言的不同之处我觉得在于那个内核函数,以及如何划分线程块和栅格的纬度和大小,以及如何实现对于线程的索引的搜索,让每一个线程处理对应的一个变量或者几个变量。
然后是cuda的一些基础的语法,这些你可以看一些简单的cuda的例子,例如矩阵相加的例子,通过这些程序的例子可以很好的理解这些语法。

❺ cuda编程前的环境配置

CUDA开发环境配置
依次安装 Driver,Toolkit,SDK。注意最好安装路径中不含空格。
使用开勇的CUDA_VS_Wizard (http://sourceforge.net/projects/cudavswizard/) 配置Visual Studio 2008的CUDA项目
安装Visual AssistantX
打开VS, 选择 工具->选项->项目与解决方案->VC++项目设置,在“C/C++文件扩展名”后添加*.cu,在“包括的扩展名”后添加.cu
打开Visual AssistantX设置,在Projects->C/C++ Directories 里,Platform选择Custom,Show Directories for选择Stable include files,添加CUDA Toolkit的include目录路径
导入注册表(点我),让Visual AssistantX支持CUDA的cu文件和语法高亮
在系统环境变量添加一个新项,随便起名。这里作为例子,取CUDA_DLL。
值填写SDK里面\C\Bin\win32\下面的四个目录(64位系统将win32改成win64)。
(例如sdk安装在目录E:\CUDA\win7_64_2.3\sdk里,则CUDA_DLL环境变量的值应为:

E:\CUDA\win7_64_2.3\sdk\C\win64\Debug;
E:\CUDA\win7_64_2.3\sdk\C\win64\EmuDebug;
E:\CUDA\win7_64_2.3\sdk\C\win64\EmuRelease;
E:\CUDA\win7_64_2.3\sdk\C\win64\Release

再在PATH环境变量最后添加%CUDA_DLL%

2009/12/20 Update:

在64位系统,完成以上步骤后,在vs新建项目时遇到错误"Err Source: CreateCustomProject"
解决方法:在控制面板->添加删除程序,进入vs的维护模式,勾选Visual C++下面的x64编译器(此选项在默认是没有安装的),之后可能会遇到找不到"SQLSysClrTypes.msi"的问题,取消之即可(这个文件在vs2008 sp1的iso里面有,但无论我选择sp1 iso的根目录还是该文件所在的目录,均无法继续安装)

❻ cuda编程问题 运行出错

Compiling CUDA source file ..\..\src\caffe\layers\bnll_layer.cu...
1>
1> D:\Caffe\WindowsCaffe_detect\Caffe_Windows_Detection-master\build\MSVC2013>"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin\nvcc.exe" -gencode=arch=compute_20,code=\"sm_20,compute_20\" -gencode=arch=compute_35,code=\"sm_35,compute_35\" -gencode=arch=compute_52,code=\"sm_52,compute_52\" --use-local-env --cl-version 2013 -ccbin "D:\gzSoft\vs2013\VC\bin\x86_amd64" -I../../3rdparty/include -I../../src -I../../include -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\include" -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\cuda\include" -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\include" -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\include" --keep-dir x64\Debug -maxrregcount=0 --machine 64 --compile -cudart static --verbose --keep -Xcudafe "--diag_suppress=exception_spec_override_incompat --diag_suppress=useless_using_declaration --diag_suppress=field_without_dll_interface" -D_SCL_SECURE_NO_WARNINGS -DGFLAGS_DLL_DECL= -D_VARIADIC_MAX=10 -DWIN32 -D_DEBUG -D_CONSOLE -D_UNICODE -DUNICODE -Xcompiler "/EHsc /W1 /nologo /Od /Zi /RTC1 /MDd " -o Debug\bnll_layer.cu.obj "D:\Caffe\WindowsCaffe_detect\Caffe_Windows_Detection-master\src\caffe\layers\bnll_layer.cu"
1> #$ _SPACE_=
1> #$ _CUDART_=cudart
1> #$ _HERE_=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin
1> #$ _THERE_=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin
1> #$ _TARGET_SIZE_=
1> #$ _TARGET_DIR_=
1> #$ _TARGET_SIZE_=64
1> #$ _WIN_PLATFORM_=x64
1> #$ TOP=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin/..
1> #$ NVVMIR_LIBRARY_DIR=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin/../nvvm/libdevice
1> #$ PATH=C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin/../open64/bin;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin/../nvvm/bin;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin;C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin/../lib;D:\gzSoft\vs2013\VC\bin\x86_amd64;D:\gzSoft\vs2013\VC\bin;C:\Program Files (x86)\Windows Kits\8.1\bin\x86;;C:\Program Files (x86)\Microsoft SDKs\Windows\v8.1A\bin\NETFX 4.5.1 Tools;D:\gzSoft\vs2013\Common7\Tools\bin;D:\gzSoft\vs2013\Common7\tools;D:\gzSoft\vs2013\Common7\ide;C:\Program Files (x86)\HTML Help Workshop;;C:\Program Files (x86)\MSBuild\12.0\bin\;C:\Windows\Microsoft.NET\Framework\v4.0.30319\;;C:\Program Files\DahuaTech\MV Viewer\Runtime\x64\;C:\Program Files\DahuaTech\MV Viewer\Runtime\x64\GenICam_v2_4\bin\Win64_x64\;C:\Program Files\DahuaTech\MV Viewer\Runtime\Win32\;C:\Program Files\DahuaTech\MV Viewer\Runtime\Win32\GenICam_v2_4\bin\Win32_i86\;C:\Program Files\Basler\pylon 4\pylon\bin\x64;C:\Program Files\Basler\pylon 4\pylon\bin\Win32;C:\Program Files\Basler\pylon 4\genicam\Bin\Win64_x64;C:\Program Files\Basler\pylon 4\genicam\Bin\Win32_i86;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files (x86)\Microsoft SQL Server\100\Tools\Binn\;C:\Program Files\Microsoft SQL Server\100\Tools\Binn\;C:\Program Files\Microsoft SQL Server\100\DTS\Binn\;C:\Program Files\Microsoft\Web Platform Installer\;C:\Program Files (x86)\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\;C:\Program Files\Microsoft SQL Server\110\Tools\Binn\;D:\gzSoft\opencv2.4.11\build_Sour\vc11\bin;D:\gzSoft\opencv2.4.10\build_Sour\vc10\bin;D:\gzSoft\qt5.2.1\5.2.1\msvc2012\bin;D:\MinGW\MinGW\bin;D:\gzSoft\vs2012\VC\bin;D:\gzSoft\javaTool\jdk1.7\bin;D:\gzSoft\javaTool\jdk1.7\jre\bin;D:\gzSoft\matlab\runtime\win64;D:\gzSoft\matlab\bin;D:\gzSoft\matlab\polyspace\bin;D:\software\eslib\bin;D:\gzSoft\lualib;D:\gzSoft\halcon12\bin\x86sse2-win32;D:\gzSoft\halcon12\FLEXlm\x86sse2-win32 ;C:\Program Files (x86)\Toshiba Teli\TeliCamSDK\TeliCamApi\bin\x86;C:\Program Files (x86)\CMake\bin\;D:\Program\opencv_pro\opencv-3.3.0\opencv-3.3.0\bulid\install\x86\vc11\bin;D:\gzSoft\doxygen\bin;D:\gzSoft\python2.7.10;D:\gzSoft\python2.7.10\Scripts;C:\Program Files (x86)\Windows Kits\8.1\Windows Performance Toolkit\;C:\Program Files (x86)\Microsoft SDKs\TypeScript\1.0\;C:\Program Files\Microsoft SQL Server\120\Tools\Binn\;D:\Caffe\WindowsCaffeProject\caffe-master\Build\x64\Debug;
1> #$ INCLUDES="-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin/../include"
1> #$ LIBRARIES= "/LIBPATH:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin/../lib/x64"
1> #$ CUDAFE_FLAGS=--sdk_dir "C:\Program Files (x86)\Windows Kits\8.1"
1> #$ PTXAS_FLAGS=
1> bnll_layer.cu
1> nvcc fatal : Failed to create the host compiler response file 'x64/Debug/bnll_layer.compute_52.cpp1.ii.res'
1>C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\V120\BuildCustomizations\CUDA 7.5.targets(604,9): error MSB3721: 命令“"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\bin\nvcc.exe" -gencode=arch=compute_20,code=\"sm_20,compute_20\" -gencode=arch=compute_35,code=\"sm_35,compute_35\" -gencode=arch=compute_52,code=\"sm_52,compute_52\" --use-local-env --cl-version 2013 -ccbin "D:\gzSoft\vs2013\VC\bin\x86_amd64" -I../../3rdparty/include -I../../src -I../../include -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\include" -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\cuda\include" -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\include" -I"C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v7.5\include" --keep-dir x64\Debug -maxrregcount=0 --machine 64 --compile -cudart static --verbose --keep -Xcudafe "--diag_suppress=exception_spec_override_incompat --diag_suppress=useless_using_declaration --diag_suppress=field_without_dll_interface" -D_SCL_SECURE_NO_WARNINGS -DGFLAGS_DLL_DECL= -D_VARIADIC_MAX=10 -DWIN32 -D_DEBUG -D_CONSOLE -D_UNICODE -DUNICODE -Xcompiler "/EHsc /W1 /nologo /Od /Zi /RTC1 /MDd " -o Debug\bnll_layer.cu.obj "D:\Caffe\WindowsCaffe_detect\Caffe_Windows_Detection-master\src\caffe\layers\bnll_layer.cu"”已退出,返回代码为 1。
========== 生成: 成功 0 个,失败 1 个,最新 0 个,跳过 0 个 ==========

❼ cuda编程的环境

建议还是换个显卡吧,除了NVIDIA其他都不行,就算是模拟器也不能执行,看不了结果还不是白忙活。

❽ GPU设备,请问能够先进行CUDA编程吗

CUDA CUDA(Compute Unified Device Architecture),显卡厂商NVidia推出的运算平台。 CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员现在可以使用C语言来为CUDA架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序于是就可以在支持CUDA的处理器上以超高性能运行。 将来还会支持其它语言,包括FORTRAN以及C++。 随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化。在计算上已经超越了通用的CPU。如此强大的芯片如果只是作为显卡就太浪费了,因此NVidia推出CUDA,让显卡可以用于图像计算以外的目的。 目前只有G80、G92、G94和GT200平台的NVidia显卡才能使用CUDA,工具集的核心是一个C语言编译器。G80中拥有128个单独的ALU,因此非常适合并行计算,而且数值计算的速度远远优于CPU。 CUDA的SDK中的编译器和开发平台支持Windows、Linux系统,可以与Visual Studio2005集成在一起。 Geforce8CUDA(Compute Unified Device Architecture)是一个新的基础架构,这个架构可以使用GPU来解决商业、工业以及科学方面的复杂计算问题。它是一个完整的GPGPU解决方案,提供了硬件的直接访问接口,而不必像传统方式一样必须依赖图形API接口来实现GPU的访问。在架构上采用了一种全新的计算体系结构来使用GPU提供的硬件资源,从而给大规模的数据计算应用提供了一种比CPU更加强大的计算能力。CUDA采用C语言作为编程语言提供大量的高性能计算指令开发能力,使开发者能够在GPU的强大计算能力的基础上建立起一种效率更高的密集数据计算解决方案。 从CUDA体系结构的组成来说,包含了三个部分:开发库、运行期环境和驱动(表2)。

❾ 请问CUDA编程对显卡的要求是怎么样NVIDIA那些型号的显卡可以

显卡要求见此:http://www.nvidia.cn/object/cuda_gpus_cn.html 建议:双敏 G92核心的9600GSO 384MB 192bit,此卡远比同价位的其他NVIDIA图形卡好,特别是GPU运算能力,是同价位的GT220、9500GT的数倍。但是可能缺货,还有就是功耗较高。 如果你有500块的话,就可以考虑昂达G92核心的9600GSO 384MB 192bit 或 昂达GT240 512MB GDDR5

❿ 如何使用CUDA 显卡编程

第一步 先确定你的显卡 是不是N卡(控制面板 》系统》设备管理器》显示适配器)
第二步 查看你的显卡 在不在 支持的显卡 行列 https://developer.nvidia.com/cuda-gpus点击打开链接

第三步 安装( windows电脑中 须是 vs2008 vs2005)

CUDA Development Tools https://developer.nvidia.com/cuda-downloads点击打开链接

NVIDIA CUDA Getting Started Guide for Microsoft Windows

Introction
CUDA™ is a parallel computing platform and programming model invented by NVIDIA. It enables dramatic increases in computing performance by harnessing the power of the graphics processing unit (GPU).
CUDA was developed with several design goals in mind:
Provide a small set of extensions to standard programming languages, like C, that enable a straightforward implementation of parallel algorithms. With CUDA C/C++, programmers can focus on the task of parallelization of the algorithms rather than spending time on their implementation.
Support heterogeneous computation where applications use both the CPU and GPU. Serial portions of applications are run on the CPU, and parallel portions are offloaded to the GPU. As such, CUDA can be incrementally applied to existing applications. The CPU and GPU are treated as separate devices that have their own memory spaces. This configuration also allows simultaneous computation on the CPU and GPU without contention for memory resources.
CUDA-capable GPUs have hundreds of cores that can collectively run thousands of computing threads. These cores have shared resources including a register file and a shared memory. The on-chip shared memory allows parallel tasks running on these cores to share data without sending it over the system memory bus.
This guide will show you how to install and check the correct operation of the CUDA development tools.

System Requirements
To use CUDA on your system, you will need the following:
CUDA-capable GPU
Microsoft Windows XP, Vista, 7, or 8 or Windows Server 2003 or 2008
NVIDIA CUDA Toolkit (available at no cost from http://www.nvidia.com/content/cuda/cuda-downloads.html)
Microsoft Visual Studio 2008 or 2010, or a corresponding version of Microsoft Visual C++ Express

About This Document
This document is intended for readers familiar with Microsoft Windows XP, Microsoft Windows Vista, or Microsoft Windows 7 operating systems and the Microsoft Visual Studio environment. You do not need previous experience with CUDA or experience with parallel computation.

Installing CUDA Development Tools
The installation of CUDA development tools on a system running the appropriate version of Windows consists of a few simple steps:
Verify the system has a CUDA-capable GPU.
Download the NVIDIA CUDA Toolkit.
Install the NVIDIA CUDA Toolkit.
Test that the installed software runs correctly and communicated with the hardware.

阅读全文

与cudu编程相关的资料

热点内容
压缩包解码器下载 浏览:130
爱旅行的预备程序员 浏览:111
安卓qq浏览器怎么转换到ios 浏览:292
不同编译器的库可以调用吗 浏览:455
灰度信托基金加密 浏览:421
宿迁程序员兼职网上接单 浏览:924
电视编译器怎么设置 浏览:276
手机如何解压汉字密码的压缩包 浏览:701
为什么很多程序员爱用vim 浏览:828
安卓手机怎么连接宝华韦健音响 浏览:555
12星座制作解压球 浏览:867
java调用oracle数据 浏览:827
怎么在服务器上上传小程序源码 浏览:304
空中加油通达信指标公式源码 浏览:38
分卷解压只解压了一部分 浏览:760
php网站自动登录 浏览:705
合肥凌达压缩机招聘 浏览:965
怎么找到文件夹的图标 浏览:237
linuxc编程pdf百度云 浏览:192
会计pdf下载 浏览:835