导航:首页 > 编程语言 > 8个常用的python

8个常用的python

发布时间:2022-04-23 13:33:25

python常用包及主要功能

Python常用包:NumPy数值计算、pandas数据处理、matplotlib数据可视化、sciPy科学计算、Scrapy爬虫、scikit-learn机器学习、Keras深度学习、statsmodels统计建模计量经济。
NumPy是使用Python进行科学计算的基础包,Numpy可以提供数组支持以及相应的高效处理函数,是Python数据分析的基础,也是SciPy、Pandas等数据处理和科学计算库最基本的函数功能库,且其数据类型对Python数据分析十分有用。
pandas 是python的一个数据分析包,是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
Matplotlib是强大的数据可视化工具和作图库,是主要用于绘制数据图表的Python库,提供了绘制各类可视化图形的命令字库、简单的接口,可以方便用户轻松掌握图形的格式,绘制各类可视化图形。
SciPy是一组专门解决科学计算中各种标准问题域的包的集合,包含的功能有最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算等,这些对数据分析和挖掘十分有用。
Scrapy是专门为爬虫而生的工具,具有URL读取、HTML解析、存储数据等功能,可以使用Twisted异步网络库来处理网络通讯,架构清晰,且包含了各种中间件接口,可以灵活地完成各种需求。
Scikit-Learn是Python常用的机器学习工具包,提供了完善的机器学习工具箱,支持数据预处理、分类、回归、聚类、预测和模型分析等强大机器学习库,其依赖于Numpy、Scipy和Matplotlib等。
Keras是深度学习库,人工神经网络和深度学习模型,基于Theano之上,依赖于Numpy和Scipy,利用它可以搭建普通的神经网络和各种深度学习模型,如语言处理、图像识别、自编码器、循环神经网络、递归审计网络、卷积神经网络等。
Statsmodels是Python的统计建模和计量经济学工具包,包括一些描述统计、统计模型估计和推断。

⑵ Python基本语法都有哪些

1.关于编码:
默认情况下,Python 3 源码文件以 UTF-8 编码,所有字符串都是 unicode 字符串。 当然你也可以为源码文件指定不同的编码:
# -*- coding: cp-1252 -*-
2.标识符:
第一个字符必须是字母表中字母或下划线,其他的部分由字母、数字和下划线组成。
标识符对大小写敏感。
在 Python 3 中,可以用中文作为变量名,非 ASCII 标识符也是允许的了。
3.保留字:
保留字即关键字,我们不能把它们用作任何标识符名称。
Python 的标准库提供了一个 keyword 模块,可以输出当前版本的所有关键字:
代码:
import keyword
keyword.kwlist
结果:
['False', 'None', 'True', 'and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif', 'else', 'except', 'finally', 'for', 'from', 'global', 'if', 'import', 'in', 'is', 'lambda', 'nonlocal', 'not', 'or', 'pass', 'raise', 'return', 'try', 'while', 'with', 'yield']
4.关于注释:
单行注释以 # 开头
多行注释可以用多个 # 号,还有 ''' 和 """
5.缩进与多行语句:
Python最具特色的就是使用缩进来表示代码块,不需要使用大括号 {} 。
缩进的空格数是可变的,但是同一个代码块的语句必须包含相同的缩进空格数
Python 通常是一行写完一条语句,但如果语句很长,我们可以使用反斜杠(\)来实现多行语句,例如:
代码:total = item_one + \
item_two + \
item_three
在 [], {}, 或 () 中的多行语句,不需要使用反斜杠(\),例如:
代码:total = ['item_one', 'item_two', 'item_three',
'item_four', 'item_five']
6.数字(Number)类型:
Python中数字有四种类型:整数、布尔型、浮点数和复数。
int (整数), 如 1, 只有一种整数类型 int,表示为长整型,没有 python2 中的 Long。
bool (布尔), 如 True。
float (浮点数), 如 1.23、3E-2
complex (复数), 如 1 + 2j、 1.1 + 2.2j
7.字符串:
python中单引号和双引号使用完全相同。
使用三引号('''或""")可以指定一个多行字符串。
转义符 '\'
反斜杠可以用来转义,使用r可以让反斜杠不发生转义。。 如 r"this is a line with \n" 则\n会显示,并不是换行。
按字面意义级联字符串,如"this " "is " "string"会被自动转换为this is string。
字符串可以用 + 运算符连接在一起,用 * 运算符重复。
Python 中的字符串有两种索引方式,从左往右以 0 开始,从右往左以 -1 开始。
Python中的字符串不能改变。
Python 没有单独的字符类型,一个字符就是长度为 1 的字符串。
字符串的截取的语法格式如下:变量[头下标:尾下标:步长]
代码示例:
#!/usr/bin/python3
str='Runoob'
print(str) # 输出字符串
print(str[0:-1]) # 输出第一个到倒数第二个的所有字符
print(str[0]) # 输出字符串第一个字符
print(str[2:5]) # 输出从第三个开始到第五个的字符
print(str[2:]) # 输出从第三个开始后的所有字符
print(str * 2) # 输出字符串两次
print(str + '你好') # 连接字符串
print('hello\nrunoob') # 使用反斜杠(\)+n转义特殊字符
print(r'hello\nrunoob') # 在字符串前面添加一个 r,表示原始字符串,不会发生转义
8.空行:
函数之间或类的方法之间用空行分隔,表示一段新的代码的开始。类和函数入口之间也用一行空行分隔,以突出函数入口的开始。
空行与代码缩进不同,空行并不是Python语法的一部分。书写时不插入空行,Python解释器运行也不会出错。但是空行的作用在于分隔两段不同功能或含义的代码,便于日后代码的维护或重构。
记住:空行也是程序代码的一部分。
9.等待用户输入input:
执行下面的程序在按回车键后就会等待用户输入:
input("\n\n按下 enter 键后退出。")
以上代码中 ,"\n\n"在结果输出前会输出两个新的空行。一旦用户按下 enter 键时,程序将退出。
10.同一行显示多条语句:
Python可以在同一行中使用多条语句,语句之间使用分号(;)分割,以下是一个简单的实例:
import sys; x = 'runoob'; sys.stdout.write(x + '\n')
11.代码组:
缩进相同的一组语句构成一个代码块,我们称之代码组。
像if、while、def和class这样的复合语句,首行以关键字开始,以冒号( : )结束,该行之后的一行或多行代码构成代码组。
我们将首行及后面的代码组称为一个子句(clause)。
12.Print输出:
Print 输出
print 默认输出是换行的,如果要实现不换行需要在变量末尾加上 end="":
代码:
x="a"
y="b"
# 换行输出
print( x )
print( y )
# 不换行输出
print( x, end=" " )
print( y, end=" " )
13.import 与 from...import
在 python 用 import 或者 from...import 来导入相应的模块。
将整个模块(somemole)导入,格式为: import somemole
从某个模块中导入某个函数,格式为: from somemole import somefunction
从某个模块中导入多个函数,格式为: from somemole import firstfunc, secondfunc, thirdfunc
将某个模块中的全部函数导入,格式为: from somemole import *
代码:
导入 sys 模块
import sys
print ('命令行参数为:')
for i in sys.argv:
print (i)
print ('\n python 路径为',sys.path)
导入 sys 模块的 argv,path 成员
from sys import argv,path # 导入特定的成员
print('path:',path) # 因为已经导入path成员,所以此处引用时不需要加sys.path
14.命令行参数:
很多程序可以执行一些操作来查看一些基本信息,Python可以使用-h参数查看各参数帮助信息:
代码:
$ python -h
usage: python [option] ... [-c cmd | -m mod | file | -] [arg] ...
Options and arguments (and corresponding environment variables):
-c cmd : program passed in as string (terminates option list)
-d : debug output from parser (also PYTHONDEBUG=x)
-E : ignore environment variables (such as PYTHONPATH)
-h : print this help message and exit
[ etc. ]
15.一个有用的函数:help( )
调用 python 的 help() 函数可以打印输出一个函数的文档字符串:
# 如下实例,查看 max 内置函数的参数列表和规范的文档
>>> help(max)
……显示帮助信息…… 按下 : q 两个按键即退出说明文档
如果仅仅想得到文档字符串:
>>> print(max.__doc__) # 注意,doc的前后分别是两个下划线
max(iterable, *[, default=obj, key=func]) -> value
max(arg1, arg2, *args, *[, key=func]) -> value
With a single iterable argument, return its biggest item. The
default keyword-only argument specifies an object to return if
the provided iterable is empty.
With two or more arguments, return the largest argument.

⑶ python 8个常用内置函数解说

8个超好用内置函数set(),eval(),sorted(),reversed(),map(),rece(),filter(),enumerate()

python中有许多内置函数,不像print那么广为人知,但它们却异常的强大,用好了可以大大提高代码效率。

这次来梳理下8个好用的python内置函数

1、set()

当需要对一个列表进行去重操作的时候,set()函数就派上用场了。

用于创建一个集合,集合里的元素是无序且不重复的。集合对象创建后,还能使用并集、交集、差集功能。

2、eval()之前有人问如何用python写一个四则运算器,输入字符串公式,直接产生结果。用eval()来做就很简单:eval(str_expression)作用是将字符串转换成表达式,并且执行。

3、sorted()在处理数据过程中,我们经常会用到排序操作,比如将列表、字典、元组里面的元素正/倒排序。这时候就需要用到sorted() ,它可以对任何可迭代对象进行排序,并返回列表。对列表升序操作:

对元组倒序操作:

使用参数:key,根据自定义规则,按字符串长度来排序:

根据自定义规则,对元组构成的列表进行排序:

4、reversed()如果需要对序列的元素进行反转操作,reversed()函数能帮到你。reversed()接受一个序列,将序列里的元素反转,并最终返回迭代器。

5、map()做文本处理的时候,假如要对序列里的每个单词进行大写转化操作。这个时候就可以使用map()函数。

map()会根据提供的函数,对指定的序列做映射,最终返回迭代器。也就是说map()函数会把序列里的每一个元素用指定的方法加工一遍,最终返回给你加工好的序列。举个例子,对列表里的每个数字作平方处理:

6、rece()前面说到对列表里的每个数字作平方处理,用map()函数。那我想将列表里的每个元素相乘,该怎么做呢?这时候用到rece()函数。

rece()会对参数序列中元素进行累积。第一、第二个元素先进行函数操作,生成的结果再和第三个元素进行函数操作,以此类推,最终生成所有元素累积运算的结果。再举个例子,将字母连接成字符串。

你可能已经注意到,rece()函数在python3里已经不再是内置函数,而是迁移到了functools模块中。这里把rece()函数拎出来讲,是因为它太重要了。

7、filter()一些数字组成的列表,要把其中偶数去掉,该怎么做呢?

filter()函数轻松完成了任务,它用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象。filter()函数和map()、rece()函数类似,都是将序列里的每个元素映射到函数,最终返回结果。我们再试试,如何从许多单词里挑出包含字母w的单词。

8、enumerate()这样一个场景,同时打印出序列里每一个元素和它对应的顺序号,我们用enumerate()函数做做看。

enumerate翻译过来是枚举、列举的意思,所以说enumerate()函数用于对序列里的元素进行顺序标注,返回(元素、索引)组成的迭代器。再举个例子说明,对字符串进行标注,返回每个字母和其索引。

⑷ 盘点Python常用的模块和包

模块

1.定义

计算机在开发过程中,代码越写越多,也就越难以维护,所以为了编写可维护的代码,我们会把函数进行分组,放在不同的文件里。在python里,一个.py文件就是一个模块。

2.优点:

提高代码的可维护性。

提高代码的复用,当模块完成时就可以在其他代码中调用。

引用其他模块,包含python内置模块和其他第三方模块。

避免函数名和变量名等名称冲突。

python内建模块:

1.sys模块

2.random模块

3.os模块:

os.path:讲解

https://www.cnblogs.com/yufeihlf/p/6179547.html

数据可视化

1.matplotlib :

是Python可视化程序库的泰斗,它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近。比如pandas和Seaborn就是matplotlib的外包,它们让你能用更少的代码去调用 matplotlib的方法。

访问:

https://matplotlib.org/

颜色:

https://www.cnblogs.com/darkknightzh/p/6117528.html

教程:

https://wizardforcel.gitbooks.io/matplotlib-user-guide/3.1.html

2.Seaborn:

它是构建在matplotlib的基础上的,用简洁的代码来制作好看的图表。Seaborn跟matplotlib最大的区别就是它的默认绘图风格和色彩搭配都具有现代美感。

访问:

http://seaborn.pydata.org/index.html

3.ggplot:

gplot 跟 matplotlib 的不同之处是它允许你叠加不同的图层来完成一幅图

访问:

http://ggplot.yhathq.com/

4.Mayavi:

Mayavi2完全用Python编写,因此它不但是一个方便实用的可视化软件,而且可以方便地用Python编写扩展,嵌入到用户编写的Python程序中,或者直接使用其面向脚本的API:mlab快速绘制三维图

访问:http://code.enthought.com/pages/mayavi-project.html

讲解:https://blog.csdn.net/ouening/article/details/76595427https://www.jianshu.com/p/81e6f4f1cdd8

5.TVTK:

TVTK库对标准的VTK库进行包装,提供了Python风格的API、支持Trait属性和numpy的多维数组。

VTK (http://www.vtk.org/) 是一套三维的数据可视化工具,它由C++编写,包涵了近千个类帮助我们处理和显示数据

讲解:https://docs.huihoo.com/scipy/scipy-zh-cn/tvtk_intro.html

机器学习

1.Scikit-learn

是一个简单且高效的数据挖掘和数据分析工具,易上手,可以在多个上下文中重复使用。它基于NumPy, SciPy 和 matplotlib,开源,可商用(基于 BSD 许可)。

访问:

讲解:https://blog.csdn.net/finafily0526/article/details/79318401

2.Tensorflow

最初由谷歌机器智能科研组织中的谷歌大脑团队(Google Brain Team)的研究人员和工程师开发。该系统设计的初衷是为了便于机器学习研究,能够更快更好地将科研原型转化为生产项目。

相关推荐:《Python视频教程》

Web框架

1.Tornado

访问:http://www.tornadoweb.org/en/stable/

2.Flask

访问:http://flask.pocoo.org/

3.Web.py

访问:http://webpy.org/

4.django

https://www.djangoproject.com/

5.cherrypy

http://cherrypy.org/

6.jinjs

http://docs.jinkan.org/docs/jinja2/

GUI 图形界面

1.Tkinter

https://wiki.python.org/moin/TkInter/

2.wxPython

https://www.wxpython.org/

3.PyGTK

http://www.pygtk.org/

4.PyQt

https://sourceforge.net/projects/pyqt/

5.PySide

http://wiki.qt.io/Category:LanguageBindings::PySide

科学计算

教程

https://docs.huihoo.com/scipy/scipy-zh-cn/index.html#

1.numpy

访问

http://www.numpy.org/

讲解

https://blog.csdn.net/lm_is_dc/article/details/81098805

2.sympy

sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值、求极限、解方程、求积分、微分方程、级数展开、矩阵运算等等计算问题

访问

https://docs.sympy.org/0.7.1/guide.html#guide

讲解

https://www.jianshu.com/p/339c91ae9f41

解方程

https://www.cnblogs.com/zyg123/p/10549354.html

3.SciPy

官网

https://www.scipy.org/

讲解

https://blog.csdn.net/wsp_1138886114/article/details/80444621

4.pandas

官网

http://pandas.pydata.org/

讲解

https://www.cnblogs.com/linux-wangkun/p/5903945.html

5.blaze

官网

http://blaze.readthedocs.io/en/latest/index.html

密码学

1.cryptography

https://pypi.python.org/pypi/cryptography/

2.hashids

http://www.oschina.net/p/hashids

3.Paramiko

http://www.paramiko.org/

4.Passlib

https://pythonhosted.org/passlib/

5.PyCrypto

https://pypi.python.org/pypi/pycrypto

6.PyNacl

http://pynacl.readthedocs.io/en/latest/

爬虫相关

requests

http://www.python-requests.org/

scrapy

https://scrapy.org/

pyspider

https://github.com/binux/pyspider

portia

https://github.com/scrapinghub/portia

html2text

https://github.com/Alir3z4/html2text

BeautifulSoup

https://www.crummy.com/software/BeautifulSoup/

lxml

http://lxml.de/

selenium

http://docs.seleniumhq.org/

mechanize

https://pypi.python.org/pypi/mechanize

PyQuery

https://pypi.python.org/pypi/pyquery/

creepy

https://pypi.python.org/pypi/creepy

gevent

一个高并发的网络性能库

http://www.gevent.org/

图像处理

bigmoyan

http://scikit-image.org/

Python Imaging Library(PIL)

http://www.pythonware.com/procts/pil/

pillow:

http://pillow.readthedocs.io/en/latest/

自然语言处理

1.nltk:

http://www.nltk.org/

教程

https://blog.csdn.net/wizardforcel/article/details/79274443

2.snownlp

https://github.com/isnowfy/snownlp

3.Pattern

https://github.com/clips/pattern

4.TextBlob

http://textblob.readthedocs.io/en/dev/

5.Polyglot

https://pypi.python.org/pypi/polyglot

6.jieba:

https://github.com/fxsjy/jieba

数据库驱动

mysql-python

https://sourceforge.net/projects/mysql-python/

PyMySQL

https://github.com/PyMySQL/PyMySQL

PyMongo

https://docs.mongodb.com/ecosystem/drivers/python/

pymongo

MongoDB库

访问:https://pypi.python.org/pypi/pymongo/

redis

Redis库

访问:https://pypi.python.org/pypi/redis/

cxOracle

Oracle库

访问:https://pypi.python.org/pypi/cx_Oracle

SQLAlchemy

SQL工具包及对象关系映射(ORM)工具

访问:http://www.sqlalchemy.org/

peewee,

SQL工具包及对象关系映射(ORM)工具

访问:https://pypi.python.org/pypi/peewee

torndb

Tornado原装DB

访问:https://github.com/bdarnell/torndb

Web

pycurl

URL处理工具

smtplib模块

发送电子邮件

其他库暂未分类

1.PyInstaller:

是一个十分有用的第三方库,它能够在Windows、Linux、 Mac OS X 等操作系统下将 Python 源文件打包,通过对源文件打包, Python 程序可以在没有安装 Python 的环境中运行,也可以作为一个 独立文件方便传递和管理。

2.Ipython

一种交互式计算和开发环境

讲解

https://www.cnblogs.com/zzhzhao/p/5295476.html

命令

ls、cd 、run、edit、clear、exist

⑸ python工具有哪些

第一款:最强终端 Upterm
它是一个全平台的终端,可以说是终端里的IDE,有着强大的自动补全功能,之前的名字叫作:BlackWindow。有人跟他说这个名字不利于社区推广,改名叫Upterm之后现在已经17000+Star了。
第二款:交互式解释器 PtPython
一个交互式的Python解释器,支持语法高亮、提示,甚至是VIM和emacs的键入模式。
第三款:包管理必备 Anaconda
强烈推荐:Anaconda。它能帮你安装许多麻烦的东西,包括:Python环境、pip包管理工具、常用的库、配置好环境路径等等。这些小事情小白自己一个个去做的话,容易遇到各种问题,也容易造成挫败感。如果你想用Python搞数据方面的事情,安装它就可以了,它甚至开发了一套JIT的解释器Numba。所以Anaconda有了JIT之后,对线上科学计算效率要求比较高的东西也可以搞定了。
第四款:编辑器 Sublime3
如果你是小白的话,推荐从PyCharm开始上手,但是有时候写一些轻量的小脚本,就会想到轻量级一点的工具。Sublime3很多地方都有了极大的提升,并且用起来比原来还要简单,配合安装Anaconda或CodeIntel插件,可以让Sublime3拥有近乎IDE的体验。
第五款:前端在线编辑器 CodeSandbox
虽然这个不算是真正意义上的Python开发工具,但如果后端工程师想要写前端的话,这个在线编辑器太方便了,节省了后端工程师的生命。不用安装npm的几千个包了,它已经在云端完成了,才让你直接就可以上手写代码、看效果。对于React、Vue这些主流前端框架都支持。
第六款:Python Tutor
Python
Tutor是一个免费教育工具,可帮助学生攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。通过这个工具,教师或学生可以直接在web浏览器中编写Python代码,并逐步可视化地运行程序。
第七款:IPython
如何进行交互式编程?没错,就是通过IPython。IPython相对于Python自带的shell要好用的多,并且能够支持代码缩进、TAB键补全代码等功能。如果进行交互式编程,这是不可缺少的工具。
第八款:Jupyter Notebook
Jupyter
Notebook就像一个草稿本,能将文本注释、数学方程、代码和可视化内容全部组合到一个易于共享的文档中,以Web页面的方式展示,它是数据分析、机器学习的必备工具。
第九款:Pycharm
Pycharm是程序员常常使用的开发工具,简单、易用,并且能够设置不同的主题模式,根据自己的喜好来设置代码风格。
第十款:Python Tutor
这个工具可能对初学者比较有用,而对于中高级程序员则用处较少。这个工具的特色是能够清楚的理解每一行代码是如何在计算机中执行的,中高级程序员一般通过分步调试可以实现类似的功能。这个工具对于最初接触Python、最初来学习编程的同学还是非常有用的,初学者可以体验一下。

⑹ 常用的python库有哪些

10个顶级且实用的python库

1、Dash

Dash是比较新的软件包,它是用纯python构建数据可视化app的理想选择,因此特别适合处理数据的任何人。Dash是Flask、Plotly.js和React.js的混合体。

2、Pygame

Pygame是SDL多媒体库的python装饰器,SDL是一个跨平台开发库,旨在提供对以下内容的低级接口:音频、键盘、鼠标、游戏杆、基于OpenGL和Direct3D的图形硬件。

Pygame具有高度的可移植性,几乎可以在所有平台和操作系统上运行。尽管它具有完善的游戏引擎,但您也可以使用此库直接从python脚本播放MP3文件。

3、Pillow

Pillow专门用于处理图像,您可以使用该库创建缩略图,在文件格式之间转换、旋转、应用滤镜、显示图像等等。如果您需要对许多图像执行批量操作,这是理想的选择。

4、Colorama

Colorama允许你在终端使用颜色,非常适合python脚本,文档简短而有趣,可以在Colorama PyPi页面上找到。

5、JmesPath

在python中使用JSON非常容易,因为JSON在python字典上的映射非常好。此外,python带有自己出色的json库,用于解析和创建JSON。对我来说,这是它最好的功能之一,如果我需要使用JSON,可以考虑使用python。

JmesPath使python处理JSON更加容易,它允许您明确地指定如何从JSON文档中提取元素。

6、Requests

Requests建立在世界上下载量最大的python库urllib3上,它令Web请求变得非常简单,功能强大且用途广泛。

Requests可以完成您能想到的所有高级工作,比如:认证,使用cookie,执行POST、PUT、DELETE等,使用自定义证书,使用会话Session、使用代理等。

7、Simplejson

python中的本地json模块有什么问题?没有!实际上,python的json是Simplejson。意思是:python采用了Simplejson的一个版本,并将其合并到每个发行版中,但是使用Simplejson具有一些优点:它适用于更多python版本、它比python随附的版本更新频率更高、它具有用C编写的部分,因此非常快速。

8、Emoji

Emoji库非常意思,但并非每个人都喜欢表情包,分析视角媒体数据时,Emoji包非常有用。

9、Python-dateutil

Python-dateutil模块提供了对标准datetime模块的强大扩展。我的经验是:常规的python日期时间功能在哪里结束,而Python-dateutil就出现了。

10、BeautifulSoup

如果您从网站上提取了一些HTML,则需要对其进行解析以获取实际所需的内容。BeautifulSoup是一个python库,用于从HTML和XML文件中提取数据。它提供了导航,搜索和修改解析树的简单方法。它非常强大,即使损坏了,也能够处理各种HTML,这是一个非常强大的功能。

它的一些主要功能:

①BeautifulSoup会自动将传入文档转换为Unicode,将传出文档转换为UTF-8,您无需考虑编码。

②BeautifulSoup位于流行的python解析器的顶部,使您可以尝试不同的解析策略或提高灵活性。

⑺ 这几个常用的python库你需要知道

python可以说是近几年最火热、最实用的、最容易上手的工具之一了。功能强大、应用广泛,可以帮你搜集工作数据,还能帮你下载音乐,电影,于是就掀起了一波学习python的大潮,小编也毫不犹豫的加入了。但是对于向小编一样的小白来说,刚开始学习还是有些困难的,需要首先了解python的一些基础知识。所以小编就整理了一些常用的python库,希望对正在学习python的小伙伴有所帮助。
1.Matplotlib
Matplotlib是一个用于创建二维图和图形的底层库。借由它的帮助,你可以构建各种不同的图标,从直方图和散点图到费笛卡尔坐标图。matplotlib能够与很多流行的绘图库结合使用。
2.Seaborn
Seaborn本质上是一个基于matplotlib库的高级API。它包含更适合处理图表的默认设置。此外,还有丰富的可视化库,包括一些复杂类型,如时间序列、联合分布图(jointplots)和小提琴图(violindiagrams)。
3.Plotly
Plotly是一个流行的库,它可以让你轻松构建复杂的图形。该软件包适用于交互式Web应用程,可实现轮廓图、三元图和三维图等视觉效果
4.Bokeh
Bokeh库使用JavaScript小部件在浏览器中创建交互式和可缩放的可视化。该库提供了多种图表集合,样式可能性(stylingpossibilities),链接图、添加小部件和定义回调等形式的交互能力,以及许多更有用的特性。
5.Pydot
Pydot是用纯Python编写的Graphviz接口,经常用于生成复杂的定向图和无向图,能够显示图形的结构,对于构建神经网络和基于决策树的算法时非常有效。
6.pyecharts
是基于网络开源的Echarts而开发的Python可视化工具。
pyecharts功能非常强大,支持多达400+地图;支持JupyterNotebook、JupyterLab;能够轻松集成至Flask,Sanic,Django等主流Web框架
7.AutoViz
数据可视化,大多数都需要把数据读取到内存中,然后对内存中的数据进行可视化。但是,对于真正令人头疼的是一次又一次的开发读取离线文件的数据接口。
而AutoViz就是用于解决这个痛点的,它真正的可以做到1行代码轻松实现可视化。对于txt、json、csv等主流离线数据格式能够同时兼容,经常用于机器学习、计算机视觉等涉及离线数据较多的应用场景。
8.Altair
Altair是一款基于Vega和Vega-Lite开发的统计可视化库。具有API简单、友好、一致等优点,使用起来非常方便,能够用最简短的代码实现数据可视化。
9.cufflinks
cufflinks结合了plotly的强大功能和panda的灵活性,可以方便地进行绘图,避免了数据可视化过程中,对数据存储结构和数据类型进行复杂的麻烦。
10Pygal
Pygal 的名气不是很大,使用图形框架语法来构建图像的。绘图目标比较简单,使用起来非常方便:实例化图片;用图片目标属性格式化;用 figure.add() 将数据添加到图片中即可。

⑻ python常见数据类型

一,python整数类型所表示的数据。

1,一般用以表示一类数值:所有正整数,0和负整数;

2,整型作为最常用的,频繁参与计算的数据类型,在python3.5中解释器会自动在内存中创建-5-3000之间的(包含5,不包含3000)整型对象,也就是说在该范围内,相等都是同一个已经创建好的整型对象。范围之外的即使相等也表示不同对象,该特性随python版本而改变,不要过于依赖。

3,bool型继承了int型,他是int的子类。

4,Python2中有长整型long,数值范围更大,在python3中已取消,所有整型统一由int表示。

5,参与所有数值计算,数学运算,科学计算。这也是所有编程语言都有的数据类型,因为编程语言生而需要模拟人的思维,借助数学方式,自动计算、更好的解决大量重复性的事务,因此数值类型、整数类型在编程语言中不可或缺。

6,支持二进制(0b\0B开头),十进制,八进制(0o\0O),十六进制(0x\0X)

二,python整数和浮点型支持常规的数值运算

整数和浮点数都可参与的运算:+ - * / %(取余) //(整除) **(幂)

Python字符型:

python字符型表示的数据:
python3支持Unicode编码,由字母、数字和符号组成的形式就叫字符串,更接近或者相同与人们文字符号表示,因此在信息表示和传递时它也是最受认可的形式。在程序编写中也是非常常用,对应的可操作的方法也很多,很有意思。
字符串不可被修改,可以拼接等方法创建新字符串对象;
支持分片和下标操作;a[2:]
支持+拼接,*重复操作和成员关系in/not in;
表示形式:用单引号双引号包含起来的符号;a = str(‘sdfsdfsdf’) 或 r’\t\nabcd’ 原始字符,Bytes:b’abcd’;
6,字符串属于不可变数据类型,内部机制为了节省空间,相同的两个字符串表示相同的一个对象。a = ‘python’ b = ‘python’ a is b :True

二, 字符串支持的运算方法

1,capitalize() :首字母大写后边的字母小写 a = ‘abcd’ b = a.capitalize() b:Abcd

2,casefold() lower():字母转换为全小写

3,center(width,fillchar) :居中,width填补的长度;fillchar添加的字符

a = a.center(10,’_’) //’____abcd____’ 默认无fillchar填充空格

4,count(sub,star,end) :字母计数:sub要查询的字符

5,encode(encoding=’utf-8’,errors=’strict’) 设置编码

Errors :设置错误类型

6,endswith(suffix,star,end) : 若以suffix结尾返回True

7,expandtabs(8) :设置字符串中tab按键符的空格长度:’\tabcde’

8,find(sub,star,end) : 返回指定范围内的字符串下标,未找到返回-1

9,index(sub,star,end) :返回指定范围字符串下标未找到抛出异常

10,isalnum() :判断字符串是否是字母或数字,或字母和数字组合

11,isalpha() :判断是否全是字母

12,isdecimal() :判断字符串是否是十进制数值

13,isdigit() :判断字符串是否是数字

14,isidentifier() :判断字符串中是否包含关键字

15,islower() :判断是否全小写

16,isnumeric() :判断全是数字

17,isspace() :判断是否是空格

18,isupper() 判断是否大写

19,istitle() :判断是否首字母大写

20,join(iterable) :把可迭代对象用字符串进行分割:a.join(‘123’)

21,ljust(width,fillchar);rjust() :左对齐右对齐

22, upper() :将字符串改为大写

23,split(sep=None,maxsplit=-1) :分割一个字符串,被选中字符在字符串中删除

‘ab1cd1efg’.split(‘1’) :[‘ab’,’cd’,’efg’]

三,字符串格式化:按照规格输出字符串

format(*args,**kwargs) :args位置参数,kwargs关键字参数

‘{0:.1f}’.format(123.468) :格式化参数,小数点后保留1位四舍五入

四,字符串操作符%

1,%s :格式化字符串 ‘abcd%sdef’%’dddd’

2,%d:格式化整数

3,%o格式化无符号八进制

4,%x格式化无符号十六进制

5,%f格式化定点数

6, %e: 科学计数法格式化定点数

7,%g 根据值大小自动选%f,%e

8, %G E X :大写形式

五,格式化辅助命令:

m.n :m最小总宽度,n小数点后位数:’%12.4f’%23456.789

六,转义字符:字符串前r避免转义:r’\nhello\thi’

\n:换行符

\t:横向制表符

\':'

\":"

\b:退格符

\r:回车

\v:纵向制表符

\f:换页符

\o,\x:八进制和十六进制

\0:空字符串

Python列表list

一,Python的列表list类型表示的数据:

Python列表在cpython中被解释为长度可变的数组,用其他对象组成的连续数组。

列表中元素可以是相同或不同的数据类型;
当列表元素增加或删除时,列表对象自动进行扩展或收缩内存,保证元素之间没有缝隙,总是连续的。
Python中的列表是一个序列,也是一个容器类型
创建列表:a = []; b = [1,’python’]; c = list(); d = list((1,3,4,5))
支持切片操作list[start,stop,step]
python列表常用方法
1,append添加单个元素:list.append(object); //a.append(‘python’)

2,extend添加可迭代对象: list.extend(iterable); //a.extend(‘abcde’/[1,2,3])

3,insert 插入元素:list.insert(index,object): 在index下标前插入元素//a.insert(2,’python’)

4,clear 清空所有元素:list.clear() //a.clear()

5,pop 删除并返回一个元素:list.pop(index) //默认删除默认一个元素

remove 删除指定元素:list.remove(v) ,v元素不存在报错 //a.remove(‘c’)
7,count 返回这个值在列表中数量:list.count(value)

8, 浅拷贝一个新列表:list.()

9,sort:排序list.sort(reverse=False/True) :默认升序

排序函数:sorted(list)

10,reverse: 原地翻转:list.reverse()

11,index(value,star,stop) :指定范围内该值下标:list.index(2,0,5)

列表元素访问:
下标访问:list[1]
For循环遍历
通过下标修改元素:list[2 ] = ‘hello’
列表常用运算符:
1,比较运算符:从第一个元素开始对比

2,+ 拼接一个新列表:l1+ l2

3, 重复操作符:* ,多个列表拼接

成员关系操作符:in/ not in
逻辑运算符:and not or
列表常用的排序方法:
冒泡排序;选择排序;快速排序;归并排序

Python元组tuple

一,Python元组tuple数据类型表示的数据:

元组是受到限制的、不可改变的列表;
可以是同构也可以是异构;
元组是序列类型、是可迭代对象,是容器类型。
元组的创建: a = (1,2,3)或a=1,2,3; b = tuple(); c = tuple(iterable)
支持切片操作tuple[start,stop,step]

二,python元组常用方法

1,index(value,star,stop) :指定范围内该值下标:tuple.index(2,0,5)

2,count(value) :值出现次数

三,支持运算:

1,比较运算符:从第一个元素开始对比

2,+ 拼接一个新元组:l1+ l2

3, 重复操作符:* ,多个元组拼接

4成员关系操作符:in/ not in

逻辑运算符:and not or
四,元组的访问

下标操作;
For循环遍历访问。

Python字典类型

一,Python字典dict表示的数据:{key:value}

可根据关键字:键快速索引到对应的值;
字典是映射类型,键值对一一对应关系,不是序列;
字典元素是无序的;
字典是可迭代对象,是容器类型;
字典的创建:k = {}; k1={‘keyword’:object}; k2 = dict();
K3 = dict(mapping); dict=(iterable)

二,字典的访问:

通过key:k[‘key’]

修改key对应的值:K[‘key’] = value

For循环遍历出来的是key;

For循环键值对:for I in d.items():

For 循环enumerate: for k,v in enumerate(k1):

In/not in 成员关系查询键不支持查值

三,字典常用方法

get(key,de):获取值:k.get(key,de) //若不存在则默认输出de
pop(k,de):删除一个键值对,不存在输出de,未设置报错;
keys() :返回字典所有key组成的序列:list(k.keys()) [1,2,3];
values():返回字典所有value组成的序列:list(k.values())
items():返回键值对组成的元组为元素的序列:(类set)list(k.items())
update(e):更新字典:e可是字典或两元素组成的单位元素序列:e=[(5,6),(7,8)];
k.update(e)

clear():清空字典;
popitem()删除某个键值对,若字典为空则报错
() :浅拷贝
10, fromkeys(iterable,value=None):从可迭代对象创建字典

{}.fromkeys([1,2,3]) -----{1:None,2:None,3:None}

11,setdefault(k,d=None) :若key不存在则生成一个键值对

k.setdefault(‘keyword’)

Python 集合set

集合表示的数据:
多个元素的无序组合,集合是无序的,集合元素是唯一的;
字典的键是由集合实现的;
集合是可迭代对象
集合创建:s = {1,2}; s1 = set(); s2 = set(iterable)
集合元素的访问:
For 循环将集合所有元素全部访问一遍,不重复

常用方法:
add(object):s.add(‘hi’) 向集合添加一个元素
pop() :弹栈,集合为空则报错:删除任意一个元素;
clear():清空集合,返回一个空集合对象;
remove(object):删除一个元素,不存在和报错:s.remove(‘hi’)
update(集合):更新另一个集合,元素不存在则不更新;
() :浅拷贝
集合的运算:
交集:s1&s2;
差集,补集:s1-s2;
并集:s1|s2;
Issubset():判断是否是子集:s1.issubset(s2) s1是否s2的集合子集
Issuperset():判断是否是父集:s1.issuperset()
不可变集合:
Frozenset():返回一个空的不可变集合对象

Frozenset(iterable):

S = frozenset(iterable)

Python序列类型共同特性

一,序列类型共同特性

python序列类型有:str字符串,list列表,tuple元组
都支持下标索引,切片操作;
下标都是从0开始,都可通过下标进行访问;
拥有相同的操作符
二,支持的函数:

len(obj):返回对象长度;
list(iterable):将可迭代对象转为列表;
tuple(iterable):将可迭代对象转为元组;
str(ojb):将任何对象转为字符串形式;
max(iterable): python3中元素要是同类型,python2中元素可异构:max([‘a’,1])
min(iterable):和max类似;
sum(iterable,star=0),求可迭代对象和,默认star为0,元素不能为字符串
sorted(iterable,key=None,reverse=False)
s=[(‘a’,3),(‘b’,2),(‘c’,9)]

sorted(s,key=lambda s:s[1]) //按照数字排序

reversed(sequence):翻转序列,返回迭代器
enumerate(iterable):返回enumerate对象,其元素都是一个元组(下标,值)
zip(iter1,iter2): zip([1,2],[3,4]) ----[(1,3),(2,4)]

序列类型的切片操作:

Slice:

L[index]; 访问某个元素;

L[1:4]; 区间

L[star:stop:step]; 设置步长取区间元素

⑼ python常用的数据库有哪些

主流的关系型数据库:

1. MySQL:目前使用最广泛的开源、多平台的关系型数据库,支持事务、符合ACID、支持多数SQL规范。

2. SQL Server:支持事务、符合ACID、支持多数SQL规范,属于商业软件,需要注意版权和licence授权费用。

3. Oracle:支持事务,符合关系型数据库原理,符合ACID,支持多数SQL规范,功能最强大、最复杂、市场占比最高的商业数据库。

4. Postgresql:开源、多平台、关系型数据库,功能最强大的开源数据库,需要Python环境,基于postgresql的time
scaleDB,是目前比较火的时序数据库之一。

非关系型数据库

Redis:开源、Linux平台、key-value键值型nosql数据库,简单稳定,非常主流的、全数据in-momory,定位于快的键值型nosql数据库。

Memcaced:一个开源的、高性能的、具有分布式内存对象的缓存系统,通过它可以减轻数据库负载,加速动态的web应用。

面向文档数据库以文档的形式存储,每个文档是一系列数据项的集合,每个数据项有名称与对应的值,主要产品有:

MongoDB:开源、多平台、文档型nosql数据库,最像关系型数据库,定位于灵活的nosql数据库。适用于网站后台数据库、小文件系统、日志分析系统。

⑽ Python编程常用软件有哪些

1、终端:Upterm
Upterm简略好用,它是一个全渠道的终端,能够说是终端里的IDE,有着强壮的自动补全功能。
2、交互式解说器:PtPython
一个交互式的Python解说器。支持语法高亮、提示乃至是vim和emacs的键入模式。其实我们在课程里提供的在线终端也内置了ptPython。
3、包管理:Anaconda
能帮你装置好许多麻烦的软件,包括:Python环境、pip包管理东西、常用的库、配置好环境路径等等。用Python搞数据方面的工作,就装置Anaconda就好了,它乃至开发了一套JIT的解说器Numba。所以Anaconda有了JIT之后,对线上科学计算功率要求比较高的东西也能够搞了。
4、脚本引擎:QPython
QPython是一个能够在安卓体系上运行Python脚本引擎,整合了Python解说器、Console、编辑器和SL4A库,在安卓设备上你照样能够玩转Python。
5、编辑器:Sublime3
Sublime更新了真·无双·三·零版别之后,有了极大的提高,而且用起来比本来还要简略。配合装置Anaconda或CodeIntel插件,就能够让Sublime具有近乎IDE的体会。Sublime的字体色彩烘托,像VSCodeAtom类的编辑器我总会觉得色彩会有点发乌、不鲜艳,就像在PS做的图拿到浏览器里会不一样,长时间看会不舒服乃至想吐
6、IPython
一个根据Python Shell的交互式解说器。它的自动补全非常好用,乃至用了它之后,很多程序员小伙伴们就不想再用自带的Python shell啦。

阅读全文

与8个常用的python相关的资料

热点内容
腾讯云拼团云服务器 浏览:364
海南离岛将加贴溯源码销售吗 浏览:244
linux分区读取 浏览:794
单片机液晶显示屏出现雪花 浏览:890
解压器用哪个好一点 浏览:771
什么app看小说全免费 浏览:503
sha和ras加密 浏览:823
韩顺平php视频笔记 浏览:636
阿里云ecs服务器如何设置自动重启 浏览:596
三星电视怎么卸掉app 浏览:317
如何将pdf转换成docx文件 浏览:32
dos命令批量改名 浏览:376
centosphp环境包 浏览:602
mfipdf 浏览:534
电脑解压后电脑蓝屏 浏览:295
外网访问内网服务器如何在路由器设置 浏览:856
2014统计年鉴pdf 浏览:434
linuxoracle用户密码 浏览:757
股票交易pdf 浏览:898
p2papp源码 浏览:308