任何语言都是一门艺术,下面分析一下Python之禅:
在命令行输入:
import this
结果如下:
Beautifulisbetterthanugly.
Explicitisbetterthanimplicit.
Simpleisbetterthancomplex.
.
Flatisbetterthannested.
Sparseisbetterthandense.
Readabilitycounts.
Specialcasesaren'tspecialenoughtobreaktherules.
.
Errorsshouldneverpasssilently.
Unlessexplicitlysilenced.
Inthefaceofambiguity,refusethetemptationtoguess.
Thereshouldbeone--andpreferablyonlyone--obviouswaytodoit.
'reDutch.
Nowisbetterthannever.
*right*now.
,it'sabadidea.
,itmaybeagoodidea.
--let'sdomoreofthose!
中英文对照解释如下:
Beautifulisbetterthanugly.
#优美胜于丑陋(Python以编写优美的代码为目标)
Explicitisbetterthanimplicit.
#明了胜于晦涩(优美的代码应当是明了的,命名规范,风格相似)
Simpleisbetterthancomplex.
#简洁胜于复杂(优美的代码应当是简洁的,不要有复杂的内部实现)
.
#复杂胜于凌乱(如果复杂不可避免,那代码间也不能有难懂的关系,要保持接口简洁)
Flatisbetterthannested.
#扁平胜于嵌套(优美的代码应当是扁平的,不能有太多的嵌套)
Sparseisbetterthandense.
#间隔胜于紧凑(优美的代码有适当的间隔,不要奢望一行代码解决问题)
Readabilitycounts.
#可读性很重要(优美的代码是可读的)
Specialcasesaren'tspecialenoughtobreaktherules.
.
#即便假借特例的实用性之名,也不可违背这些规则(这些规则至高无上)
Errorsshouldneverpasssilently.
Unlessexplicitlysilenced.
#不要包容所有错误,除非你确定需要这样做(精准地捕获异常,不写except:pass风格的代码)
Inthefaceofambiguity,refusethetemptationtoguess.
#当存在多种可能,不要尝试去猜测
Thereshouldbeone--andpreferablyonlyone--obviouswaytodoit.
#而是尽量找一种,最好是唯一一种明显的解决方案(如果不确定,就用穷举法)
'reDutch.
#虽然这并不容易,因为你不是Python之父(这里的Dutch是指Guido)
Nowisbetterthannever.
*right*now.
#做也许好过不做,但不假思索就动手还不如不做(动手之前要细思量)
,it'sabadidea.
,itmaybeagoodidea.
#如果你无法向人描述你的方案,那肯定不是一个好方案;反之亦然(方案测评标准)
--let'sdomoreofthose!
#命名空间是一种绝妙的理念,我们应当多加利用(倡导与号召)
Ⅱ python pyqt怎么画圆
这个例子我做了好几天:
1)官网C++的源码,改写成PyQt5版本的代码,好多细节不会转化
2)网上的PyQt的例子根本运行不了
填了无数个坑,结合二者,终于能完成了一个关于绘图的东西。这个过程也掌握了很多新的知识点
【知识点】
1、关于多个点的使用
poitns = [QPoint(10, 80), QPoint(20, 10), QPoint(80, 30), QPoint(90, 70)]
请看:
import sysfrom PyQt5.QtCore import *from PyQt5.QtGui import *from PyQt5.QtWidgets import *class StockDialog(QWidget): def __init__(self, parent=None):
super(StockDialog, self).__init__(parent)
self.setWindowTitle("利用QPainter绘制各种图形")
mainSplitter = QSplitter(Qt.Horizontal)
mainSplitter.setOpaqueResize(True)
frame = QFrame(mainSplitter)
mainLayout = QGridLayout(frame) #mainLayout.setMargin(10)
mainLayout.setSpacing(6)
label1=QLabel("形状:")
label2=QLabel("画笔线宽:")
label3=QLabel("画笔颜色:")
label4=QLabel("画笔风格:")
label5=QLabel("画笔顶端:")
label6=QLabel("画笔连接点:")
label7=QLabel("画刷风格:")
label8=QLabel("画刷颜色:")
self.shapeComboBox = QComboBox()
self.shapeComboBox.addItem("Line", "Line")
self.shapeComboBox.addItem("Rectangle", "Rectangle")
self.shapeComboBox.addItem('Rounded Rectangle','Rounded Rectangle')
self.shapeComboBox.addItem('Ellipse','Ellipse')
self.shapeComboBox.addItem('Pie','Pie')
self.shapeComboBox.addItem('Chord','Chord')
self.shapeComboBox.addItem('Path','Path')
self.shapeComboBox.addItem('Polygon','Polygon')
self.shapeComboBox.addItem('Polyline','Polyline')
self.shapeComboBox.addItem('Arc','Arc')
self.shapeComboBox.addItem('Points','Points')
self.shapeComboBox.addItem('Text','Text')
self.shapeComboBox.addItem('Pixmap','Pixmap')
self.widthSpinBox = QSpinBox()
self.widthSpinBox.setRange(0,20)
self.penColorFrame = QFrame()
self.penColorFrame.setAutoFillBackground(True)
self.penColorFrame.setPalette(QPalette(Qt.blue))
self.penColorPushButton = QPushButton("更改")
self.penStyleComboBox = QComboBox()
self.penStyleComboBox.addItem("Solid",Qt.SolidLine)
self.penStyleComboBox.addItem('Dash', Qt.DashLine)
self.penStyleComboBox.addItem('Dot', Qt.DotLine)
self.penStyleComboBox.addItem('Dash Dot', Qt.DashDotLine)
self.penStyleComboBox.addItem('Dash Dot Dot', Qt.DashDotDotLine)
self.penStyleComboBox.addItem('None', Qt.NoPen)
self.penCapComboBox = QComboBox()
self.penCapComboBox.addItem("Flat",Qt.FlatCap)
self.penCapComboBox.addItem('Square', Qt.SquareCap)
self.penCapComboBox.addItem('Round', Qt.RoundCap)
self.penJoinComboBox = QComboBox()
self.penJoinComboBox.addItem("Miter",Qt.MiterJoin)
self.penJoinComboBox.addItem('Bebel', Qt.BevelJoin)
self.penJoinComboBox.addItem('Round', Qt.RoundJoin)
self.brushStyleComboBox = QComboBox()
self.brushStyleComboBox.addItem("Linear Gradient",Qt.LinearGradientPattern)
self.brushStyleComboBox.addItem('Radial Gradient', Qt.RadialGradientPattern)
self.brushStyleComboBox.addItem('Conical Gradient', Qt.ConicalGradientPattern)
self.brushStyleComboBox.addItem('Texture', Qt.TexturePattern)
self.brushStyleComboBox.addItem('Solid', Qt.SolidPattern)
self.brushStyleComboBox.addItem('Horizontal', Qt.HorPattern)
self.brushStyleComboBox.addItem('Vertical', Qt.VerPattern)
self.brushStyleComboBox.addItem('Cross', Qt.CrossPattern)
self.brushStyleComboBox.addItem('Backward Diagonal', Qt.BDiagPattern)
self.brushStyleComboBox.addItem('Forward Diagonal', Qt.FDiagPattern)
self.brushStyleComboBox.addItem('Diagonal Cross', Qt.DiagCrossPattern)
self.brushStyleComboBox.addItem('Dense 1', Qt.Dense1Pattern)
self.brushStyleComboBox.addItem('Dense 2', Qt.Dense2Pattern)
self.brushStyleComboBox.addItem('Dense 3', Qt.Dense3Pattern)
self.brushStyleComboBox.addItem('Dense 4', Qt.Dense4Pattern)
self.brushStyleComboBox.addItem('Dense 5', Qt.Dense5Pattern)
self.brushStyleComboBox.addItem('Dense 6', Qt.Dense6Pattern)
self.brushStyleComboBox.addItem('Dense 7', Qt.Dense7Pattern)
self.brushStyleComboBox.addItem('None', Qt.NoBrush)
self.brushColorFrame = QFrame()
self.brushColorFrame.setAutoFillBackground(True)
self.brushColorFrame.setPalette(QPalette(Qt.green))
self.brushColorPushButton = QPushButton("更改")
labelCol=0
contentCol=1
#建立布局
mainLayout.addWidget(label1,1,labelCol)
mainLayout.addWidget(self.shapeComboBox,1,contentCol)
mainLayout.addWidget(label2,2,labelCol)
mainLayout.addWidget(self.widthSpinBox,2,contentCol)
mainLayout.addWidget(label3,4,labelCol)
mainLayout.addWidget(self.penColorFrame,4,contentCol)
mainLayout.addWidget(self.penColorPushButton,4,3)
mainLayout.addWidget(label4,6,labelCol)
mainLayout.addWidget(self.penStyleComboBox,6,contentCol)
mainLayout.addWidget(label5,8,labelCol)
mainLayout.addWidget(self.penCapComboBox,8,contentCol)
mainLayout.addWidget(label6,10,labelCol)
mainLayout.addWidget(self.penJoinComboBox,10,contentCol)
mainLayout.addWidget(label7,12,labelCol)
mainLayout.addWidget(self.brushStyleComboBox,12,contentCol)
mainLayout.addWidget(label8,14,labelCol)
mainLayout.addWidget(self.brushColorFrame,14,contentCol)
mainLayout.addWidget(self.brushColorPushButton,14,3)
mainSplitter1 = QSplitter(Qt.Horizontal)
mainSplitter1.setOpaqueResize(True)
stack1 = QStackedWidget()
stack1.setFrameStyle(QFrame.Panel|QFrame.Raised)
self.area = PaintArea()
stack1.addWidget(self.area)
frame1 = QFrame(mainSplitter1)
mainLayout1 = QVBoxLayout(frame1) #mainLayout1.setMargin(10)
mainLayout1.setSpacing(6)
mainLayout1.addWidget(stack1)
layout = QGridLayout(self)
layout.addWidget(mainSplitter1,0,0)
layout.addWidget(mainSplitter,0,1)
self.setLayout(layout)
#信号和槽函数 self.shapeComboBox.activated.connect(self.slotShape)
self.widthSpinBox.valueChanged.connect(self.slotPenWidth)
self.penColorPushButton.clicked.connect(self.slotPenColor)
self.penStyleComboBox.activated.connect(self.slotPenStyle)
self.penCapComboBox.activated.connect(self.slotPenCap)
self.penJoinComboBox.activated.connect(self.slotPenJoin)
self.brushStyleComboBox.activated.connect(self.slotBrush)
self.brushColorPushButton.clicked.connect(self.slotBrushColor)
self.slotShape(self.shapeComboBox.currentIndex())
self.slotPenWidth(self.widthSpinBox.value())
self.slotBrush(self.brushStyleComboBox.currentIndex())
def slotShape(self,value):
shape = self.area.Shape[value]
self.area.setShape(shape)
def slotPenWidth(self,value):
color = self.penColorFrame.palette().color(QPalette.Window)
style = Qt.PenStyle(self.penStyleComboBox.itemData(self.penStyleComboBox.currentIndex(),Qt.UserRole))
cap = Qt.PenCapStyle(self.penCapComboBox.itemData(self.penCapComboBox.currentIndex(),Qt.UserRole))
join = Qt.PenJoinStyle(self.penJoinComboBox.itemData(self.penJoinComboBox.currentIndex(),Qt.UserRole))
self.area.setPen(QPen(color,value,style,cap,join))
def slotPenStyle(self,value):
self.slotPenWidth(value)
def slotPenCap(self,value):
self.slotPenWidth(value)
def slotPenJoin(self,value):
self.slotPenWidth(value)
def slotPenColor(self):
color = QColorDialog.getColor(Qt.blue)
self.penColorFrame.setPalette(QPalette(color))
self.area.setPen(QPen(color))
def slotBrushColor(self):
color = QColorDialog.getColor(Qt.blue)
self.brushColorFrame.setPalette(QPalette(color))
self.slotBrush(self.brushStyleComboBox.currentIndex())
def slotBrush(self,value):
color = self.brushColorFrame.palette().color(QPalette.Window)
style = Qt.BrushStyle(self.brushStyleComboBox.itemData(value,Qt.UserRole))
if(style == Qt.Lin
Ⅲ python中的plt.pcolormesh 的参数是啥意思
导入matplotlib.pyplot, numpy 包 import numpy as np import matplotlib.pyplot as plt # 添加主题样式 plt.style.use('mystyle') # 设置图的大小,添加子图 fig = plt.figure(figsize=(5,5)) ax = fig.add_subplot(111) #绘制sin, cos x = n.
Ⅳ Python 有哪些优雅的代码实现
列表切割
list[start:end:step]
如果从列表开头开始切割,那么忽略 start 位的 0,例如list[:4]
如果一直切到列表尾部,则忽略 end 位的 0,例如list[3:]
切割列表时,即便 start 或者 end 索引跨界也不会有问题
列表切片不会改变原列表。索引都留空时,会生成一份原列表的拷贝
b= a[:]
assertb== aandbisnota# true
列表推导式
使用列表推导式来取代map和filter
a= [1,2,3,4,5,6,7,8,9,10]
# use map
squares= map(lambdax: x ** 2,a)
# use list comprehension
squares= [x ** 2forxina]
# 一个很大的好处是,列表推导式可以对值进行判断,比如
squares= [x ** 2forxinaifx% 2== 0]
# 而如果这种情况要用 map 或者 filter 方法实现的话,则要多写一些函数
不要使用含有两个以上表达式的列表推导式
# 有一个嵌套的列表,现在要把它里面的所有元素扁平化输出
list= [[
[1,2,3],
[4,5,6]
]]
# 使用列表推导式
flat_list= [xforlist0 inlist forlist1 inlist0 forxinlist1]
# [1, 2, 3, 4, 5, 6]
# 可读性太差,易出错。这种时候更建议使用普通的循环
flat_list= []
forlist0 inlist:
forlist1 inlist0:
flat_list.extend(list1)
数据多时,列表推导式可能会消耗大量内存,此时建议使用生成器表达式
# 在列表推导式的推导过程中,对于输入序列的每个值来说,都可能要创建仅含一项元素的全新列表。因此数据量大时很耗性能。
# 使用生成器表达式
list= (x ** 2forxinrange(0,1000000000))
# 生成器表达式返回的迭代器,只有在每次调用时才生成值,从而避免了内存占用
Ⅳ python tensorflow 怎么添加auc
tensorflow添加自定义的auc计算operator
tensorflow可以很方便的添加用户自定义的operator(如果不添加也可以采用sklearn的auc计算函数或者自己写一个 但是会在python执行,这里希望在graph中也就是c++端执行这个计算)
这里根据工作需要添加一个计算auc的operator,只给出最简单实现,后续高级功能还是参考官方wiki
注意tensorflow现在和最初的官方wiki有变化,原wiki貌似是需要重新bazel编译整个tensorflow,然后使用比如tf.user_op.auc这样。
目前wiki给出的方式>=0.6.0版本,采用plug-in的方式,更加灵活可以直接用g++编译一个so载入,解耦合,省去了编译tensorflow过程,即插即用。
首先auc的operator计算的文件
tensorflow/core/user_ops/auc.cc
/* Copyright 2015 Google Inc. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a of the License at
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// An auc Op.
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/op_kernel.h"
using namespace tensorflow;
using std::vector;
//@TODO add weight as optional input
REGISTER_OP("Auc")
.Input("predicts: T1")
.Input("labels: T2")
.Output("z: float")
.Attr("T1: {float, double}")
.Attr("T2: {float, double}")
//.Attr("T1: {float, double}")
//.Attr("T2: {int32, int64}")
.SetIsCommutative()
.Doc(R"doc(
Given preidicts and labels output it's auc
)doc");
class AucOp : public OpKernel {
public:
explicit AucOp(OpKernelConstruction* context) : OpKernel(context) {}
template<typename ValueVec>
void index_sort(const ValueVec& valueVec, vector<int>& indexVec)
{
indexVec.resize(valueVec.size());
for (size_t i = 0; i < indexVec.size(); i++)
{
indexVec[i] = i;
}
std::sort(indexVec.begin(), indexVec.end(),
[&valueVec](const int l, const int r) { return valueVec(l) > valueVec(r); });
}
void Compute(OpKernelContext* context) override {
// Grab the input tensor
const Tensor& predicts_tensor = context->input(0);
const Tensor& labels_tensor = context->input(1);
auto predicts = predicts_tensor.flat<float>(); //输入能接受float double那么这里如何都处理?
auto labels = labels_tensor.flat<float>();
vector<int> indexes;
index_sort(predicts, indexes);
typedef float Float;
Float oldFalsePos = 0;
Float oldTruePos = 0;
Float falsePos = 0;
Float truePos = 0;
Float oldOut = std::numeric_limits<Float>::infinity();
Float result = 0;
for (size_t i = 0; i < indexes.size(); i++)
{
int index = indexes[i];
Float label = labels(index);
Float prediction = predicts(index);
Float weight = 1.0;
//Pval3(label, output, weight);
if (prediction != oldOut) //存在相同值得情况是特殊处理的
{
result += 0.5 * (oldTruePos + truePos) * (falsePos - oldFalsePos);
oldOut = prediction;
oldFalsePos = falsePos;
oldTruePos = truePos;
}
if (label > 0)
truePos += weight;
else
falsePos += weight;
}
result += 0.5 * (oldTruePos + truePos) * (falsePos - oldFalsePos);
Float AUC = result / (truePos * falsePos);
// Create an output tensor
Tensor* output_tensor = NULL;
TensorShape output_shape;
OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output_tensor));
output_tensor->scalar<float>()() = AUC;
}
};
REGISTER_KERNEL_BUILDER(Name("Auc").Device(DEVICE_CPU), AucOp);
编译:
$cat gen-so.sh
TF_INC=$(python -c 'import tensorflow as tf; print(tf.sysconfig.get_include())')
TF_LIB=$(python -c 'import tensorflow as tf; print(tf.sysconfig.get_lib())')
i=$1
o=${i/.cc/.so}
g++ -std=c++11 -shared $i -o $o -I $TF_INC -l tensorflow_framework -L $TF_LIB -fPIC -Wl,-rpath $TF_LIB
$sh gen-so.sh auc.cc
会生成auc.so
使用的时候
auc_mole = tf.load_op_library('auc.so')
#auc = tf.user_ops.auc #0.6.0之前的tensorflow 自定义op方式
auc = auc_mole.auc
evaluate_op = auc(py_x, Y) #py_x is predicts, Y is labels
Ⅵ Python怎么生成三维数
importnumpyasnp
a=np.array([1,2,3],dtype=int)#创建1*3维数组array([1,2,3])
type(a)#numpy.ndarray类型
a.shape#维数信息(3L,)
a.dtype.name#'int32'
a.size#元素个数:3
a.itemsize#每个元素所占用的字节数目:4
b=np.array([[1,2,3],[4,5,6]],dtype=int)#创建2*3维数组array([[1,2,3],[4,5,6]])
b.shape#维数信息(2L,3L)
b.size#元素个数:6
b.itemsize#每个元素所占用的字节数目:4
c=np.array([[1,2,3],[4,5,6]],dtype='int16')#创建2*3维数组array([[1,2,3],[4,5,6]],dtype=int16)
c.shape#维数信息(2L,3L)
c.size#元素个数:6
c.itemsize#每个元素所占用的字节数目:2
c.ndim#维数
d=np.array([[1,2,3],[4,5,6]],dtype=complex)#复数二维数组
d.itemsize#每个元素所占用的字节数目:16
d.dtype.name#元素类型:'complex128'
importnumpyasnp
a=np.array([1,2,3],dtype=int)#创建1*3维数组array([1,2,3])
type(a)#numpy.ndarray类型
a.shape#维数信息(3L,)
a.dtype.name#'int32'
a.size#元素个数:3
a.itemsize#每个元素所占用的字节数目:4
b=np.array([[1,2,3],[4,5,6]],dtype=int)#创建2*3维数组array([[1,2,3],[4,5,6]])
b.shape#维数信息(2L,3L)
b.size#元素个数:6
b.itemsize#每个元素所占用的字节数目:4
c=np.array([[1,2,3],[4,5,6]],dtype='int16')#创建2*3维数组array([[1,2,3],[4,5,6]],dtype=int16)
c.shape#维数信息(2L,3L)
c.size#元素个数:6
c.itemsize#每个元素所占用的字节数目:2
c.ndim#维数
d=np.array([[1,2,3],[4,5,6]],dtype=complex)#复数二维数组
d.itemsize#每个元素所占用的字节数目:16
d.dtype.name#元素类型:'complex128'
a1=np.zeros((3,4))#创建3*4全零二维数组
输出:
array([[0.,0.,0.,0.],
[0.,0.,0.,0.],
[0.,0.,0.,0.]])
a1.dtype.name#元素类型:'float64'
a1.size#元素个数:12
a1.itemsize#每个元素所占用的字节个数:8
a2=np.ones((2,3,4),dtype=np.int16)#创建2*3*4全1三维数组
a2=np.ones((2,3,4),dtype='int16')#创建2*3*4全1三维数组
输出:
array([[[1,1,1,1],
[1,1,1,1],
[1,1,1,1]],
[[1,1,1,1],
[1,1,1,1],
[1,1,1,1]]],dtype=int16)
a3=np.empty((2,3))#创建2*3的未初始化二维数组
输出:(mayvary)
array([[1.,2.,3.],
[4.,5.,6.]])
a4=np.arange(10,30,5)#初始值10,结束值:30(不包含),步长:5
输出:array([10,15,20,25])
a5=np.arange(0,2,0.3)#初始值0,结束值:2(不包含),步长:0.2
输出:array([0.,0.3,0.6,0.9,1.2,1.5,1.8])
fromnumpyimportpi
np.linspace(0,2,9)#初始值0,结束值:2(包含),元素个数:9
输出:
array([0.,0.25,0.5,0.75,1.,1.25,1.5,1.75,2.])
x=np.linspace(0,2*pi,9)
输出:
array([0.,0.78539816,1.57079633,2.35619449,3.14159265,
3.92699082,4.71238898,5.49778714,6.28318531])
a=np.arange(6)
输出:
array([0,1,2,3,4,5])
b=np.arange(12).reshape(4,3)
输出:
array([[0,1,2],
[3,4,5],
[6,7,8],
[9,10,11]])
c=np.arange(24).reshape(2,3,4)
输出:
array([[[0,1,2,3],
[4,5,6,7],
[8,9,10,11]],
[[12,13,14,15],
[16,17,18,19],
[20,21,22,23]]])
使用numpy.set_printoptions可以设置numpy变量的打印格式
在ipython环境下,使用help(numpy.set_printoptions)查询使用帮助和示例
加法和减法操作要求操作双方的维数信息一致,均为M*N为数组方可正确执行操作。
a=np.arange(4)
输出:
array([0,1,2,3])
b=a**2
输出:
array([0,1,4,9])
c=10*np.sin(a)
输出:
array([0.,8.41470985,9.09297427,1.41120008])
n<35
输出:
array([True,True,True,True],dtype=bool)
A=np.array([[1,1],[0,1]])
B=np.array([[2,0],[3,4]])
C=A*B#元素点乘
输出:
array([[2,0],
[0,4]])
D=A.dot(B)#矩阵乘法
输出:
array([[5,4],
[3,4]])
E=np.dot(A,B)#矩阵乘法
输出:
array([[5,4],
[3,4]])
多维数组操作过程中的类型转换
When operating with arrays of different types, the type of the
resulting array corresponds to the more general or precise one (a
behavior known as upcasting)
即操作不同类型的多维数组时,结果自动转换为精度更高类型的数组,即upcasting
数组索引、切片和迭代
a=np.ones((2,3),dtype=int)#int32
b=np.random.random((2,3))#float64
b+=a#正确
a+=b#错误
a=np.ones(3,dtype=np.int32)
b=np.linspace(0,pi,3)
c=a+b
d=np.exp(c*1j)
输出:
array([0.54030231+0.84147098j,-0.84147098+0.54030231j,
-0.54030231-0.84147098j])
d.dtype.name
输出:
'complex128'
多维数组的一元操作,如求和、求最小值、最大值等
a=np.random.random((2,3))
a.sum()
a.min()
a.max()
b=np.arange(12).reshape(3,4)
输出:
array([[0,1,2,3],
[4,5,6,7],
[8,9,10,11]])
b.sum(axis=0)#按列求和
输出:
array([12,15,18,21])
b.sum(axis=1)#按行求和
输出:
array([6,22,38])
b.cumsum(axis=0)#按列进行元素累加
输出:
array([[0,1,2,3],
[4,6,8,10],
[12,15,18,21]])
b.cumsum(axis=1)#按行进行元素累加
输出:
array([[0,1,3,6],
[4,9,15,22],
[8,17,27,38]])
universal functions
B=np.arange(3)
np.exp(B)
np.sqrt(B)
C=np.array([2.,-1.,4.])
np.add(B,C)
其他的ufunc函数包括:
all,any,apply_along_axis,argmax,argmin,argsort,average,bincount,ceil,clip,conj,corrcoef,cov,cross,cumprod,cumsum,diff,dot,floor,inner,lexsort,max,maximum,mean,median,min,minimum,nonzero,outer,prod,re,round,sort,std,sum,trace,transpose,var,vdot,vectorize,where
a=np.arange(10)**3
a[2]
a[2:5]
a[::-1]#逆序输出
foriina:
print(i**(1/3.))
deff(x,y):
return10*x+y
b=np.fromfunction(f,(5,4),dtype=int)
b[2,3]
b[0:5,1]
b[:,1]
b[1:3,:]
b[-1]
c=np.array([[[0,1,2],[10,11,12]],[[100,101,102],[110,111,112]]])
输出:
array([[[0,1,2],
[10,11,12]],
[[100,101,102],
[110,111,112]]])
c.shape
输出:
(2L,2L,3L)
c[0,...]
c[0,:,:]
输出:
array([[0,1,2],
[10,11,12]])
c[:,:,2]
c[...,2]
输出:
array([[2,12],
[102,112]])
forrowinc:
print(row)
forelementinc.flat:
print(element)
a=np.floor(10*np.random.random((3,4)))
输出:
array([[3.,9.,8.,4.],
[2.,1.,4.,6.],
[0.,6.,0.,2.]])
a.ravel()
输出:
array([3.,9.,8.,...,6.,0.,2.])
a.reshape(6,2)
输出:
array([[3.,9.],
[8.,4.],
[2.,1.],
[4.,6.],
[0.,6.],
[0.,2.]])
a.T
输出:
array([[3.,2.,0.],
[9.,1.,6.],
[8.,4.,0.],
[4.,6.,2.]])
a.T.shape
输出:
(4L,3L)
a.resize((2,6))
输出:
array([[3.,9.,8.,4.,2.,1.],
[4.,6.,0.,6.,0.,2.]])
a.shape
输出:
(2L,6L)
a.reshape(3,-1)
输出:
array([[3.,9.,8.,4.],
[2.,1.,4.,6.],
[0.,6.,0.,2.]])
详查以下函数:
ndarray.shape,reshape,resize,ravel
a=np.floor(10*np.random.random((2,2)))
输出:
array([[5.,2.],
[6.,2.]])
b=np.floor(10*np.random.random((2,2)))
输出:
array([[0.,2.],
[4.,1.]])
np.vstack((a,b))
输出:
array([[5.,2.],
[6.,2.],
[0.,2.],
[4.,1.]])
np.hstack((a,b))
输出:
array([[5.,2.,0.,2.],
[6.,2.,4.,1.]])
fromnumpyimportnewaxis
np.column_stack((a,b))
输出:
array([[5.,2.,0.,2.],
[6.,2.,4.,1.]])
a=np.array([4.,2.])
b=np.array([2.,8.])
a[:,newaxis]
输出:
array([[4.],
[2.]])
b[:,newaxis]
输出:
array([[2.],
[8.]])
np.column_stack((a[:,newaxis],b[:,newaxis]))
输出:
array([[4.,2.],
[2.,8.]])
np.vstack((a[:,newaxis],b[:,newaxis]))
输出:
array([[4.],
[2.],
[2.],
[8.]])
np.r_[1:4,0,4]
输出:
array([1,2,3,0,4])
np.c_[np.array([[1,2,3]]),0,0,0,np.array([[4,5,6]])]
输出:
array([[1,2,3,0,0,0,4,5,6]])
详细使用请查询以下函数:
hstack,vstack,column_stack,concatenate,c_,r_
a=np.floor(10*np.random.random((2,12)))
输出:
array([[9.,7.,9.,...,3.,2.,4.],
[5.,3.,3.,...,9.,7.,7.]])
np.hsplit(a,3)
输出:
[array([[9.,7.,9.,6.],
[5.,3.,3.,1.]]),array([[7.,2.,1.,6.],
[7.,5.,0.,2.]]),array([[9.,3.,2.,4.],
[3.,9.,7.,7.]])]
np.hsplit(a,(3,4))
输出:
[array([[9.,7.,9.],
[5.,3.,3.]]),array([[6.],
[1.]]),array([[7.,2.,1.,...,3.,2.,4.],
[7.,5.,0.,...,9.,7.,7.]])]
实现类似功能的函数包括:
hsplit,vsplit,array_split
a=np.arange(12)
输出:
array([0,1,2,...,9,10,11])
notatall
b=a
bisa#True
b.shape=3,4
a.shape#(3L,4L)
deff(x)#,sofunctioncallsmakeno.
print(id(x))#id是python对象的唯一标识符
id(a)#111833936L
id(b)#111833936L
f(a)#111833936L
浅复制
c=a.view()
cisa#False
c.baseisa#True
c.flags.owndata#False
c.shape=2,6
a.shape#(3L,4L)
c[0,4]=1234
print(a)
输出:
array([[0,1,2,3],
[1234,5,6,7],
[8,9,10,11]])
s=a[:,1:3]
s[:]=10
print(a)
输出:
array([[0,10,10,3],
[1234,10,10,7],
[8,10,10,11]])
深复制
d=a.()
disa#False
d.baseisa#False
d[0,0]=9999
print(a)
输出:
array([[0,10,10,3],
[1234,10,10,7],
[8,10,10,11]])
numpy基本函数和方法一览
Array Creation
arange,array,,empty,empty_like,eye,fromfile,fromfunction,identity,linspace,logspace,mgrid,ogrid,ones,ones_like,r,zeros,zeros_like
Conversions
ndarray.astype,atleast_1d,atleast_2d,atleast_3d,mat
Manipulations
array_split,column_stack,concatenate,diagonal,dsplit,dstack,hsplit,hstack,ndarray.item,newaxis,ravel,repeat,reshape,resize,squeeze,swapaxes,take,transpose,vsplit,vstack
Questionsall,any,nonzero,where
Ordering
argmax,argmin,argsort,max,min,ptp,searchsorted,sort
Operations
choose,compress,cumprod,cumsum,inner,ndarray.fill,imag,prod,put,putmask,real,sum
Basic Statistics
cov,mean,std,var
Basic Linear Algebra
cross,dot,outer,linalg.svd,vdot
完整的函数和方法一览表链接:
https://docs.scipy.org/doc/numpy-dev/reference/routines.html#routines
Ⅶ python中flatmap和map的区别
map( ):接收一个函数,应用到RDD中的每个元素,然后为每一条输入返回一个对象。
flatMap( ):接收一个函数,应用到RDD中的每个元素,返回一个包含可迭代的类型(如list等)的RDD,可以理解为先Map(),后flat().
Ⅷ 求简洁优美的python代码例子、片段、参考资料
楼主贴的那段代码好像是我写的那段吧,我来告诉你如何写出来的吧
首先我不是高手,我也没有人教,我的编程都是自学的,我只是一个业余爱好者.
写出这样的代码很简单,就是要多练,我只是把python的基本语法学会,然后就不停地练习,我没有看过楼上的那些资料,我只是不停地码代码,或许有捷径,但是我没有发现.
我从07年开始写python的脚本,我一开始的代码风格也很差,特别是我先学c++,然后再转python的,当写的代码越来越多,对python的了解就会加深,代码风格也会自动改变的,不需要着急,其实这就是对一门语言的了解程度,你可以看看我回答的问题,我的回答就是我对python的理解,如果你能坚持下来,相信7年后你写的代码会比我写得更好.
楼上的题目有点意思,我也写一下,不知道对否
s='''
TheZenofPython,byTimPeters
Beautifulisbetterthanugly.
Explicitisbetterthanimplicit.
Simpleisbetterthancomplex.
.
Flatisbetterthannested.
Sparseisbetterthandense.
Readabilitycounts.
Specialcasesaren'tspecialenoughtobreaktherules.
.
Errorsshouldneverpasssilently.
Unlessexplicitlysilenced.
Inthefaceofambiguity,refusethetemptationtoguess.
Thereshouldbeone--andpreferablyonlyone--obviouswaytodoit.
'reDutch.
Nowisbetterthannever.
*right*now.
,it'sabadidea.
,itmaybeagoodidea.
--let'sdomoreofthose!
'''
importre,collections
tail_map={"'s":'is',"'re":'are',"n't":'not'}
data=collections.Counter(re.findall('w+',re.sub("('s|'re|n't)",lambdamatchobj:tail_map[matchobj.group()],s.lower())))
max_len=max(data.values())
print('Totalwordcount:%d',sum(data.values()))
forwordinsorted(data):
print('%*s=>%d'%(max_len,word,data[word]))
Ⅸ 如何成为Python高手
链接:https://pan..com/s/1Nb7euy7yqFQqALbBgKzlVw
Python 编程高手之路。本课程分五个阶段,详细的为您打造高手之路,本课程适合有一定python基础的同学。
用Python可以做什么?可以做日常任务,比如自动备份你的MP3;可以做网站,很多着名的网站就是Python写的。总之就是能干很多很多事。
课程目录:
第一阶段
第一章:用户交互
第二章:流程控制
第三章:数据类型
第四章:字符编码
第五章:文件处理
第二阶段
第六章:函数概述
第七章:闭包函数
......
Ⅹ python 提问
拿出纸和铅笔,从start()开始,遇到一个函数就用箭头指向它,自上而下或者自左至右,随便;出来一个图后,应该在cthulhu_room()会回调start();接着把箭头那标上指向它的条件,最后你就明白了。