A. python有哪些技术上的优点比其他语言好在哪儿
Python有哪些技术上的优点
1. 面向对象和函数式
从根本上讲,Python是一种面向对象的语言。它的类模型支持多态、运算符重载和多重继承等高级概念,并且以Python特有的简洁的语法和类型为背景,OOP十分易于使用。事实上,即使你不懂这些术语,仍会发现学习Python比学习其他OOP语言要容易得多。
除了作为一种强大的代码组织和重用手段以外,Python的OOP本质使它成为其他面向对象系统语言的理想脚本工具。例如,通过适当的粘接代码,Python程序可以对C++、java和C#的类进行子类的定制。
OOP只是Python的一个选择而已,这一点非常重要。即使不能立马成为一个面向对象高手,但你同样可以继续深入学习。就像C++一样,Python既支持面向对象编程也支持面向过程编程的模式。如果条件允许,其面向对象的工具可以立即派上用场。这对策略开发模式十分有用,该模式常用于软件开发的设计阶段。
除了最初的过程式(语句为基础)和面向对象(类为基础)的编程范式,Python在最近几年内置了对函数式编程的支持——一个多数情况下包括生成器、推导、闭包、映射、装饰器、匿名lambda函数和第一类函数对象的集合。这是对其本身OOP工具的补充和替代。
2. 免费
Python的使用和分发是完全免费的。就像其他的开源软件一样,例如,Tcl、Perl、Linux和Apache。你可以从Internet上免费获得Python的源代码。你可以不受限制地复制Python,或将其嵌入你的系统或者随产品一起发布。实际上,如果你愿意的话,甚至可以销售它的源代码。
但请别误会:“免费”并不代表“没有支持”。恰恰相反,Python的在线社区对用户需求的响应和商业软件一样快。而且,由于Python完全开放源代码,提高了开发者的实力,并产生了一个很大的专家团队。
尽管研究或改变一种程序语言的实现并不是对每一个人来说都那么有趣,但是当你知道如果需要的话可以做到这些,该是多么的令人欣慰。你不需要去依赖商业厂商的智慧,因为最终的文档和终极的净土(源码)任凭你的使用。
Python的开发是由社区驱动的,是Internet大范围的协同合作努力的结果。Python语言的改变必须遵循一套规范而有约束力的程序(称作PEP流程),并需要经过规范的测试系统进行彻底检查。正是这样才使得Python相对于其他语言和系统可以保守地持续改进。
尽管Python 2.X和Python 3.X版本之间的分裂有力并蓄意地破坏了这项传统,但通常它仍然体现在Python的这两个系列内部。
B. Python数据类型和数据结构。
1.1元组的创建
创建时可不指定元素的个数,相当于不定长的数组,但一旦创建就不能修改元组的长度。
tuple = (元素1, 元素2, ...)
#创建并初始化
tuple = ("apple", "banana","grape", "orange" )
#创建一个空的元组
tuple = ()
C. python中的数据结构分析
1.Python数据结构篇
数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introction to Algorithms)
中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例
如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文
章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。
**这一部分是下
面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比
较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**
(1)[搜索](Python Data Structures)
简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)
(2)[排序](Python Data Structures)
简述各种排序算法的思想以及它的图示和实现
(3)[数据结构](Python Data Structures)
简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆
(4)[树总结](Python Data Structures)
简述二叉树,详述二叉搜索树和AVL树的思想和实现
2.Python算法设计篇
算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introction to Algorithms),
内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排
序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并
没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但
是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来
了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过!
这里每篇文章都有实现代码,但是代码我一般都不会分
析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算
法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟
们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。
本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原着的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原着英文内容。
**1.
你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这
个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇
文章之后都还有一两道小题练手哟**
**2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂
不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科
普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵**
**3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**
(1)[Python Algorithms - C1 Introction](Python Algorithms)
本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。
(2)[Python Algorithms - C2 The basics](Python Algorithms)
**本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**
(3)[Python Algorithms - C3 Counting 101](Python Algorithms)
原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法
(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)
**本节主要介绍算法设计的三个核心知识:Inction(推导)、Recursion(递归)和Rection(规约),这是原书的重点和难点部分**
(5)[Python Algorithms - C5 Traversal](Python Algorithms)
**本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**
(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)
**本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**
(7)[Python Algorithms - C7 Greedy](Python Algorithms)
**本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**
(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)
**本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**
(9)[Python Algorithms - C9 Graphs](Python Algorithms)
**本节主要介绍图算法中的各种最短路径算法,从不同的角度揭示它们的内核以及它们的异同**
D. python常见数据类型
一,python整数类型所表示的数据。
1,一般用以表示一类数值:所有正整数,0和负整数;
2,整型作为最常用的,频繁参与计算的数据类型,在python3.5中解释器会自动在内存中创建-5-3000之间的(包含5,不包含3000)整型对象,也就是说在该范围内,相等都是同一个已经创建好的整型对象。范围之外的即使相等也表示不同对象,该特性随python版本而改变,不要过于依赖。
3,bool型继承了int型,他是int的子类。
4,Python2中有长整型long,数值范围更大,在python3中已取消,所有整型统一由int表示。
5,参与所有数值计算,数学运算,科学计算。这也是所有编程语言都有的数据类型,因为编程语言生而需要模拟人的思维,借助数学方式,自动计算、更好的解决大量重复性的事务,因此数值类型、整数类型在编程语言中不可或缺。
6,支持二进制(0b\0B开头),十进制,八进制(0o\0O),十六进制(0x\0X)
二,python整数和浮点型支持常规的数值运算
整数和浮点数都可参与的运算:+ - * / %(取余) //(整除) **(幂)
Python字符型:
python字符型表示的数据:
python3支持Unicode编码,由字母、数字和符号组成的形式就叫字符串,更接近或者相同与人们文字符号表示,因此在信息表示和传递时它也是最受认可的形式。在程序编写中也是非常常用,对应的可操作的方法也很多,很有意思。
字符串不可被修改,可以拼接等方法创建新字符串对象;
支持分片和下标操作;a[2:]
支持+拼接,*重复操作和成员关系in/not in;
表示形式:用单引号双引号包含起来的符号;a = str(‘sdfsdfsdf’) 或 r’\t\nabcd’ 原始字符,Bytes:b’abcd’;
6,字符串属于不可变数据类型,内部机制为了节省空间,相同的两个字符串表示相同的一个对象。a = ‘python’ b = ‘python’ a is b :True
二, 字符串支持的运算方法
1,capitalize() :首字母大写后边的字母小写 a = ‘abcd’ b = a.capitalize() b:Abcd
2,casefold() lower():字母转换为全小写
3,center(width,fillchar) :居中,width填补的长度;fillchar添加的字符
a = a.center(10,’_’) //’____abcd____’ 默认无fillchar填充空格
4,count(sub,star,end) :字母计数:sub要查询的字符
5,encode(encoding=’utf-8’,errors=’strict’) 设置编码
Errors :设置错误类型
6,endswith(suffix,star,end) : 若以suffix结尾返回True
7,expandtabs(8) :设置字符串中tab按键符的空格长度:’\tabcde’
8,find(sub,star,end) : 返回指定范围内的字符串下标,未找到返回-1
9,index(sub,star,end) :返回指定范围字符串下标未找到抛出异常
10,isalnum() :判断字符串是否是字母或数字,或字母和数字组合
11,isalpha() :判断是否全是字母
12,isdecimal() :判断字符串是否是十进制数值
13,isdigit() :判断字符串是否是数字
14,isidentifier() :判断字符串中是否包含关键字
15,islower() :判断是否全小写
16,isnumeric() :判断全是数字
17,isspace() :判断是否是空格
18,isupper() 判断是否大写
19,istitle() :判断是否首字母大写
20,join(iterable) :把可迭代对象用字符串进行分割:a.join(‘123’)
21,ljust(width,fillchar);rjust() :左对齐右对齐
22, upper() :将字符串改为大写
23,split(sep=None,maxsplit=-1) :分割一个字符串,被选中字符在字符串中删除
‘ab1cd1efg’.split(‘1’) :[‘ab’,’cd’,’efg’]
三,字符串格式化:按照规格输出字符串
format(*args,**kwargs) :args位置参数,kwargs关键字参数
‘{0:.1f}’.format(123.468) :格式化参数,小数点后保留1位四舍五入
四,字符串操作符%
1,%s :格式化字符串 ‘abcd%sdef’%’dddd’
2,%d:格式化整数
3,%o格式化无符号八进制
4,%x格式化无符号十六进制
5,%f格式化定点数
6, %e: 科学计数法格式化定点数
7,%g 根据值大小自动选%f,%e
8, %G E X :大写形式
五,格式化辅助命令:
m.n :m最小总宽度,n小数点后位数:’%12.4f’%23456.789
六,转义字符:字符串前r避免转义:r’\nhello\thi’
\n:换行符
\t:横向制表符
\':'
\":"
\b:退格符
\r:回车
\v:纵向制表符
\f:换页符
\o,\x:八进制和十六进制
\0:空字符串
Python列表list
一,Python的列表list类型表示的数据:
Python列表在cpython中被解释为长度可变的数组,用其他对象组成的连续数组。
列表中元素可以是相同或不同的数据类型;
当列表元素增加或删除时,列表对象自动进行扩展或收缩内存,保证元素之间没有缝隙,总是连续的。
Python中的列表是一个序列,也是一个容器类型
创建列表:a = []; b = [1,’python’]; c = list(); d = list((1,3,4,5))
支持切片操作list[start,stop,step]
python列表常用方法
1,append添加单个元素:list.append(object); //a.append(‘python’)
2,extend添加可迭代对象: list.extend(iterable); //a.extend(‘abcde’/[1,2,3])
3,insert 插入元素:list.insert(index,object): 在index下标前插入元素//a.insert(2,’python’)
4,clear 清空所有元素:list.clear() //a.clear()
5,pop 删除并返回一个元素:list.pop(index) //默认删除默认一个元素
remove 删除指定元素:list.remove(v) ,v元素不存在报错 //a.remove(‘c’)
7,count 返回这个值在列表中数量:list.count(value)
8, 浅拷贝一个新列表:list.()
9,sort:排序list.sort(reverse=False/True) :默认升序
排序函数:sorted(list)
10,reverse: 原地翻转:list.reverse()
11,index(value,star,stop) :指定范围内该值下标:list.index(2,0,5)
列表元素访问:
下标访问:list[1]
For循环遍历
通过下标修改元素:list[2 ] = ‘hello’
列表常用运算符:
1,比较运算符:从第一个元素开始对比
2,+ 拼接一个新列表:l1+ l2
3, 重复操作符:* ,多个列表拼接
成员关系操作符:in/ not in
逻辑运算符:and not or
列表常用的排序方法:
冒泡排序;选择排序;快速排序;归并排序
Python元组tuple
一,Python元组tuple数据类型表示的数据:
元组是受到限制的、不可改变的列表;
可以是同构也可以是异构;
元组是序列类型、是可迭代对象,是容器类型。
元组的创建: a = (1,2,3)或a=1,2,3; b = tuple(); c = tuple(iterable)
支持切片操作tuple[start,stop,step]
二,python元组常用方法
1,index(value,star,stop) :指定范围内该值下标:tuple.index(2,0,5)
2,count(value) :值出现次数
三,支持运算:
1,比较运算符:从第一个元素开始对比
2,+ 拼接一个新元组:l1+ l2
3, 重复操作符:* ,多个元组拼接
4成员关系操作符:in/ not in
逻辑运算符:and not or
四,元组的访问
下标操作;
For循环遍历访问。
Python字典类型
一,Python字典dict表示的数据:{key:value}
可根据关键字:键快速索引到对应的值;
字典是映射类型,键值对一一对应关系,不是序列;
字典元素是无序的;
字典是可迭代对象,是容器类型;
字典的创建:k = {}; k1={‘keyword’:object}; k2 = dict();
K3 = dict(mapping); dict=(iterable)
二,字典的访问:
通过key:k[‘key’]
修改key对应的值:K[‘key’] = value
For循环遍历出来的是key;
For循环键值对:for I in d.items():
For 循环enumerate: for k,v in enumerate(k1):
In/not in 成员关系查询键不支持查值
三,字典常用方法
get(key,de):获取值:k.get(key,de) //若不存在则默认输出de
pop(k,de):删除一个键值对,不存在输出de,未设置报错;
keys() :返回字典所有key组成的序列:list(k.keys()) [1,2,3];
values():返回字典所有value组成的序列:list(k.values())
items():返回键值对组成的元组为元素的序列:(类set)list(k.items())
update(e):更新字典:e可是字典或两元素组成的单位元素序列:e=[(5,6),(7,8)];
k.update(e)
clear():清空字典;
popitem()删除某个键值对,若字典为空则报错
() :浅拷贝
10, fromkeys(iterable,value=None):从可迭代对象创建字典
{}.fromkeys([1,2,3]) -----{1:None,2:None,3:None}
11,setdefault(k,d=None) :若key不存在则生成一个键值对
k.setdefault(‘keyword’)
Python 集合set
集合表示的数据:
多个元素的无序组合,集合是无序的,集合元素是唯一的;
字典的键是由集合实现的;
集合是可迭代对象
集合创建:s = {1,2}; s1 = set(); s2 = set(iterable)
集合元素的访问:
For 循环将集合所有元素全部访问一遍,不重复
常用方法:
add(object):s.add(‘hi’) 向集合添加一个元素
pop() :弹栈,集合为空则报错:删除任意一个元素;
clear():清空集合,返回一个空集合对象;
remove(object):删除一个元素,不存在和报错:s.remove(‘hi’)
update(集合):更新另一个集合,元素不存在则不更新;
() :浅拷贝
集合的运算:
交集:s1&s2;
差集,补集:s1-s2;
并集:s1|s2;
Issubset():判断是否是子集:s1.issubset(s2) s1是否s2的集合子集
Issuperset():判断是否是父集:s1.issuperset()
不可变集合:
Frozenset():返回一个空的不可变集合对象
Frozenset(iterable):
S = frozenset(iterable)
Python序列类型共同特性
一,序列类型共同特性
python序列类型有:str字符串,list列表,tuple元组
都支持下标索引,切片操作;
下标都是从0开始,都可通过下标进行访问;
拥有相同的操作符
二,支持的函数:
len(obj):返回对象长度;
list(iterable):将可迭代对象转为列表;
tuple(iterable):将可迭代对象转为元组;
str(ojb):将任何对象转为字符串形式;
max(iterable): python3中元素要是同类型,python2中元素可异构:max([‘a’,1])
min(iterable):和max类似;
sum(iterable,star=0),求可迭代对象和,默认star为0,元素不能为字符串
sorted(iterable,key=None,reverse=False)
s=[(‘a’,3),(‘b’,2),(‘c’,9)]
sorted(s,key=lambda s:s[1]) //按照数字排序
reversed(sequence):翻转序列,返回迭代器
enumerate(iterable):返回enumerate对象,其元素都是一个元组(下标,值)
zip(iter1,iter2): zip([1,2],[3,4]) ----[(1,3),(2,4)]
序列类型的切片操作:
Slice:
L[index]; 访问某个元素;
L[1:4]; 区间
L[star:stop:step]; 设置步长取区间元素
E. python 如何表示数据结构
Python中最基本的数据结构。序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推
列表
1、定义列表,取出列表中的值
1
1 names = [] #定义空列表 2 names = ['a','b','c'] #定义一个非空列表 3 4 # 取出列表中的值 5 6 >>> names = ['a','b','c'] 7 >>> names[0] 8 'a' 9 >>> names[1]10 'b'11 >>> names[2]12 'c'13 >>> names[-1]#倒着取最后一个值14 'c'
2、切片
1
1 >>> names = ['a','b','c','d'] # 列表的下标值是从0开始取值的 2 >>> names[1:3] #取1到3之间的元素,包括1,不包括3 3 ['b', 'c'] 4 >>> names[1:-1] #取1到-1之间的元素,包括1,不包括-1 5 ['b', 'c'] 6 >>> names[0:3] 7 ['a', 'b', 'c'] 8 >>> names[:3] #从头开始取,0可以省略,效果等同于names[0:3] 9 ['a', 'b', 'c']10 >>> names[3:] #想取到最后一个值,必须不能写-1,只能这么写11 ['d']12 >>> names[0::2] #后面的2表示:每隔一个元素就取一个13 ['a', 'c']14 >>> names[::2] #从头开始0可以省略,效果跟上一句一样15 ['a', 'c']
切片小结:
①序列始终都是从左向右切片的,不能是从右向左
①列表切片时,起始位的元素是包括的,结束位的元素是不包括(又叫顾头不顾尾),最后一个位置表示步长(names[开始位:结束位:步长])
②如果从0位置取值,0可以省略
③想取最后一个值时,结束位不能是-1,因为结束位的元素不包括,所以只能留空
F. Python中内置的数据结构都有什么
python中常见的结构有对象(object)、数组、元组、series以及普通变量。衍生包常见对象有numpy中的narray、pandas中的dataframe等。python中没有区分字符串、整形数字、字符、浮点型的变量,统一都可以直接赋值。比如a="skkk",a=1,a=1.2222等;数组为a=[1,2,3,4];元组也称字典类型为a={1:2,2:3}。
G. python的数据结构
{
u'603993.XSHG': {
'high': array([ 7.05, 6.73]),
'close': array([ 6.89, 6.2 ]),
'low': array([ 6.7, 6.2])
}
}
最外层是一个dict,然后嵌套了一个dict,最后里面dict的key是字符串,value是一个数组。
H. Python 数据结构
python的切片操作。
http://www..com/s?wd=python+%C7%D0%C6%AC
这一块我也不是很熟练。
I. 有哪些用 Python 语言讲算法和数据结构的书
Python常见数据结构整理
Python中常见的数据结构可以统称为容器(container)。序列(如列表和元组)、映射(如字典)以及集合(set)是三类主要的容器。
一、序列(列表、元组和字符串)
序列中的每个元素都有自己的编号。Python中有6种内建的序列。其中列表和元组是最常见的类型。其他包括字符串、Unicode字符串、buffer对象和xrange对象。下面重点介绍下列表、元组和字符串。
1、列表
列表是可变的,这是它区别于字符串和元组的最重要的特点,一句话概括即:列表可以修改,而字符串和元组不能。
(1)、创建
通过下面的方式即可创建一个列表:
1
2
3
4
list1=['hello','world']
print list1
list2=[1,2,3]
print list2
输出:
['hello', 'world']
[1, 2, 3]
可以看到,这中创建方式非常类似于javascript中的数组。
(2)、list函数
通过list函数(其实list是一种类型而不是函数)对字符串创建列表非常有效:
1
2
list3=list("hello")
print list3
输出:
['h', 'e', 'l', 'l', 'o']
2、元组
元组与列表一样,也是一种序列,唯一不同的是元组不能被修改(字符串其实也有这种特点)。
(1)、创建
1
2
3
4
5
6
t1=1,2,3
t2="jeffreyzhao","cnblogs"
t3=(1,2,3,4)
t4=()
t5=(1,)
print t1,t2,t3,t4,t5
输出:
(1, 2, 3) ('jeffreyzhao', 'cnblogs') (1, 2, 3, 4) () (1,)
从上面我们可以分析得出:
a、逗号分隔一些值,元组自动创建完成;
b、元组大部分时候是通过圆括号括起来的;
c、空元组可以用没有包含内容的圆括号来表示;
d、只含一个值的元组,必须加个逗号(,);
(2)、tuple函数
tuple函数和序列的list函数几乎一样:以一个序列(注意是序列)作为参数并把它转换为元组。如果参数就算元组,那么该参数就会原样返回:
1
2
3
4
5
6
7
8
t1=tuple([1,2,3])
t2=tuple("jeff")
t3=tuple((1,2,3))
print t1
print t2
print t3
t4=tuple(123)
print t45
输出:
(1, 2, 3)
('j', 'e', 'f', 'f')
(1, 2, 3)
Traceback (most recent call last):
File "F:\Python\test.py", line 7, in <mole>
t4=tuple(123)
TypeError: 'int' object is not iterable
3、字符串
(1)创建
1
2
3
4
5
str1='Hello world'
print str1
print str1[0]
for c in str1:
print c
输出:
Hello world
H
H
e
l
l
o
w
o
r
l
d
(2)格式化
字符串格式化使用字符串格式化操作符即百分号%来实现。
1
2
str1='Hello,%s' % 'world.'
print str1
格式化操作符的右操作数可以是任何东西,如果是元组或者映射类型(如字典),那么字符串格式化将会有所不同。
1
2
3
4
5
6
strs=('Hello','world') #元组
str1='%s,%s' % strs
print str1
d={'h':'Hello','w':'World'} #字典
str1='%(h)s,%(w)s' % d
print str1
输出:
Hello,world
Hello,World
注意:如果需要转换的元组作为转换表达式的一部分存在,那么必须将它用圆括号括起来:
1
2
str1='%s,%s' % 'Hello','world'
print str1
输出:
Traceback (most recent call last):
File "F:\Python\test.py", line 2, in <mole>
str1='%s,%s' % 'Hello','world'
TypeError: not enough arguments for format string
如果需要输出%这个特殊字符,毫无疑问,我们会想到转义,但是Python中正确的处理方式如下:
1
2
str1='%s%%' % 100
print str1
输出:100%
对数字进行格式化处理,通常需要控制输出的宽度和精度:
1
2
3
4
5
6
7
from math import pi
str1='%.2f' % pi #精度2
print str1
str1='%10f' % pi #字段宽10
print str1
str1='%10.2f' % pi #字段宽10,精度2
print str1
输出:
3.14
3.141593
3.14
字符串格式化还包含很多其他丰富的转换类型,可参考官方文档。
Python中在string模块还提供另外一种格式化值的方法:模板字符串。它的工作方式类似于很多UNIX Shell里的变量替换,如下所示:
1
2
3
4
from string import Template
str1=Template('$x,$y!')
str1=str1.substitute(x='Hello',y='world')
print str1
输出:
Hello,world!
如果替换字段是单词的一部分,那么参数名称就必须用括号括起来,从而准确指明结尾:
1
2
3
4
from string import Template
str1=Template('Hello,w${x}d!')
str1=str1.substitute(x='orl')
print str1
输出:
Hello,world!
如要输出符,可以使用$输出:
1
2
3
4
from string import Template
str1=Template('$x$$')
str1=str1.substitute(x='100')
print str1
输出:100$
除了关键字参数之外,模板字符串还可以使用字典变量提供键值对进行格式化:
1
2
3
4
5
from string import Template
d={'h':'Hello','w':'world'}
str1=Template('$h,$w!')
str1=str1.substitute(d)
print str1
输出:
Hello,world!
除了格式化之外,Python字符串还内置了很多实用方法,可参考官方文档,这里不再列举。
4、通用序列操作(方法)
从列表、元组以及字符串可以“抽象”出序列的一些公共通用方法(不是你想象中的CRUD),这些操作包括:索引(indexing)、分片(sliceing)、加(adding)、乘(multiplying)以及检查某个元素是否属于序列的成员。除此之外,还有计算序列长度、最大最小元素等内置函数。
(1)索引
1
2
3
4
5
6
str1='Hello'
nums=[1,2,3,4]
t1=(123,234,345)
print str1[0]
print nums[1]
print t1[2]
输出
H
2
345
索引从0(从左向右)开始,所有序列可通过这种方式进行索引。神奇的是,索引可以从最后一个位置(从右向左)开始,编号是-1:
1
2
3
4
5
6
str1='Hello'
nums=[1,2,3,4]
t1=(123,234,345)
print str1[-1]
print nums[-2]
print t1[-3]
输出:
o
3
123
(2)分片
分片操作用来访问一定范围内的元素。分片通过冒号相隔的两个索引来实现:
1
2
3
4
5
6
7
8
nums=range(10)
print nums
print nums[1:5]
print nums[6:10]
print nums[1:]
print nums[-3:-1]
print nums[-3:] #包括序列结尾的元素,置空最后一个索引
print nums[:] #复制整个序列
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[1, 2, 3, 4]
[6, 7, 8, 9]
[1, 2, 3, 4, 5, 6, 7, 8, 9]
[7, 8]
[7, 8, 9]
不同的步长,有不同的输出:
1
2
3
4
5
6
7
8
nums=range(10)
print nums
print nums[0:10] #默认步长为1 等价于nums[1:5:1]
print nums[0:10:2] #步长为2
print nums[0:10:3] #步长为3
##print nums[0:10:0] #步长为0
print nums[0:10:-2] #步长为-2
输出:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 2, 4, 6, 8]
[0, 3, 6, 9]
[]
(3)序列相加
1
2
3
4
5
6
7
str1='Hello'
str2=' world'
print str1+str2
num1=[1,2,3]
num2=[2,3,4]
print num1+num2
print str1+num1
输出:
Hello world
[1, 2, 3, 2, 3, 4]
Traceback (most recent call last):
File "F:\Python\test.py", line 7, in <mole>
print str1+num1
TypeError: cannot concatenate 'str' and 'list' objects
(4)乘法
1
2
3
4
5
6
print [None]*10
str1='Hello'
print str1*2
num1=[1,2]
print num1*2
print str1*num1
输出:
[None, None, None, None, None, None, None, None, None, None]
HelloHello
[1, 2, 1, 2]
Traceback (most recent call last):
File "F:\Python\test.py", line 5, in <mole>
print str1*num1
TypeError: can't multiply sequence by non-int of type 'list'
(5)成员资格
in运算符会用来检查一个对象是否为某个序列(或者其他类型)的成员(即元素):
1
2
3
4
5
str1='Hello'
print 'h' in str1
print 'H' in str1
num1=[1,2]
print 1 in num1
输出:
False
True
True
(6)长度、最大最小值
通过内建函数len、max和min可以返回序列中所包含元素的数量、最大和最小元素。
1
2
3
4
5
6
7
8
str1='Hello'
print len(str1)
print max(str1)
print min(str1)
num1=[1,2,1,4,123]
print len(num1)
print max(num1)
print min(num1)
输出:
5
o
H
5
123
1
二、映射(字典)
映射中的每个元素都有一个名字,如你所知,这个名字专业的名称叫键。字典(也叫散列表)是Python中唯一内建的映射类型。
1、键类型
字典的键可以是数字、字符串或者是元组,键必须唯一。在Python中,数字、字符串和元组都被设计成不可变类型,而常见的列表以及集合(set)都是可变的,所以列表和集合不能作为字典的键。键可以为任何不可变类型,这正是Python中的字典最强大的地方。
1
2
3
4
5
6
7
8
list1=["hello,world"]
set1=set([123])
d={}
d[1]=1
print d
d[list1]="Hello world."
d[set1]=123
print d
输出:
{1: 1}
Traceback (most recent call last):
File "F:\Python\test.py", line 6, in <mole>
d[list1]="Hello world."
TypeError: unhashable type: 'list'
2、自动添加
即使键在字典中并不存在,也可以为它分配一个值,这样字典就会建立新的项。
3、成员资格
表达式item in d(d为字典)查找的是键(containskey),而不是值(containsvalue)。
Python字典强大之处还包括内置了很多常用操作方法,可参考官方文档,这里不再列举。
思考:根据我们使用强类型语言的经验,比如C#和Java,我们肯定会问Python中的字典是线程安全的吗?
三、集合
集合(Set)在Python 2.3引入,通常使用较新版Python可直接创建,如下所示:
strs=set(['jeff','wong','cnblogs'])
nums=set(range(10))
看上去,集合就是由序列(或者其他可迭代的对象)构建的。集合的几个重要特点和方法如下:
1、副本是被忽略的
集合主要用于检查成员资格,因此副本是被忽略的,如下示例所示,输出的集合内容是一样的。
1
2
3
4
5
set1=set([0,1,2,3,0,1,2,3,4,5])
print set1
set2=set([0,1,2,3,4,5])
print set2
输出如下:
set([0, 1, 2, 3, 4, 5])
set([0, 1, 2, 3, 4, 5])
2、集合元素的顺序是随意的
这一点和字典非常像,可以简单理解集合为没有value的字典。
1
2
strs=set(['jeff','wong','cnblogs'])
print strs
输出如下:
set(['wong', 'cnblogs', 'jeff'])
J. Python中如何实现基本的数据结构
要学的,python只是继承了list,dict,set等常用的数据结构。一般情况只要将几种内置对象组合就可以。如果你要实现复杂的数据结构还是要自己实现。