导航:首页 > 操作系统 > linux进程调度算法

linux进程调度算法

发布时间:2022-10-03 02:32:50

1. linux操作系统的组成有哪几部分

Linux操作系统主要由五个基本部分组成:进程调度、内存管理、虚拟文件系统、网络接口、进程间通信。
进程调度:控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的程序,可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其他资源,则该进程不可运行进程。Linux使用比较简单的基于优先级的进程调度算法选择新的进程。
内存管理:允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码、数据、堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序则保留在磁盘中。必要时,操作系统负责在磁盘和内存空间交换程序块。
虚拟文件系统:隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2、fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。
网络接口:提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议,网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。
进程间通讯:支持进程间各种通信机制。

2. linux环境下的进程调度算法有哪些

第一部分: 实时调度算法介绍

对于什么是实时系统,POSIX 1003.b作了这样的定义:指系统能够在限定的响应时间内提供所需水平的服务。而一个由Donald Gillies提出的更加为大家接受的定义是:一个实时系统是指计算的正确性不仅取决于程序的逻辑正确性,也取决于结果产生的时间,如果系统的时间约束条件得不到满足,将会发生系统出错。

实时系统根据其对于实时性要求的不同,可以分为软实时和硬实时两种类型。硬实时系统指系统要有确保的最坏情况下的服务时间,即对于事件的响应时间的截止期限是无论如何都必须得到满足。比如航天中的宇宙飞船的控制等就是现实中这样的系统。其他的所有有实时特性的系统都可以称之为软实时系统。如果明确地来说,软实时系统就是那些从统计的角度来说,一个任务(在下面的论述中,我们将对任务和进程不作区分)能够得到有确保的处理时间,到达系统的事件也能够在截止期限到来之前得到处理,但违反截止期限并不会带来致命的错误,像实时多媒体系统就是一种软实时系统。

一个计算机系统为了提供对于实时性的支持,它的操作系统必须对于CPU和其他资源进行有效的调度和管理。在多任务实时系统中,资源的调度和管理更加复杂。本文下面将先从分类的角度对各种实时任务调度算法进行讨论,然后研究普通的 Linux操作系统的进程调度以及各种实时Linux系统为了支持实时特性对普通Linux系统所做的改进。最后分析了将Linux操作系统应用于实时领域中时所出现的一些问题,并总结了各种实时Linux是如何解决这些问题的。

1. 实时CPU调度算法分类

各种实时操作系统的实时调度算法可以分为如下三种类别[Wang99][Gopalan01]:基于优先级的调度算法(Priority-driven scheling-PD)、基于CPU使用比例的共享式的调度算法(Share-driven scheling-SD)、以及基于时间的进程调度算法(Time-driven scheling-TD),下面对这三种调度算法逐一进行介绍。

1.1. 基于优先级的调度算法

基于优先级的调度算法给每个进程分配一个优先级,在每次进程调度时,调度器总是调度那个具有最高优先级的任务来执行。根据不同的优先级分配方法,基于优先级的调度算法可以分为如下两种类型[Krishna01][Wang99]:

静态优先级调度算法:

这种调度算法给那些系统中得到运行的所有进程都静态地分配一个优先级。静态优先级的分配可以根据应用的属性来进行,比如任务的周期,用户优先级,或者其它的预先确定的策略。RM(Rate-Monotonic)调度算法是一种典型的静态优先级调度算法,它根据任务的执行周期的长短来决定调度优先级,那些具有小的执行周期的任务具有较高的优先级。

动态优先级调度算法:

这种调度算法根据任务的资源需求来动态地分配任务的优先级,其目的就是在资源分配和调度时有更大的灵活性。非实时系统中就有很多这种调度算法,比如短作业优先的调度算法。在实时调度算法中, EDF算法是使用最多的一种动态优先级调度算法,该算法给就绪队列中的各个任务根据它们的截止期限(Deadline)来分配优先级,具有最近的截止期限的任务具有最高的优先级。

1.2. 基于比例共享调度算法

虽然基于优先级的调度算法简单而有效,但这种调度算法提供的是一种硬实时的调度,在很多情况下并不适合使用这种调度算法:比如象实时多媒体会议系统这样的软实时应用。对于这种软实时应用,使用一种比例共享式的资源调度算法(SD算法)更为适合。

比例共享调度算法指基于CPU使用比例的共享式的调度算法,其基本思想就是按照一定的权重(比例)对一组需要调度的任务进行调度,让它们的执行时间与它们的权重完全成正比。

我们可以通过两种方法来实现比例共享调度算法[Nieh01]:第一种方法是调节各个就绪进程出现在调度队列队首的频率,并调度队首的进程执行;第二种做法就是逐次调度就绪队列中的各个进程投入运行,但根据分配的权重调节分配个每个进程的运行时间片。

比例共享调度算法可以分为以下几个类别:轮转法、公平共享、公平队列、彩票调度法(Lottery)等。

比例共享调度算法的一个问题就是它没有定义任何优先级的概念;所有的任务都根据它们申请的比例共享CPU资源,当系统处于过载状态时,所有的任务的执行都会按比例地变慢。所以为了保证系统中实时进程能够获得一定的CPU处理时间,一般采用一种动态调节进程权重的方法。

1.3. 基于时间的进程调度算法

对于那些具有稳定、已知输入的简单系统,可以使用时间驱动(Time-driven:TD)的调度算法,它能够为数据处理提供很好的预测性。这种调度算法本质上是一种设计时就确定下来的离线的静态调度方法。在系统的设计阶段,在明确系统中所有的处理情况下,对于各个任务的开始、切换、以及结束时间等就事先做出明确的安排和设计。这种调度算法适合于那些很小的嵌入式系统、自控系统、传感器等应用环境。

这种调度算法的优点是任务的执行有很好的可预测性,但最大的缺点是缺乏灵活性,并且会出现有任务需要被执行而CPU却保持空闲的情况。

2. 通用Linux系统中的CPU调度

通用Linux系统支持实时和非实时两种进程,实时进程相对于普通进程具有绝对的优先级。对应地,实时进程采用SCHED_FIFO或者SCHED_RR调度策略,普通的进程采用SCHED_OTHER调度策略。

在调度算法的实现上,Linux中的每个任务有四个与调度相关的参数,它们是rt_priority、policy、priority(nice)、counter。调度程序根据这四个参数进行进程调度。

在SCHED_OTHER 调度策略中,调度器总是选择那个priority+counter值最大的进程来调度执行。从逻辑上分析,SCHED_OTHER调度策略存在着调度周期(epoch),在每一个调度周期中,一个进程的priority和counter值的大小影响了当前时刻应该调度哪一个进程来执行,其中 priority是一个固定不变的值,在进程创建时就已经确定,它代表了该进程的优先级,也代表这该进程在每一个调度周期中能够得到的时间片的多少; counter是一个动态变化的值,它反映了一个进程在当前的调度周期中还剩下的时间片。在每一个调度周期的开始,priority的值被赋给 counter,然后每次该进程被调度执行时,counter值都减少。当counter值为零时,该进程用完自己在本调度周期中的时间片,不再参与本调度周期的进程调度。当所有进程的时间片都用完时,一个调度周期结束,然后周而复始。另外可以看出Linux系统中的调度周期不是静态的,它是一个动态变化的量,比如处于可运行状态的进程的多少和它们priority值都可以影响一个epoch的长短。值得注意的一点是,在2.4以上的内核中, priority被nice所取代,但二者作用类似。

可见SCHED_OTHER调度策略本质上是一种比例共享的调度策略,它的这种设计方法能够保证进程调度时的公平性--一个低优先级的进程在每一个epoch中也会得到自己应得的那些CPU执行时间,另外它也提供了不同进程的优先级区分,具有高priority值的进程能够获得更多的执行时间。

对于实时进程来说,它们使用的是基于实时优先级rt_priority的优先级调度策略,但根据不同的调度策略,同一实时优先级的进程之间的调度方法有所不同:

SCHED_FIFO:不同的进程根据静态优先级进行排队,然后在同一优先级的队列中,谁先准备好运行就先调度谁,并且正在运行的进程不会被终止直到以下情况发生:1.被有更高优先级的进程所强占CPU;2.自己因为资源请求而阻塞;3.自己主动放弃CPU(调用sched_yield);

SCHED_RR:这种调度策略跟上面的SCHED_FIFO一模一样,除了它给每个进程分配一个时间片,时间片到了正在执行的进程就放弃执行;时间片的长度可以通过sched_rr_get_interval调用得到;

由于Linux系统本身是一个面向桌面的系统,所以将它应用于实时应用中时存在如下的一些问题:

Linux系统中的调度单位为10ms,所以它不能够提供精确的定时;

当一个进程调用系统调用进入内核态运行时,它是不可被抢占的;

Linux内核实现中使用了大量的封中断操作会造成中断的丢失;

由于使用虚拟内存技术,当发生页出错时,需要从硬盘中读取交换数据,但硬盘读写由于存储位置的随机性会导致随机的读写时间,这在某些情况下会影响一些实时任务的截止期限;

虽然Linux进程调度也支持实时优先级,但缺乏有效的实时任务的调度机制和调度算法;它的网络子系统的协议处理和其它设备的中断处理都没有与它对应的进程的调度关联起来,并且它们自身也没有明确的调度机制;

3. 各种实时Linux系统

3.1. RT-Linux和RTAI

RT -Linux是新墨西哥科技大学(New Mexico Institute of Technology)的研究成果[RTLinuxWeb][Barabanov97]。它的基本思想是,为了在Linux系统中提供对于硬实时的支持,它实现了一个微内核的小的实时操作系统(我们也称之为RT-Linux的实时子系统),而将普通Linux系统作为一个该操作系统中的一个低优先级的任务来运行。另外普通Linux系统中的任务可以通过FIFO和实时任务进行通信。RT-Linux的框架如图 1所示:

图 1 RT-Linux结构

RT -Linux的关键技术是通过软件来模拟硬件的中断控制器。当Linux系统要封锁CPU的中断时时,RT-Linux中的实时子系统会截取到这个请求,把它记录下来,而实际上并不真正封锁硬件中断,这样就避免了由于封中断所造成的系统在一段时间没有响应的情况,从而提高了实时性。当有硬件中断到来时, RT-Linux截取该中断,并判断是否有实时子系统中的中断例程来处理还是传递给普通的Linux内核进行处理。另外,普通Linux系统中的最小定时精度由系统中的实时时钟的频率决定,一般Linux系统将该时钟设置为每秒来100个时钟中断,所以Linux系统中一般的定时精度为 10ms,即时钟周期是10ms,而RT-Linux通过将系统的实时时钟设置为单次触发状态,可以提供十几个微秒级的调度粒度。

RT-Linux实时子系统中的任务调度可以采用RM、EDF等优先级驱动的算法,也可以采用其他调度算法。

RT -Linux对于那些在重负荷下工作的专有系统来说,确实是一个不错的选择,但他仅仅提供了对于CPU资源的调度;并且实时系统和普通Linux系统关系不是十分密切,这样的话,开发人员不能充分利用Linux系统中已经实现的功能,如协议栈等。所以RT-Linux适合与工业控制等实时任务功能简单,并且有硬实时要求的环境中,但如果要应用与多媒体处理中还需要做大量的工作。

意大利的RTAI( Real-Time Application Interface )源于RT-Linux,它在设计思想上和RT-Linux完全相同。它当初设计目的是为了解决RT-Linux难于在不同Linux版本之间难于移植的问题,为此,RTAI在 Linux 上定义了一个实时硬件抽象层,实时任务通过这个抽象层提供的接口和Linux系统进行交互,这样在给Linux内核中增加实时支持时可以尽可能少地修改 Linux的内核源代码。

3.2. Kurt-Linux

Kurt -Linux由Kansas大学开发,它可以提供微秒级的实时精度[KurtWeb] [Srinivasan]。不同于RT-Linux单独实现一个实时内核的做法,Kurt -Linux是在通用Linux系统的基础上实现的,它也是第一个可以使用普通Linux系统调用的基于Linux的实时系统。

Kurt-Linux将系统分为三种状态:正常态、实时态和混合态,在正常态时它采用普通的Linux的调度策略,在实时态只运行实时任务,在混合态实时和非实时任务都可以执行;实时态可以用于对于实时性要求比较严格的情况。

为了提高Linux系统的实时特性,必须提高系统所支持的时钟精度。但如果仅仅简单地提高时钟频率,会引起调度负载的增加,从而严重降低系统的性能。为了解决这个矛盾, Kurt-Linux采用UTIME所使用的提高Linux系统中的时钟精度的方法[UTIMEWeb]:它将时钟芯片设置为单次触发状态(One shot mode),即每次给时钟芯片设置一个超时时间,然后到该超时事件发生时在时钟中断处理程序中再次根据需要给时钟芯片设置一个超时时间。它的基本思想是一个精确的定时意味着我们需要时钟中断在我们需要的一个比较精确的时间发生,但并非一定需要系统时钟频率达到此精度。它利用CPU的时钟计数器TSC (Time Stamp Counter)来提供精度可达CPU主频的时间精度。

对于实时任务的调度,Kurt-Linux采用基于时间(TD)的静态的实时CPU调度算法。实时任务在设计阶段就需要明确地说明它们实时事件要发生的时间。这种调度算法对于那些循环执行的任务能够取得较好的调度效果。

Kurt -Linux相对于RT-Linux的一个优点就是可以使用Linux系统自身的系统调用,它本来被设计用于提供对硬实时的支持,但由于它在实现上只是简单的将Linux调度器用一个简单的时间驱动的调度器所取代,所以它的实时进程的调度很容易受到其它非实时任务的影响,从而在有的情况下会发生实时任务的截止期限不能满足的情况,所以也被称作严格实时系统(Firm Real-time)。目前基于Kurt-Linux的应用有:ARTS(ATM Reference Traffic System)、多媒体播放软件等。另外Kurt-Linux所采用的这种方法需要频繁地对时钟芯片进行编程设置。

3.3. RED-Linux

RED -Linux是加州大学Irvine分校开发的实时Linux系统[REDWeb][ Wang99],它将对实时调度的支持和Linux很好地实现在同一个操作系统内核中。它同时支持三种类型的调度算法,即:Time-Driven、 Priority-Dirven、Share-Driven。

为了提高系统的调度粒度,RED-Linux从RT-Linux那儿借鉴了软件模拟中断管理器的机制,并且提高了时钟中断频率。当有硬件中断到来时,RED-Linux的中断模拟程序仅仅是简单地将到来的中断放到一个队列中进行排队,并不执行真正的中断处理程序。

另外为了解决Linux进程在内核态不能被抢占的问题, RED-Linux在Linux内核的很多函数中插入了抢占点原语,使得进程在内核态时,也可以在一定程度上被抢占。通过这种方法提高了内核的实时特性。

RED-Linux的设计目标就是提供一个可以支持各种调度算法的通用的调度框架,该系统给每个任务增加了如下几项属性,并将它们作为进程调度的依据:

Priority:作业的优先级;

Start-Time:作业的开始时间;

Finish-Time:作业的结束时间;

Budget:作业在运行期间所要使用的资源的多少;

通过调整这些属性的取值及调度程序按照什么样的优先顺序来使用这些属性值,几乎可以实现所有的调度算法。这样的话,可以将三种不同的调度算法无缝、统一地结合到了一起。

3. linux进程调度的三种策略是什么

linux内核的三种主要调度策略:
1,SCHED_OTHER 分时调度策略,
2,SCHED_FIFO实时调度策略,先到先服务
3,SCHED_RR实时调度策略,时间片轮转

实时进程将得到优先调用,实时进程根据实时优先级决定调度权值。分时进程则通过nice和counter值决定权值,nice越小,counter越大,被调度的概率越大,也就是曾经使用了cpu最少的进程将会得到优先调度。

SHCED_RR和SCHED_FIFO的不同:
当采用SHCED_RR策略的进程的时间片用完,系统将重新分配时间片,并置于就绪队列尾。放在队列尾保证了所有具有相同优先级的RR任务的调度公平。
SCHED_FIFO一旦占用cpu则一直运行。一直运行直到有更高优先级任务到达或自己放弃。
如果有相同优先级的实时进程(根据优先级计算的调度权值是一样的)已经准备好,FIFO时必须等待该进程主动放弃后才可以运行这个优先级相同的任务。而RR可以让每个任务都执行一段时间。

相同点:
RR和FIFO都只用于实时任务。
创建时优先级大于0(1-99)。
按照可抢占优先级调度算法进行。
就绪态的实时任务立即抢占非实时任务。

所有任务都采用linux分时调度策略时:
1,创建任务指定采用分时调度策略,并指定优先级nice值(-20~19)。
2,将根据每个任务的nice值确定在cpu上的执行时间(counter)。
3,如果没有等待资源,则将该任务加入到就绪队列中。
4,调度程序遍历就绪队列中的任务,通过对每个任务动态优先级的计算权值(counter+20-nice)结果,选择计算结果最大的一个去运行,当这个时间片用完后(counter减至0)或者主动放弃cpu时,该任务将被放在就绪队列末尾(时间片用完)或等待队列(因等待资源而放弃cpu)中。
5,此时调度程序重复上面计算过程,转到第4步。
6,当调度程序发现所有就绪任务计算所得的权值都为不大于0时,重复第2步。

所有任务都采用FIFO时:
1,创建进程时指定采用FIFO,并设置实时优先级rt_priority(1-99)。
2,如果没有等待资源,则将该任务加入到就绪队列中。
3,调度程序遍历就绪队列,根据实时优先级计算调度权值(1000+rt_priority),选择权值最高的任务使用cpu,该FIFO任务将一直占有cpu直到有优先级更高的任务就绪(即使优先级相同也不行)或者主动放弃(等待资源)。
4,调度程序发现有优先级更高的任务到达(高优先级任务可能被中断或定时器任务唤醒,再或被当前运行的任务唤醒,等等),则调度程序立即在当前任务堆栈中保存当前cpu寄存器的所有数据,重新从高优先级任务的堆栈中加载寄存器数据到cpu,此时高优先级的任务开始运行。重复第3步。
5,如果当前任务因等待资源而主动放弃cpu使用权,则该任务将从就绪队列中删除,加入等待队列,此时重复第3步。

所有任务都采用RR调度策略时:
1,创建任务时指定调度参数为RR,并设置任务的实时优先级和nice值(nice值将会转换为该任务的时间片的长度)。
2,如果没有等待资源,则将该任务加入到就绪队列中。
3,调度程序遍历就绪队列,根据实时优先级计算调度权值(1000+rt_priority),选择权值最高的任务使用cpu。
4,如果就绪队列中的RR任务时间片为0,则会根据nice值设置该任务的时间片,同时将该任务放入就绪队列的末尾。重复步骤3。
5,当前任务由于等待资源而主动退出cpu,则其加入等待队列中。重复步骤3。

系统中既有分时调度,又有时间片轮转调度和先进先出调度:
1,RR调度和FIFO调度的进程属于实时进程,以分时调度的进程是非实时进程。
2,当实时进程准备就绪后,如果当前cpu正在运行非实时进程,则实时进程立即抢占非实时进程。
3,RR进程和FIFO进程都采用实时优先级做为调度的权值标准,RR是FIFO的一个延伸。FIFO时,如果两个进程的优先级一样,则这两个优先级一样的进程具体执行哪一个是由其在队列中的未知决定的,这样导致一些不公正性(优先级是一样的,为什么要让你一直运行?),如果将两个优先级一样的任务的调度策略都设为RR,则保证了这两个任务可以循环执行,保证了公平。

Ingo Molnar-实时补丁
为了能并入主流内核,Ingo Molnar的实时补丁也采用了非常灵活的策略,它支持四种抢占模式:
1.No Forced Preemption (Server),这种模式等同于没有使能抢占选项的标准内核,主要适用于科学计算等服务器环境。
2.Voluntary Kernel Preemption (Desktop),这种模式使能了自愿抢占,但仍然失效抢占内核选项,它通过增加抢占点缩减了抢占延迟,因此适用于一些需要较好的响应性的环境,如桌面环境,当然这种好的响应性是以牺牲一些吞吐率为代价的。
3.Preemptible Kernel (Low-Latency Desktop),这种模式既包含了自愿抢占,又使能了可抢占内核选项,因此有很好的响应延迟,实际上在一定程度上已经达到了软实时性。它主要适用于桌面和一些嵌入式系统,但是吞吐率比模式2更低。
4.Complete Preemption (Real-Time),这种模式使能了所有实时功能,因此完全能够满足软实时需求,它适用于延迟要求为100微秒或稍低的实时系统。
实现实时是以牺牲系统的吞吐率为代价的,因此实时性越好,系统吞吐率就越低。

4. linux内核怎么调度系统

1.调度器的概述

多任务操作系统分为非抢占式多任务和抢占式多任务。与大多数现代操作系统一样,Linux采用的是抢占式多任务模式。这表示对CPU的占用时间由操作系统决定的,具体为操作系统中的调度器。调度器决定了什么时候停止一个进程以便让其他进程有机会运行,同时挑选出一个其他的进程开始运行。

2.调度策略

在Linux上调度策略决定了调度器是如何选择一个新进程的时间。调度策略与进程的类型有关,内核现有的调度策略如下:

#define SCHED_NORMAL 0#define SCHED_FIFO 1#define SCHED_RR 2#define SCHED_BATCH 3/* SCHED_ISO: reserved but not implemented yet */#define SCHED_IDLE 5

0: 默认的调度策略,针对的是普通进程。
1:针对实时进程的先进先出调度。适合对时间性要求比较高但每次运行时间比较短的进程。
2:针对的是实时进程的时间片轮转调度。适合每次运行时间比较长得进程。
3:针对批处理进程的调度,适合那些非交互性且对cpu使用密集的进程。
SCHED_ISO:是内核的一个预留字段,目前还没有使用
5:适用于优先级较低的后台进程。
注:每个进程的调度策略保存在进程描述符task_struct中的policy字段

3.调度器中的机制

内核引入调度类(struct sched_class)说明了调度器应该具有哪些功能。内核中每种调度策略都有该调度类的一个实例。(比如:基于公平调度类为:fair_sched_class,基于实时进程的调度类实例为:rt_sched_class),该实例也是针对每种调度策略的具体实现。调度类封装了不同调度策略的具体实现,屏蔽了各种调度策略的细节实现。
调度器核心函数schele()只需要调用调度类中的接口,完成进程的调度,完全不需要考虑调度策略的具体实现。调度类连接了调度函数和具体的调度策略。

5. 如何修改linux默认io调度算法

目前 Linux 上有如下几种 I/O 调度算法:
1 noop - 通常用于内存存储的设备。
2 cfq - 完全公平调度器。进程平均使用IO带宽。
3 Deadline - 针对延迟的调度器,每一个 I/O,都有一个最晚执行时间。
4 Anticipatory - 启发式调度,类似 Deadline 算法,但是引入预测机制提高性能。

6. linux的进程调度采用的是

Linux进程调度采用的是抢占式多任务处理,所以进程之间的挂起和继续运行无需彼此之间的协作。
在一个如linux这样的多任务系统中,多个程序可能会竞争使用同一个资源,在这种情况下,我们认为,执行短期的突发性工作并暂停运行以等待输入的程序,要比持续占用处理器以进行计算或不断轮询系统以查看是否有输入到达的程序要更好。我们称表现好的程序为nice程序,而且在某种意义上,这个nice 是可以被计算出来的。操作系统根据进程的nice值来决定它的优先级,一个进程的nice值默认为0并将根据这个程序的表现不断变化。长期不间断运行的程序的优先级一般会比较低。

7. linux 进程调度算法问题 主进程fork了 4个子进程a b c d 优先级相等 一种

cb这是第一个fork的子进程产生的第一个fork父进程进入elseif先执行子进程输出b这是第一个fork的父进程产生的父进程输出ab所以一共是三个进程父——>父(产生父子)父——>子(终)

8. linux的任务调度机制是什么

调度程序运行时,要在所有可运行状态的进程中选择最值得运行的进程投入运行。选择进程的依据是什么呢?在每个进程的task_struct结构中有以下四 项:policy、priority、counter、rt_priority。这四项是选择进程的依据。其中,policy是进程的调度策略,用来区分 实时进程和普通进程,实时进程优先于普通进程运行;priority是进程(包括实时和普通)的静态优先级;counter是进程剩余的时间片,它的起始 值就是priority的值;由于counter在后面计算一个处于可运行状态的进程值得运行的程度goodness时起重要作用,因此,counter 也可以看作是进程的动态优先级。rt_priority是实时进程特有的,用于实时进程间的选择。
Linux用函数goodness()来衡量一个处于可运行状态的进程值得运行的程度。该函数综合了以上提到的四项,还结合了一些其他的因素,给每个处于 可运行状态的进程赋予一个权值(weight),调度程序以这个权值作为选择进程的唯一依据。关于goodness()的情况在后面将会详细分析。

9. linux进程调度的三种策略是什么

进程调度策略就是调度系统种哪一个进程来CPU运行。这种调度分2层考虑。 第一层,进程状态这个是最优先考虑的,也就是说优先级最高的。在linux中只有就绪态的进程才有可能会被调度选中然后占有CPU,其它状态的进程不可能占有的到CPU。下面是linux中进程的状态 TASK_RUNNING:就绪状态,得到CPU就可以运行。TASK_INTERRUPTIBLE:浅度睡眠,资源到位或者受到信号就会变成就绪态。TASK_UNINTERRUPTIBLE:深度睡眠,资源到位就会进入就绪态,不响应信号。TASK_ZOMBIE:僵死态,进程exit后。TASK_STOPPED:暂停态,收到SIG_CONT信号进入就绪态。 第二层,其实真正在操作系统中的实现,就是所有就绪态进程链接成一个队列,进程调度时候只会考虑这个队列中的进程,对其它的进程不考虑,这就实现了第一层中的要求。接下来就是就绪队列内部各个进程的竞争了。 Linux采用3种不同的调度政策,SCHED_FIFO(下面简写成FIFO,先来先服务),SCHED_RR(简写成RR,时间片轮流),SCHED_OTHER(下面简写成OTHER)。这里大家就能看出一个问题,采用同等调度政策的进程之间自然有可比性,Linux3种调度政策并存,那么不同调度政策间的进程如何比较呢?可以说他们之间根本就没有可比性。其实在调度时候,调度只看一个指标,那就是各个进程所具有的权值,权值最大的且在可执行队列中排在最前面的就会被调度执行。而权值的计算才会设计到各方面因素,其中调度政策可以说在计算权值中,份量是最重的。 为什么Linux要这么干呢?这是由于事务的多样性决定的,进程有实时性进程和非实时性的进程2种,FIFO和RR是用来支持实时性进程的调度,我们看一下这3种政策下权值的计算公式就明白了: FIFO和RR计算公式,权值=1000+进程真正的运行时间 OTHER计算公式,当时间片为0时,权值=0.当时间片不为0时候,权值=剩余时间片+20-nice,同时如果是内核线程有+1的小加分,这是因为内核线程无需用户空间的切换,所以给它加了一分,奖励他在进程切换时候开销小的功劳。时间片好理解,那么nice这个值,用过linux系统的人都知道,这是一个从unix下继承过来的概念,表示谦让度,是一个从20~-19的数,可以通过nice和renice指令来设置。从代码中也能看到值越小就越不会谦让他人。 从这里我们看出FIFO和RR至少有1000的基数,所以在有FIFO和RR调度政策进程存在时,OTHER进程是没有机会被调度的到的。从权值计算公式同时也能看出,FIFO先来先服务的调度政策满足了,但RR这个时间片轮流的调度如果按照这种权值计算是不能满足时间片轮流这一概念的。这里只是权值的计算,在调度时候对RR政策的进程特殊处理。 以上都是权值计算,下面看看真正的调度过程,首先是对RR政策进程的特殊处理,如果当前进程采用的RR政策,那么看他的时间片是否用完,用完了就踢到就绪队列尾部,同时恢复他的时间片。然后是便利整个就绪队列,找到第一个权值最大的进程来运行。 整体调度效果就是:如果有FIFO和RR政策的进程,就优先调度他们2个,他们之间看已执行时间长短决定胜负,而2种政策内部则遵守各自调度政策。而OTHER只有在前面2种不存在于就绪队列时候才有可能执行,他们实际也是轮流执行,但他们之间是靠剩余时间和NICE值来决定胜负。同时就绪队列中排在最前面的最优先考虑在同样权值情况下。

10. Linux采用了哪几种调度方法各用于哪类进程的调度

你问的是进程调度吧
Linux进程调度采用的是抢占式多任务处理,所以进程之间的挂起和继续运行无需彼此之间的协作。
调度方式:时间片,优先级,还有就是时间片加优先级混合,默认是第三种

阅读全文

与linux进程调度算法相关的资料

热点内容
青岛办离婚用什么app 浏览:737
查询坐标命令 浏览:990
教孩子学编程ppt 浏览:812
77服务器怎么找 浏览:990
国外免费电影网站 浏览:913
java负数二进制 浏览:670
单片机多字节加减程序 浏览:151
手机网店用什么APP好 浏览:926
周星驰粤语资源 浏览:520
莱美健身教练app叫什么 浏览:887
有道词典forlinux 浏览:203
汇开优店的代理app叫什么 浏览:141
如何体验原生态的安卓 浏览:847
精致lee滤波源码 浏览:851
美颜都用什么app 浏览:139
单片机内存 浏览:554
mci命令 浏览:651
风月片洗发店 浏览:833
台湾电影,一个双腿残疾的人 浏览:737
消失的眼睛电影在线看 浏览:530