『壹』 演算法設計與分析 猜圖片(用分治法求解):給選手出示42張圖片,每行6張,共7行。選手可以給大家做一些是非
可以用二分法,遞歸折半,,先分兩對半,判斷左右,若在左就右邊放棄,處理左邊,同樣分兩半,判斷,循環,直到找出正確的圖,如果要問次數的話,再循環里,加一個計數器,
『貳』 鏈表綜合演算法設計
//文件名:excise1.cpp
# include<stdio.h>
# include<malloc.h>
typedef struct
{ int no; //職工編號
char name[10]; //姓名
int depno; //部門號
float salary; //工資
}EmpType; //職工類型
typedef struct node
{ EmpType data; //存放職工信息
struct node *next; //指向下一個節點的指針
}EmpList; //職工單鏈表節點類型
void DelAll(EmpList * &L) //清除職工文件中的全部記錄
{ FILE *fp;
EmpList *p,*q;
if ((fp=fopen("emp.dat","wb"))==NULL) //重寫清空emp.dat文件
{ printf(" 提示:不能打開職工文件\n");
return;
}
fclose(fp);
p=L->next;
if (p!=NULL)
{ q=p->next;
while(q!=NULL)
{ free(p);
p=q;
q=q->next;
}
free(p);
L->next=NULL;
}
else
printf(" 提示:不存在任何職工記錄\n");
printf(" 提示:職工數據清除完畢\n");
}
void ReadFile(EmpList * &L) //讀emp.dat文件建立職工單鏈表L
{ FILE *fp;
EmpType emp;
EmpList *p,*r;
int n=0; //累加從emp.dat文件中讀出的職工記錄個數
L=(EmpList *)malloc(sizeof(EmpList)); //建立頭節點
r=L;
if((fp=fopen("emp.dat","rb"))==NULL)
{ if((fp=fopen("emp.dat","wb"))==NULL)
printf(" 提示:不能創建emp.dat文件\n");
}
else //存在emp.da文件
{ while(fread(&emp,sizeof(EmpType),1,fp)==1)
{ //採用尾插法建立單鏈表L
p=(EmpList *)malloc(sizeof(EmpList));
p->data=emp;
r->next=p;
r=p;
n++;
}
}
r->next=NULL;
printf(" 提示:職工單鏈表L建立完畢,有%d個記錄\n",n);
fclose(fp);
}
void SaveFile(EmpList *L) //將職工單鏈表數據存入數據文件
{ EmpList *p=L->next,*q;
FILE *fp;
if((fp=fopen("emp.dat","wb"))==NULL)
{ printf(" 提示:不能創建文件emp.dat\n");
return;
}
while(p!=NULL)
{ fwrite(&p->data,sizeof(EmpType),1,fp);
p=p->next;
}
fclose(fp);
p=L;
q=p->next; //釋放職工單鏈表
while(q!=NULL)
{ free(p);
p=q;
q=q->next;
}
free(p);
printf(" 提示:所有職工記錄成功寫入到emp.dat文件中\n");
}
void InputEmp(EmpList *&L) //添加一個職工記錄
{if(L!=NULL){
EmpList *p;
printf(" >>輸入職工號,姓名,部門號,工資:");
p=(EmpList *)malloc(sizeof(EmpList));
scanf("%d%s%d%f",&p->data.no,p->data.name,&p->data.depno,&p->data.salary);
p->next=L->next;
L->next = p;
}else{
printf("error ! cause by NULL ponter of L");
}
}
void Sortno(EmpList *&L){
EmpList *p,*pre,*q;
p = L->next->next;
if(NULL!=p){
L->next->next = NULL;
while(p!=NULL){
q=p->next;
pre = L;
while(pre->next!=NULL && pre ->next->data.no < p->data.no){
pre = pre->next;
}
p->next = pre ->next;
pre->next = p;
p = q;
}
}
}
void Sortdepno(EmpList * &L) //採用直接插入法對單鏈表L按depno遞增有序排序
{ EmpList *p,*pre,*q;
p=L->next->next;
if(p!=NULL)
{ L->next->next=NULL;
while(p!=NULL)
{ q=p->next;
pre=L;
while(pre->next!=NULL&&pre->next->data.depno<p->data.depno)
pre=pre->next;
p->next=pre->next;
pre->next=pre->next;
pre->next=p;
p=q;
}
}
printf(" 提示:按depno遞增排序完畢\n");
}
void Sortsalary(EmpList * &L) //採用直接插入法對單鏈表L按salary遞增有序排序
{ EmpList *p,*pre,*q;
p=L->next->next;
if(p!=NULL)
{ L->next->next=NULL;
while(p!=NULL)
{ q=p->next;
pre=L;
while(pre->next!=NULL &&
pre->next->data.salary<p->data.salary)
pre=pre->next;
p->next=pre->next;
pre->next=p;
p=q;
}
}
printf(" 提示:按salary遞增排序完畢\n");
}
void Display(EmpList * L) //輸出所以職工記錄
{ EmpList * p=L->next;
if(p==NULL)
printf(" 提示:沒有任何職工記錄\n");
else
{ printf(" 編號 姓名 部門號 工資\n");
printf(" -----------------------------------------------------\n");
while(p!=NULL)
{ printf(" >> % 3d % 10s % -8d % 7.2f\n ",p->data.no,
p->data.name,p->data.depno,p->data.salary);
p=p->next;
}
printf(" ------------------------------------------------------\n");
}
}
void main()
{ EmpList * L;
int sel;
printf("由emp.dat文件建立職工單鏈表L\n");
ReadFile(L);
do
{ printf("1:輸入 2:顯示 3:按no排序 4:按depno排序5:按salary排序 9:全清 0:退出 請選擇:");
scanf("%d",&sel);
switch(sel)
{
case 9:
DelAll(L);
break;
case 1:
InputEmp(L);
break;
case 2:
Display(L);
break;
case 3:
Sortno(L);
break;
case 4:
Sortdepno(L);
break;
case 5:
Sortsalary(L);
break;
}
}while (sel!=0);
SaveFile(L);
}
『叄』 演算法設計比賽做什麼演算法好
應該是ACM吧
就是給你8-10道演算法題目,5個小時,做出來多的題目數越多,排名越靠前,如果題目數一樣多的看用的時間。
時間的計算方法如下:
例如你A題用了20分鍾AC,然後B題有用了30分鍾AC(此時是比賽開始50分鍾),又用了30分鍾AC了C題,那麼你的時間(penalty )是
20 + 50 + 80 = 150分鍾
比賽中常用的演算法有
1。動態規劃
2。搜索
3。貪心
4。圖論
5。組合數學
6。計算幾何
7。數論
等
推薦到
http://acm.pku.e.cn
http://acm.zju.e.cn
http://acm.h.e.cn
http://acm.timus.ru
這幾個OJ上練習
比較好的題目分類(POJ上的)
1。這個是我最喜歡的
初期:
一.基本演算法:
(1)枚舉. (poj1753,poj2965)(2008-10-27Done 位運算+寬搜)
(2)貪心(poj1328,poj2109,poj2586)
(3)遞歸和分治法.
(4)遞推.
(5)構造法.(poj3295)
(6)模擬法.(poj1068,poj2632,poj1573,poj2993,poj2996)
二.圖演算法:
(1)圖的深度優先遍歷和廣度優先遍歷.
(2)最短路徑演算法(dijkstra,bellman-ford,floyd,heap+dijkstra)(2008-08-29Done)
(poj1860,poj3259,poj1062,poj2253,poj1125,poj2240)
(3)最小生成樹演算法(prim,kruskal)
(poj1789,poj2485,poj1258,poj3026)
(4)拓撲排序 (poj1094)(2008-09-01Done)
(5)二分圖的最大匹配 (匈牙利演算法) (poj3041,poj3020)
(6)最大流的增廣路演算法(KM演算法). (poj1459,poj3436)
三.數據結構.
(1)串 (poj1035,poj3080,poj1936)
(2)排序(快排、歸並排(與逆序數有關)、堆排) (poj2388,poj2299)
(3)簡單並查集的應用.
(4)哈希表和二分查找等高效查找法(數的Hash,串的Hash)
(poj3349,poj3274,POJ2151,poj1840,poj2002,poj2503)
(5)哈夫曼樹(poj3253)(2008-09-02Done)
(6)堆
(7)trie樹(靜態建樹、動態建樹) (poj2513)(2008-10-23Done 並查集、歐拉)
四.簡單搜索
(1)深度優先搜索 (poj2488,poj3083,poj3009,poj1321,poj2251)
(2)廣度優先搜索(poj3278,poj1426,poj3126,poj3087.poj3414)
(3)簡單搜索技巧和剪枝(poj2531,poj1416,poj2676,1129)
五.動態規劃
(1)背包問題. (poj1837,poj1276)
(2)型如下表的簡單DP(可參考lrj的書 page149):
1.E[j]=opt{D+w(i,j)} (poj3267,poj1836,poj1260,poj2533)
2.E[i,j]=opt{D[i-1,j]+xi,D[i,j-1]+yj,D[i-1][j-1]+zij} (最長公共子序列)
(poj3176,poj1080,poj1159)
3.C[i,j]=w[i,j]+opt{C[i,k-1]+C[k,j]}.(最優二分檢索樹問題)
六.數學
(1)組合數學:
1.加法原理和乘法原理.
2.排列組合.
3.遞推關系.
(POJ3252,poj1850,poj1019,poj1942)
(2)數論.
1.素數與整除問題
2.進制位.
3.同餘模運算.
(poj2635, poj3292,poj1845,poj2115)
(3)計算方法.
1.二分法求解單調函數相關知識.(poj3273,poj3258,poj1905,poj3122)
七.計算幾何學.
(1)幾何公式.
(2)叉積和點積的運用(如線段相交的判定,點到線段的距離等). (poj2031,poj1039)
(3)多邊型的簡單演算法(求面積)和相關判定(點在多邊型內,多邊型是否相交)
(poj1408,poj1584)
(4)凸包. (poj2187,poj1113)(2008-08-29Done)
中級:
一.基本演算法:
(1)C++的標准模版庫的應用. (poj3096,poj3007)
(2)較為復雜的模擬題的訓練(poj3393,poj1472,poj3371,poj1027,poj2706)
二.圖演算法:
(1)差分約束系統的建立和求解. (poj1201,poj2983)(2008-09-05Done)
(2)最小費用最大流(poj2516,poj2516,poj2195)
(3)雙連通分量(poj2942)
(4)強連通分支及其縮點.(poj2186)
(5)圖的割邊和割點(poj3352)
(6)最小割模型、網路流規約(poj3308, )
三.數據結構.
(1)線段樹. (poj2528,poj2828,poj2777,poj2886,poj2750)
(2)靜態二叉檢索樹. (poj2482,poj2352)
(3)樹狀樹組(poj1195,poj3321)
(4)RMQ. (poj3264,poj3368)
(5)並查集的高級應用. (poj1703,2492)
(6)KMP演算法. (poj1961,poj2406)(2008-09-16Done)
四.搜索
(1)最優化剪枝和可行性剪枝
(2)搜索的技巧和優化 (poj3411,poj1724)
(3)記憶化搜索(poj3373,poj1691)
五.動態規劃
(1)較為復雜的動態規劃(如動態規劃解特別的施行商問題等)
(poj1191,poj1054,poj3280,poj2029,poj2948,poj1925,poj3034)
(2)記錄狀態的動態規劃. (POJ3254,poj2411,poj1185)
(3)樹型動態規劃(poj2057,poj1947,poj2486,poj3140)
六.數學
(1)組合數學:
1.容斥原理.
2.抽屜原理.
3.置換群與Polya定理(poj1286,poj2409,poj3270,poj1026).
4.遞推關系和母函數.
(2)數學.
1.高斯消元法(poj2947,poj1487, poj2065,poj1166,poj1222)
2.概率問題. (poj3071,poj3440)
3.GCD、擴展的歐幾里德(中國剩餘定理) (poj3101)
(3)計算方法.
1.0/1分數規劃. (poj2976)
2.三分法求解單峰(單谷)的極值.
3.矩陣法(poj3150,poj3422,poj3070)
4.迭代逼近(poj3301)
(4)隨機化演算法(poj3318,poj2454)
(5)雜題.
(poj1870,poj3296,poj3286,poj1095)
七.計算幾何學.
(1)坐標離散化.
(2)掃描線演算法(例如求矩形的面積和周長並,常和線段樹或堆一起使用).
(poj1765,poj1177,poj1151,poj3277,poj2280,poj3004)
(3)多邊形的內核(半平面交)(poj3130,poj3335)
(4)幾何工具的綜合應用.(poj1819,poj1066,poj2043,poj3227,poj2165,poj3429)
高級:
一.基本演算法要求:
(1)代碼快速寫成,精簡但不失風格
(poj2525,poj1684,poj1421,poj1048,poj2050,poj3306)
(2)保證正確性和高效性. poj3434
二.圖演算法:
(1)度限制最小生成樹和第K最短路. (poj1639)
(2)最短路,最小生成樹,二分圖,最大流問題的相關理論(主要是模型建立和求解)
(poj3155, poj2112,poj1966,poj3281,poj1087,poj2289,poj3216,poj2446
(3)最優比率生成樹. (poj2728)
(4)最小樹形圖(poj3164)
(5)次小生成樹.
(6)無向圖、有向圖的最小環
三.數據結構.
(1)trie圖的建立和應用. (poj2778)(2008-10-26Done 矩陣A^n)
(2)LCA和RMQ問題(LCA(最近公共祖先問題) 有離線演算法(並查集+dfs) 和 在線演算法
(RMQ+dfs)).(poj1330)
(3)雙端隊列和它的應用(維護一個單調的隊列,常常在動態規劃中起到優化狀態轉移的
目的). (poj2823)
(4)左偏樹(可合並堆).
(5)後綴樹(非常有用的數據結構,也是賽區考題的熱點).
(poj3415,poj3294)
四.搜索
(1)較麻煩的搜索題目訓練(poj1069,poj3322,poj1475,poj1924,poj2049,poj3426)
(2)廣搜的狀態優化:利用M進制數存儲狀態、轉化為串用hash表判重、按位壓縮存儲狀態、雙向廣搜、A*演算法. (poj1768,poj1184,poj1872,poj1324,poj2046,poj1482)
(3)深搜的優化:盡量用位運算、一定要加剪枝、函數參數盡可能少、層數不易過大、可以考慮雙向搜索或者是輪換搜索、IDA*演算法. (poj3131,poj2870,poj2286)
五.動態規劃
(1)需要用數據結構優化的動態規劃.
(poj2754,poj3378,poj3017)
(2)四邊形不等式理論.
(3)較難的狀態DP(poj3133)
六.數學
(1)組合數學.
1.MoBius反演(poj2888,poj2154)
2.偏序關系理論.
(2)博奕論.
1.極大極小過程(poj3317,poj1085)
2.Nim問題.
七.計算幾何學.
(1)半平面求交(poj3384,poj2540)
(2)可視圖的建立(poj2966)
(3)點集最小圓覆蓋.
(4)對踵點(poj2079)
八.綜合題.
(poj3109,poj1478,poj1462,poj2729,poj2048,poj3336,poj3315,poj2148,poj1263)
2。這個每個分類的題目比較多,適合作為第一個分類的擴展
說明:遞推算動歸, 離散化算數據結構, 並查集算數據結構, 博弈算動歸, 麻煩題一般都是不錯的綜合題, 最短路算圖論,數據的有序化算排序
麻煩題:1697, 1712, 1713, 1720, 1729, 1765, 1772, 1858, 1872, 1960, 1963, 2050, 2122, 2162, 2219, 2237,
簡單題目:1000, 1003, 1004, 1005, 1007, 1046, 1207, 1226, 1401, 1504, 1552, 1607, 1657, 1658, 1674, 1799, 1862, 1906, 1922, 1929, 1931, 1969, 1976, 2000, 2005, 2017, 2027, 2070, 2101, 2105, 2109, 2116, 2136, 2160, 2190, 2232, 2234, 2275, 2301, 2350, 2363, 2389, 2393, 2413, 2419, 推薦:1063, 1064, 1131, 1140, 1715, 2163,
雜題:1014, 1218, 1316, 1455, 1517, 1547, 1580, 1604, 1663, 1678, 1749, 1804, 2013, 2014, 2056, 2059, 2100, 2188, 2189, 2218, 2229, 2249, 2290, 2302, 2304, 2309, 2313, 2316, 2323, 2326, 2368, 2369, 2371, 2402, 2405, 2407, 推薦:1146, 1147, 1148, 1171, 1389, 1433, 1468, 1519, 1631, 1646, 1672, 1681, 1700, 1701, 1705, 1728, 1735, 1736, 1752, 1754, 1755, 1769, 1781, 1787, 1796, 1797, 1833, 1844, 1882, 1933, 1941, 1978, 2128, 2166, 2328, 2383, 2420,
高精度:1001, 1220, 1405, 1503,
排序:1002, 1318, 1877, 1928, 1971, 1974, 1990, 2001, 2002, 2092, 2379, 2388, 2418, 推薦:1423, 1694, 1723, 1727, 1763, 1788, 1828, 1838, 1840, 2201, 2376, 2377, 2380,
搜索容易:1128, 1166, 1176, 1231, 1256, 1270, 1321, 1543, 1606, 1664, 1731, 1742, 1745, 1847, 1915, 1950, 2038, 2157, 2182, 2183, 2381, 2386, 2426, 不易:1024, 1054, 1117, 1167, 1708, 1746, 1775, 1878, 1903, 1966, 2046, 2197, 2349, 推薦:1011, 1190, 1191, 1416, 1579, 1632, 1639, 1659, 1680, 1683, 1691, 1709, 1714, 1753, 1771, 1826, 1855, 1856, 1890, 1924, 1935, 1948, 1979, 1980, 2170, 2288, 2331, 2339, 2340,
數據結構容易:1182, 1656, 2021, 2023, 2051, 2153, 2227, 2236, 2247, 2352, 2395, 不易:1145, 1177, 1195, 1227, 1661, 1834, 推薦:1330, 1338, 1451, 1470, 1634, 1689, 1693, 1703, 1724, 1988, 2004, 2010, 2119, 2274,
動態規劃容易:1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322, 1414, 1456, 1458, 1609, 1644, 1664, 1690, 1699, 1740, 1742, 1887, 1926, 1936, 1952, 1953, 1958, 1959, 1962, 1975, 1989, 2018, 2029, 2033, 2063, 2081, 2082, 2181, 2184, 2192, 2231, 2279, 2329, 2336, 2346, 2353, 2355, 2356, 2385, 2392, 2424, 不易:1019, 1037, 1080, 1112, 1141, 1170, 1192, 1239, 1655, 1695, 1707, 1733, 1737, 1837, 1850, 1920, 1934, 1937, 1964, 2039, 2138, 2151, 2161, 2178, 推薦:1015, 1635, 1636, 1671, 1682, 1692, 1704, 1717, 1722, 1726, 1732, 1770, 1821, 1853, 1949, 2019, 2127, 2176, 2228, 2287, 2342, 2374, 2378, 2384, 2411,
字元串:1488, 1598, 1686, 1706, 1747, 1748, 1750, 1760, 1782, 1790, 1866, 1888, 1896, 1951, 2003, 2121, 2141, 2145, 2159, 2337, 2359, 2372, 2406, 2408,
貪心:1042, 1065, 1230, 1323, 1477, 1716, 1784,
圖論容易:1161, 1164, 1258, 1175, 1308, 1364, 1776, 1789, 1861, 1939, 1940, 1943, 2075, 2139, 2387, 2394, 2421, 不易:1041, 1062, 1158, 1172, 1201, 1275, 1718, 1734, 1751, 1904, 1932, 2173, 2175, 2296, 網路流:1087, 1273, 1698, 1815, 2195, 匹配:1274, 1422, 1469, 1719, 2060, 2239, Euler:1237, 1637, 1394, 2230, 推薦:2049, 2186,
計算幾何容易:1319, 1654, 1673, 1675, 1836, 2074, 2137, 2318, 不易:1685, 1687, 1696, 1873, 1901, 2172, 2333, 凸包:1113, 1228, 1794, 2007, 2187,
模擬容易:1006, 1008, 1013, 1016, 1017, 1169, 1298, 1326, 1350, 1363, 1676, 1786, 1791, 1835, 1970, 2317, 2325, 2390, 不易:1012, 1082, 1099, 1114, 1642, 1677, 1684, 1886,
數學容易:1061, 1091, 1142, 1289, 1305, 1306, 1320, 1565, 1665, 1666, 1730, 1894, 1914, 2006, 2042, 2142, 2158, 2174, 2262, 2305, 2321, 2348, 不易:1067, 1183, 1430, 1759, 1868, 1942, 2167, 2171, 2327, 推薦:1423, 1450, 1640, 1702, 1710, 1721, 1761, 1830, 1930, 2140,
『肆』 求一個演算法綜合設計的程序
0—1背包問題的回溯法
需求分析】
對於給定n種物品和一背包。在容量最大值固定的情況下,要求裝入的物品價值最大化。
【設計原理】
一、回溯法:
回溯法是一個既帶有系統性又帶有跳躍性的的搜索演算法。它在包含問題的所有解的解空間樹中,按照深度優先的策略,從根結點出發搜索解空間樹。演算法搜索至解空間樹的任一結點時,總是先判斷該結點是否肯定不包含問題的解。如果肯定不包含,則跳過對以該結點為根的子樹的系統搜索,逐層向其祖先結點回溯。否則,進入該子樹,繼續按深度優先的策略進行搜索。回溯法在用來求問題的所有解時,要回溯到根,且根結點的所有子樹都已被搜索遍才結束。而回溯法在用來求問題的任一解時,只要搜索到問題的一個解就可以結束。這種以深度優先的方式系統地搜索問題的解的演算法稱為回溯法,它適用於解一些組合數較大的問題。
二、演算法框架:
1、問題的解空間:應用回溯法解問題時,首先應明確定義問題的解空間。問題的解空間應到少包含問題的一個(最優)解。
2、回溯法的基本思想:確定了解空間的組織結構後,回溯法就從開始結點(根結點)出發,以深度優先的方式搜索整個解空間。這個開始結點就成為一個活結點,同時也成為當前的擴展結點。在當前的擴展結點處,搜索向縱深方向移至一個新結點。這個新結點就成為一個新的活結點,並成為當前擴展結點。如果在當前的擴展結點處不能再向縱深方向移動,則當前擴展結點就成為死結點。換句話說,這個結點不再是一個活結點。此時,應往回移動(回溯)至最近的一個活結點處,並使這個活結點成為當前的擴展結點。回溯法即以這種工作方式遞歸地在解空間中搜索,直至找到所要求的解或解空間中已沒有活結點時為止。
運用回溯法解題通常包含以下三個步驟:
(1)針對所給問題,定義問題的解空間;
(2)確定易於搜索的解空間結構;
(3)以深度優先的方式搜索解空間,並且在搜索過程中用剪枝函數避免無效搜索;
3、遞歸回溯:由於回溯法是對解空間的深度優先搜索,因此在一般情況下可用遞歸函數來實現回溯法。
【概要設計】
0—1背包問題是一個子集選取問題,適合於用子集樹表示0—1背包問題的解空間。在搜索解空間樹是,只要其左兒子節點是一個可行結點,搜索就進入左子樹,在右子樹中有可能包含最優解是才進入右子樹搜索。否則將右子樹剪去。
int c;//背包容量
int n; //物品數
int *w;//物品重量數組
int *p;//物品價值數組
int cw;//當前重量
int cp;//當前價值
int bestp;//當前最優值
int *bestx;//當前最優解
int *x;//當前解
int Knap::Bound(int i)//計算上界
void Knap::Backtrack(int i)//回溯
int Knapsack(int p[],int w[],int c,int n) //為Knap::Backtrack初始化
【詳細設計】
#include<iostream>
using namespace std;
class Knap
{
friend int Knapsack(int p[],int w[],int c,int n );
public:
void print()
{
for(int m=1;m<=n;m++)
{
cout<<bestx[m]<<" ";
}
cout<<endl;
};
private:
int Bound(int i);
void Backtrack(int i);
int c;//背包容量
int n; //物品數
int *w;//物品重量數組
int *p;//物品價值數組
int cw;//當前重量
int cp;//當前價值
int bestp;//當前最優值
int *bestx;//當前最優解
int *x;//當前解
};
int Knap::Bound(int i)
{
//計算上界
int cleft=c-cw;//剩餘容量
int b=cp;
//以物品單位重量價值遞減序裝入物品
while(i<=n&&w[i]<=cleft)
{
cleft-=w[i];
b+=p[i];
i++;
}
//裝滿背包
if(i<=n)
b+=p[i]/w[i]*cleft;
return b;
}
void Knap::Backtrack(int i)
{
if(i>n)
{
if(bestp<cp)
{
for(int j=1;j<=n;j++)
bestx[j]=x[j];
bestp=cp;
}
return;
}
if(cw+w[i]<=c) //搜索左子樹
{
x[i]=1;
cw+=w[i];
cp+=p[i];
Backtrack(i+1);
cw-=w[i];
cp-=p[i];
}
if(Bound(i+1)>bestp)//搜索右子樹
{
x[i]=0;
Backtrack(i+1);
}
}
class Object
{
friend int Knapsack(int p[],int w[],int c,int n);
public:
int operator<=(Object a)const
{
return (d>=a.d);
}
private:
int ID;
float d;
};
int Knapsack(int p[],int w[],int c,int n)
{
//為Knap::Backtrack初始化
int W=0;
int P=0;
int i=1;
Object *Q=new Object[n];
for(i=1;i<=n;i++)
{
Q[i-1].ID=i;
Q[i-1].d=1.0*p[i]/w[i];
P+=p[i];
W+=w[i];
}
if(W<=c)
return P;//裝入所有物品
//依物品單位重量排序
float f;
for( i=0;i<n;i++)
for(int j=i;j<n;j++)
{
if(Q[i].d<Q[j].d)
{
f=Q[i].d;
Q[i].d=Q[j].d;
Q[j].d=f;
}
}
Knap K;
K.p = new int[n+1];
K.w = new int[n+1];
K.x = new int[n+1];
K.bestx = new int[n+1];
K.x[0]=0;
K.bestx[0]=0;
for( i=1;i<=n;i++)
{
K.p[i]=p[Q[i-1].ID];
K.w[i]=w[Q[i-1].ID];
}
K.cp=0;
K.cw=0;
K.c=c;
K.n=n;
K.bestp=0;
//回溯搜索
K.Backtrack(1);
K.print();
delete [] Q;
delete [] K.w;
delete [] K.p;
return K.bestp;
}
void main()
{
int *p;
int *w;
int c=0;
int n=0;
int i=0;
cout<<"請輸入背包個數:"<<endl;
cin>>n;
p=new int[n+1];
w=new int[n+1];
p[0]=0;
w[0]=0;
cout<<"請輸入個背包的價值:"<<endl;
for(i=1;i<=n;i++)
cin>>p[i];
cout<<"請輸入個背包的重量:"<<endl;
for(i=1;i<=n;i++)
cin>>w[i];
cout<<"請輸入背包容量:"<<endl;
cin>>c;
cout<<Knapsack(p,w,c,n)<<endl;
}
0/1背包問題的遞歸演算法
點擊數:1117 發布日期:2006-4-18 1:24:00
【收藏】 【評論】 【列印】 【編程愛好者論壇】 【關閉】
/*#include <stdio.h>
#define N 100 //物品總種數不是常量,沒法根據它來決定數組的長度,只有先定義個長度了
int n;//物品總種數
double limitW;//限制的總重量
double totV;//全部物品的總價值
double maxv;//解的總價值
int option[N];//解的選擇
int cop[N];//當前解的選擇
struct {//物品結構
double weight;
double value;
}a[N];
//參數為物品i,當前選擇已經達到的重量和tw,本方案可能達到的總價值
void find(int i,double tw,double tv)
{
int k;
//物品i包含在當前方案的可能性
if(tw+a[i].weight <= limitW){
cop[i]=1;
if(i<n-1)find(i+1,tw+a[i].weight,tv);
else{
for(k=0;k<n;++k)
option[k]=cop[k];
maxv=tv;
}
}
cop[i]=0;
//物品i不包含在當前方案的可能性
if(tv-a[i].value>maxv){
if(i<n-1)find(i+1,tw,tv-a[i].value);
else{
for(k=0;k<n;++k)
option[k]=cop[k];
maxv=tv-a[i].value;
}
}
}
void main()
{
int k;
double w,v;
printf("輸入物品種數:");
scanf("%d",&n);
printf("輸入各物品的重量和價值:");
for(totV=0.0,k=0;k<n;++k){
scanf("%lf %lf",&w,&v);
a[k].weight = w;a[k].value = v;
totV += v;
}
printf("輸入限制重量:");
scanf("%lf",&limitW);
maxv=0.0;
for(k=0;k<n;++k)cop[k]=0;
find(0,0.0,totV);
for(k=0;k<n;++k)
if(option[k])printf("%4d",k+1);
printf("總價值為: %2f",maxv);
}*/
『伍』 演算法指什麼,演算法設計有什麼指標
通俗講就是解決問題的方法,用到計算機里,一般指程序設計中用到演算法比較多。也是考研的時候計算機系的一個重點。
演算法是在有限步驟內求解某一問題所使用的一組定義明確的規則。通俗點說,就是計算機解題的過程。在這個過程中,無論是形成解題思路還是編寫程序,都是在實施某種演算法。前者是推理實現的演算法,後者是操作實現的演算法。
一個演算法應該具有以下五個重要的特徵:
有窮性: 一個演算法必須保證執行有限步之後結束;
確切性: 演算法的每一步驟必須有確切的定義;
輸入:一個演算法有0個或多個輸入,以刻畫運算對象的初始情況;
輸出:一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
可行性: 演算法原則上能夠精確地運行,而且人們用筆和紙做有限次運算後即可完成。
http://www.cqzxzx.cn/it/noi/shuanfa/001.htm
『陸』 演算法綜合設計
好深奧,看不懂。