導航:首頁 > 源碼編譯 > knn演算法的全稱是什麼

knn演算法的全稱是什麼

發布時間:2022-08-18 20:18:08

⑴ 簡述knn是什麼 輸入 輸出 大數據考試

kNN演算法的核心思想非常簡單:在訓練集中選取離輸入的數據點最近的k個鄰居,根據這個k個鄰居中出現次數最多的類別(最大表決規則),作為該數據點的類別。

演算法描述

訓練集T={(x1,y1),(x2,y2),⋯,(xN,yN)}T={(x1,y1),(x2,y2),⋯,(xN,yN)},其類別yi∈{c1,c2,⋯,cK}yi∈{c1,c2,⋯,cK},訓練集中樣本點數為NN,類別數為KK。輸入待預測數據xx,則預測類別

y=argmaxcj∑xi∈Nk(x)I(yi=cj), i=1,2,⋯,N; j=1,2,⋯,K(1)
(1)y=arg⁡maxcj⁡∑xi∈Nk(x)I(yi=cj), i=1,2,⋯,N; j=1,2,⋯,K
其中,涵蓋xx的k鄰域記作Nk(x)Nk(x),當yi=cjyi=cj時指示函數I=1I=1,否則I=0I=0。

⑵ knn是什麼意思

作為一種非參數的分類演算法,K-近鄰(KNN)演算法是非常有效和容易實現的。它已經廣泛應用於分類、回歸和模式識別等。

在應用KNN演算法解決問題的時候,要注意兩個方面的問題——樣本權重和特徵權重。利用SVM來確定特徵的權重,提出了基於SVM的特徵加權演算法(FWKNN,featureweightedKNN)。實驗表明,在一定的條件下,FWKNN能夠極大地提高分類准確率。

(2)knn演算法的全稱是什麼擴展閱讀:

KNN(K- Nearest Neighbor)法即K最鄰近法,最初由 Cover和Hart於1968年提出,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路非常簡單直觀:

如果一個樣本在特徵空間中的K個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。該方法在定類決策上只依據最鄰近的一個或者幾個樣本的類別來決定待分樣本所屬的類別。

⑶ 什麼是k-最近鄰演算法

K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。KNN演算法中,所選擇的鄰居都是已經正確分類的對象。該方法在定類決策上只依據最鄰近的一個或者幾個樣本的類別來決定待分樣本所屬的類別。 KNN方法雖然從原理上也依賴於極限定理,但在類別決策時,只與極少量的相鄰樣本有關。由於KNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對於類域的交叉或重疊較多的待分樣本集來說,KNN方法較其他方法更為適合。
KNN演算法不僅可以用於分類,還可以用於回歸。通過找出一個樣本的k個最近鄰居,將這些鄰居的屬性的平均值賦給該樣本,就可以得到該樣本的屬性。更有用的方法是將不同距離的鄰居對該樣本產生的影響給予不同的權值(weight),如權值與距離成正比。該演算法在分類時有個主要的不足是,當樣本不平衡時,如一個類的樣本容量很大,而其他類樣本容量很小時,有可能導致當輸入一個新樣本時,該樣本的K個鄰居中大容量類的樣本佔多數。 該演算法只計算「最近的」鄰居樣本,某一類的樣本數量很大,那麼或者這類樣本並不接近目標樣本,或者這類樣本很靠近目標樣本。無論怎樣,數量並不能影響運行結果。可以採用權值的方法(和該樣本距離小的鄰居權值大)來改進。
該方法的另一個不足之處是計算量較大,因為對每一個待分類的文本都要計算它到全體已知樣本的距離,才能求得它的K個最近鄰點。目前常用的解決方法是事先對已知樣本點進行剪輯,事先去除對分類作用不大的樣本。該演算法比較適用於樣本容量比較大的類域的自動分類,而那些樣本容量較小的類域採用這種演算法比較容易產生誤分。

⑷ 常見的監督學習演算法

K-近鄰演算法:K-近鄰是一種分類演算法,其思路是如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。

K通常是不大於20的整數。KNN演算法中,所選擇的鄰居都是已經正確分類的對象。該方法在定類決策上只依據最鄰近的一個或者幾個樣本的類別來決定待分樣本所屬的類別。

ID3演算法:劃分數據集的最大原則就是將數據變得更加有序。熵(entropy)是描述信息不確定性(雜亂程度)的一個值。

(4)knn演算法的全稱是什麼擴展閱讀:

注意事項:

分類:當數據被用於預測類別時,監督學習也可處理這類分類任務。給一張圖片貼上貓或狗的標簽就是這種情況。當分類標簽只有兩個時,這就是二元分類,超過兩個則是多元分類。

預測:這是一個基於過去和現在的數據預測未來的過程,其最大應用是趨勢分析。一個典型實例是根據今年和前年的銷售業績以預測下一年的銷售業績。

⑸ 三種經典的數據挖掘演算法

演算法,可以說是很多技術的核心,而數據挖掘也是這樣的。數據挖掘中有很多的演算法,正是這些演算法的存在,我們的數據挖掘才能夠解決更多的問題。如果我們掌握了這些演算法,我們就能夠順利地進行數據挖掘工作,在這篇文章我們就給大家簡單介紹一下數據挖掘的經典演算法,希望能夠給大家帶來幫助。
1.KNN演算法
KNN演算法的全名稱叫做k-nearest neighbor classification,也就是K最近鄰,簡稱為KNN演算法,這種分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。該方法的思路是:如果一個樣本在特徵空間中的k個最相似,即特徵空間中最鄰近的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。KNN演算法常用於數據挖掘中的分類,起到了至關重要的作用。
2.Naive Bayes演算法
在眾多的分類模型中,應用最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBC)。樸素貝葉斯模型發源於古典數學理論,有著堅實的數學基礎,以及穩定的分類效率。同時,NBC模型所需估計的參數很少,對缺失數據不太敏感,演算法也比較簡單。理論上,NBC模型與其他分類方法相比具有最小的誤差率。但是實際上並非總是如此,這是因為NBC模型假設屬性之間相互獨立,這個假設在實際應用中往往是不成立的,這給NBC模型的正確分類帶來了一定影響。在屬性個數比較多或者屬性之間相關性較大時,NBC模型的分類效率比不上決策樹模型。而在屬性相關性較小時,NBC模型的性能最為良好。這種演算法在數據挖掘工作使用率還是挺高的,一名優秀的數據挖掘師一定懂得使用這一種演算法。
3.CART演算法
CART, 也就是Classification and Regression Trees。就是我們常見的分類與回歸樹,在分類樹下面有兩個關鍵的思想。第一個是關於遞歸地劃分自變數空間的想法;第二個想法是用驗證數據進行剪枝。這兩個思想也就決定了這種演算法的地位。
在這篇文章中我們給大家介紹了關於KNN演算法、Naive Bayes演算法、CART演算法的相關知識,其實這三種演算法在數據挖掘中占據著很高的地位,所以說如果要從事數據挖掘行業一定不能忽略這些演算法的學習。

閱讀全文

與knn演算法的全稱是什麼相關的資料

熱點內容
javan替換 瀏覽:527
貪心演算法證明方法包括 瀏覽:182
人工蜂群演算法程序 瀏覽:144
單片機按鍵控制數碼管程序 瀏覽:58
深圳恆波加密軟體下載 瀏覽:130
好省的app是什麼 瀏覽:886
php加密解密軟體 瀏覽:581
程序員那麼可愛喝醉了吻 瀏覽:574
制動泵編程 瀏覽:100
套話pdf 瀏覽:287
程序員做餐飲bug 瀏覽:480
百度程序員北京 瀏覽:743
通達信漲速文件夾 瀏覽:724
十大演算法作者是誰 瀏覽:125
蘋果文件傳什麼到app 瀏覽:748
前端程序員網站 瀏覽:67
php找回密碼代碼 瀏覽:223
15除以2豎式演算法 瀏覽:723
mastercamx5編程 瀏覽:907
centos資料庫命令 瀏覽:931