⑴ MD5碼是什麼意思
MD5中的MD代表Message Digest,就是信息摘要的意思,不過這個信息摘要不是信息內容的縮寫,而是根據公開的MD5演算法對原信息進行數學變換後得到的一個128位(bit)的特徵碼。
這個特徵碼有如下特性,首先它不可逆,例如我有一段秘密的文字如:"My Secret Words",經演算法變換後得到MD5碼(),把這個碼告訴其他人,他們根據這個MD5碼是沒有系統的方法可以知道你原來的文字是什麼的。
數學建模研究生上傳競賽論文md5碼主要是為了防止論文的篡改。MD5碼,就是提交的論文和支撐材料的特徵碼,唯一識別作品的編碼。如果在提交了MD5之後再修改,就會被發現,這是為了杜絕作弊和調包的一種手段。
MD5的全稱是Message-Digest Algorithm 5,在90年代初由MIT的計算機科學實驗室和RSA Data Security Inc 發明。MD5的實際應用是對一段Message(位元組串)產生fingerprint(指紋),可以防止被「篡改」。
⑵ 十大常見密碼加密方式
一、密鑰散列
採用MD5或者SHA1等散列演算法,對明文進行加密。嚴格來說,MD5不算一種加密演算法,而是一種摘要演算法。無論多長的輸入,MD5都會輸出一個128位(16位元組)的散列值。而SHA1也是流行的消息摘要演算法,它可以生成一個被稱為消息摘要的160位(20位元組)散列值。MD5相對SHA1來說,安全性較低,但是速度快;SHA1和MD5相比安全性高,但是速度慢。
二、對稱加密
採用單鑰密碼系統的加密方法,同一個密鑰可以同時用作信息的加密和解密,這種加密方法稱為對稱加密。對稱加密演算法中常用的演算法有:DES、3DES、TDEA、Blowfish、RC2、RC4、RC5、IDEA、SKIPJACK等。
三、非對稱加密
非對稱加密演算法是一種密鑰的保密方法,它需要兩個密鑰來進行加密和解密,這兩個密鑰是公開密鑰和私有密鑰。公鑰與私鑰是一對,如果用公鑰對數據進行加密,只有用對應的私鑰才能解密。非對稱加密演算法有:RSA、Elgamal、背包演算法、Rabin、D-H、ECC(橢圓曲線加密演算法)。
四、數字簽名
數字簽名(又稱公鑰數字簽名)是只有信息的發送者才能產生的別人無法偽造的一段數字串,這段數字串同時也是對信息的發送者發送信息真實性的一個有效證明。它是一種類似寫在紙上的普通的物理簽名,但是在使用了公鑰加密領域的技術來實現的,用於鑒別數字信息的方法。
五、直接明文保存
早期很多這樣的做法,比如用戶設置的密碼是「123」,直接就將「123」保存到資料庫中,這種是最簡單的保存方式,也是最不安全的方式。但實際上不少互聯網公司,都可能採取的是這種方式。
六、使用MD5、SHA1等單向HASH演算法保護密碼
使用這些演算法後,無法通過計算還原出原始密碼,而且實現比較簡單,因此很多互聯網公司都採用這種方式保存用戶密碼,曾經這種方式也是比較安全的方式,但隨著彩虹表技術的興起,可以建立彩虹表進行查表破解,目前這種方式已經很不安全了。
七、特殊的單向HASH演算法
由於單向HASH演算法在保護密碼方面不再安全,於是有些公司在單向HASH演算法基礎上進行了加鹽、多次HASH等擴展,這些方式可以在一定程度上增加破解難度,對於加了「固定鹽」的HASH演算法,需要保護「鹽」不能泄露,這就會遇到「保護對稱密鑰」一樣的問題,一旦「鹽」泄露,根據「鹽」重新建立彩虹表可以進行破解,對於多次HASH,也只是增加了破解的時間,並沒有本質上的提升。
八、PBKDF2
該演算法原理大致相當於在HASH演算法基礎上增加隨機鹽,並進行多次HASH運算,隨機鹽使得彩虹表的建表難度大幅增加,而多次HASH也使得建表和破解的難度都大幅增加。
九、BCrypt
BCrypt 在1999年就產生了,並且在對抗 GPU/ASIC 方面要優於 PBKDF2,但是我還是不建議你在新系統中使用它,因為它在離線破解的威脅模型分析中表現並不突出。
十、SCrypt
SCrypt 在如今是一個更好的選擇:比 BCrypt設計得更好(尤其是關於內存方面)並且已經在該領域工作了 10 年。另一方面,它也被用於許多加密貨幣,並且我們有一些硬體(包括 FPGA 和 ASIC)能實現它。 盡管它們專門用於采礦,也可以將其重新用於破解。
⑶ 信息加密技術的種類
我只說一種也是被採用最多的一種
MD5:MD5是一種散列演算法(Hash
function),又稱為哈希演算法、消息摘要演算法,它的作用是獲取數字信息的特徵(我們有時稱之為「信息指紋)。一個任意長度的任意數字信息,通過散列演算法運算後,會產生一串固定長度(比如160bit)的數字信息,稱為散列值(或哈希值、消息摘要)。安全的散列演算法有這樣的特點:
⑴
兩個不同數字信息產生同樣的
散列值的概率是非常小的(小到現實中幾乎無法發生);
⑵
僅從散列值無法演推出原信息;
⑶
原信息的微小改變,哪怕只改變一位(bit),將導致散列值的很大變化。
數字簽名要使用散列值。MD5是一種常用散列演算法,另外目前常用的散列演算法還有SHA-1。兩個不同的數字信息產生相同的散列值就是人們所說的「散列值碰撞「。散列演算法是一個將無窮維空間的信息映射到有限維空間的變換,學過數學的人都知道這不是一個一一對應的變換。實際上一個散列值可能對應有無窮多個數字信息,換言之,會有無窮多個數字信息產生同樣一個散列值。這點是研究密碼的人眾所周知的,而不像有些媒體所說的那樣,散列值是唯一的。
⑷ 描述數字簽名和消息摘要演算法的異同
身份認證就是,像用戶名密碼、動態口令、USB Key認證等輸入等一致。
數字簽名技術是將摘要信息用發送者的私鑰加密,與原文一起傳送給接收者。接收者只有用發送的公鑰才能解密被加密的摘要信息,然後用HASH函數對收到的原文產生一個摘要信息,與解密的摘要信息對比。如果相同,則說明收到的信息是完整的,在傳輸過程中沒有被修改,否則說明信息被修改過,因此數字簽名能夠驗證信息的完整性。
就是一個是用戶自身確認真偽,一個是信息加密確定真偽
⑸ 摘要演算法的特點是什麼
「消息摘要」(Message Digest)是一種能產生特殊輸出格式的演算法,這種加密演算法的特點是無論用戶輸入什麼長度的原始數據,經過計算後輸出的密文都是固定長度的,這種演算法的原理是根據一定的運算規則對原數據進行某種形式的提取,這種提取就是「摘要」,被「摘要」的數據內容與原數據有密切聯系,只要原數據稍有改變,輸出的「摘要」便完全不同,因此基於這種原理的演算法便能對數據完整性提供較為健全的保障。但是,由於輸出的密文是提取原數據經過處理的定長值,所以它已經不能還原為原數據,即消息摘要演算法是「不可逆」的,理論上無法通過反向運算取得原數據內容,因此它通常只能被用來做數據完整性驗證,而不能作為原數據內容的加密方案使用,否則誰也無法還原。
⑹ hash演算法是什麼
構成哈希演算法的條件:
從哈希值不能反向推導出原始數據(所以哈希演算法也叫單向哈希演算法)。
對輸入數據非常敏感,哪怕原始數據只修改了一個 Bit,最後得到的哈希值也大不相同。
散列沖突的概率要很小,對於不同的原始數據,哈希值相同的概率非常小。
哈希演算法的執行效率要盡量高效,針對較長的文本,也能快速地計算出哈希值。
常見hash演算法的原理
散列表,它是基於快速存取的角度設計的,也是一種典型的「空間換時間」的做法。顧名思義,該數據結構可以理解為一個線性表,但是其中的元素不是緊密排列的,而是可能存在空隙。
散列表(Hash table,也叫哈希表),是根據關鍵碼值(Key value)而直接進行訪問的數據結構。也就是說,它通過把關鍵碼值映射到表中一個位置來訪問記錄,以加快查找的速度。這個映射函數叫做散列函數,存放記錄的數組叫做散列表。
⑺ java的signature類提供了哪些演算法
Signature 類用來為應用程序提供數字簽名演算法功能。數字簽名用於確保數字數據的驗證和完整性。
在所有演算法當中,數字簽名可以是 NIST 標準的 DSA,它使用 DSA 和 SHA-1。可以將使用 SHA-1 消息摘要演算法的 DSA 演算法指定為 SHA1withDSA。如果使用 RSA,對消息摘要演算法則會有多種選擇,因此,可以將簽名演算法指定為 MD2withRSA、MD5withRSA 或 SHA1withRSA。因為沒有默認的演算法名稱,所以必須為其指定名稱。
Signature 對象可用來生成和驗證數字簽名。
⑻ 摘要演算法的分類
1、CRC8、CRC16、CRC32
CRC(Cyclic Rendancy Check,循環冗餘校驗)演算法出現時間較長,應用也十分廣泛,尤其是通訊領域,現在應用最多的就是 CRC32 演算法,它產生一個4位元組(32位)的校驗值,一般是以8位十六進制數,如FA 12 CD 45等。CRC演算法的優點在於簡便、速度快,嚴格的來說,CRC更應該被稱為數據校驗演算法,但其功能與數據摘要演算法類似,因此也作為測試的可選演算法。
在 WinRAR、WinZIP 等軟體中,也是以 CRC32 作為文件校驗演算法的。一般常見的簡單文件校驗(Simple File Verify – SFV)也是以 CRC32演算法為基礎,它通過生成一個後綴名為 .SFV 的文本文件,這樣可以任何時候可以將文件內容 CRC32運算的結果與 .SFV 文件中的值對比來確定此文件的完整性。
與 SFV 相關工具軟體有很多,如MagicSFV、MooSFV等。
2、MD2 、MD4、MD5
這是應用非常廣泛的一個演算法家族,尤其是 MD5(Message-Digest Algorithm 5,消息摘要演算法版本5),它由MD2、MD3、MD4發展而來,由Ron Rivest(RSA公司)在1992年提出,被廣泛應用於數據完整性校驗、數據(消息)摘要、數據加密等。MD2、MD4、MD5 都產生16位元組(128位)的校驗值,一般用32位十六進制數表示。MD2的演算法較慢但相對安全,MD4速度很快,但安全性下降,MD5比MD4更安全、速度更快。
在互聯網上進行大文件傳輸時,都要得用MD5演算法產生一個與文件匹配的、存儲MD5值的文本文件(後綴名為 .md5或.md5sum),這樣接收者在接收到文件後,就可以利用與 SFV 類似的方法來檢查文件完整性,絕大多數大型軟體公司或開源組織都是以這種方式來校驗數據完整性,而且部分操作系統也使用此演算法來對用戶密碼進行加密,另外,它也是目前計算機犯罪中數據取證的最常用演算法。
與MD5 相關的工具有很多,如 WinMD5等。
3、SHA1、SHA256、SHA384、SHA512
SHA(Secure Hash Algorithm)是由美國專門制定密碼演算法的標准機構—— 美國國家標准技術研究院(NIST)制定的,SHA系列演算法的摘要長度分別為:SHA為20位元組(160位)、SHA256為32位元組(256位)、 SHA384為48位元組(384位)、SHA512為64位元組(512位),由於它產生的數據摘要的長度更長,因此更難以發生碰撞,因此也更為安全,它是未來數據摘要演算法的發展方向。由於SHA系列演算法的數據摘要長度較長,因此其運算速度與MD5相比,也相對較慢。
SHA1的應用較為廣泛,主要應用於CA和數字證書中,另外在互聯網中流行的BT軟體中,也是使用SHA1來進行文件校驗的。
4、RIPEMD、PANAMA、TIGER、ADLER32 等
RIPEMD是Hans Dobbertin等3人在對MD4,MD5缺陷分析基礎上,於1996年提出來的,有4個標准128、160、256和320,其對應輸出長度分別為16位元組、20位元組、32位元組和40位元組。
TIGER由Ross在1995年提出。Tiger號稱是最快的Hash演算法,專門為64位機器做了優化。
⑼ 這個是什麼加密方式
幾種加密方式
1 Base64加密方式(可逆)
Base64中的可列印字元包括字母A-Z/a-z/數組0-9/ 加號』+』斜杠』/』 這樣共有62個字元
Base64 ios7之後加入系統庫
2 MD5加密
Message Digest Algorithm MD5(中文名為消息摘要演算法第五版)為計算機安全領域廣泛使用的一種散列函數,用以提供消息的完整性保護
是計算機廣泛使用的雜湊演算法之一(又譯摘要演算法、哈希演算法),主流編程語言普遍已有MD5實現。
根據輸出值,不能得到原始的明文,即其過程不可逆
MD5演算法具有以下特點:
1、壓縮性:任意長度的數據,算出的MD5值長度都是固定的。
2、容易計算:從原數據計算出MD5值很容易。
3、抗修改性:對原數據進行任何改動,哪怕只修改1個位元組,所得到的MD5值都有很大區別。
4、強抗碰撞:已知原數據和其MD5值,想找到一個具有相同MD5值的數據(即偽造數據)是非常困難的。
MD5的作用是讓大容量信息在用數字簽名軟體簽署私人密鑰前被」壓縮"成一種保密的格式(就是把一個任意長度的位元組串變換成一定長的十六進制數字串)。除了MD5以外,其中比較有名的還有sha-1、RIPEMD以及Haval等。
MD5加鹽
3 鑰匙串加密方式
iCloud鑰匙串,蘋果給我們提供的密碼保存的解決方案,iOS7之後有的
存沙盒:
1、如果手機越獄,密碼容易被竊取。
2、當軟體更新時,沙盒裡的內容是不被刪除的。但是,如果將軟體卸載後重裝,沙盒裡的數據就沒有了。
3、每個APP的沙盒是相對獨立的,密碼無法共用。
存鑰匙串里:
1、蘋果提供的安全方案,rsa加密,相對安全。
2、無論軟體更新或刪除,密碼都存在,都可以自動登錄。
3、同一公司的APP密碼是可以共用的。
4 對稱加密演算法
優點:演算法公開、計算量小、加密速度快、加密效率高、可逆
缺點:雙方使用相同鑰匙,安全性得不到保證
現狀:對稱加密的速度比公鑰加密快很多,在很多場合都需要對稱加密,
演算法: 在對稱加密演算法中常用的演算法有:DES、3DES、TDEA、Blowfish、RC2、RC4、RC5、IDEA、SKIPJACK、AES等。不同演算法的實現機制不同,可參考對應演算法的詳細資料
相較於DES和3DES演算法而言,AES演算法有著更高的速度和資源使用效率,安全級別也較之更高了,被稱為下一代加密標准