導航:首頁 > 源碼編譯 > 差分演算法英語

差分演算法英語

發布時間:2022-09-03 23:37:35

① 什麼是差分演算法

在數值計算中,常用差分近似微分。
例如:
向前差分:f'(n)=f(n+1)-f(n)
向後差分:f'(n)=f(n)-f(n-1)

② 多目標差分進化演算法

差分進化演算法(Differential Evolution, DE)是一種基於群體差異的啟發式隨機搜索演算法,該演算法是由R.Storn和K.Price為求解Chebyshev多項式而提出的。是一種用於最佳化問題的後設啟發式演算法。本質上說,它是一種基於實數編碼的具有保優思想的貪婪遺傳演算法。

將問題的求解表示成"染色體"的適者生存過程,通過"染色體"群的一代代不斷進化,包括復制、交叉和變異等操作,最終收斂到"最適應環境"的個體,從而求得問題的最優解或滿意解。

差分進化演算法類似遺傳演算法,包含變異,交叉操作,淘汰機制,而差分進化演算法與遺傳演算法不同之處,在於變異的部分是隨選兩個解成員變數的差異,經過伸縮後加入當前解成員的變數上,因此差分進化演算法無須使用概率分布產生下一代解成員。最優化方法分為傳統優化方法和啟發式優化方法兩大類。傳統的優化方法大多數都是利用目標函數的導數求解;而啟發式優化方法以仿生演算法為主,通過啟發式搜索策略實現求解優化。啟發式搜索演算法不要求目標函數連續、可微等信息,具有較好的全局尋優能力,成為最優化領域的研究熱點。

在人工智慧領域中,演化演算法是演化計算的一個分支。它是一種基於群體的元啟發式優化演算法,具有自適應、自搜索、自組織和隱並行性等特點。近年來,很多學者將演化演算法應用到優化領域中,取得了很大的成功,並已引起了人們的廣泛關注。越來越多的研究者加入到演化優化的研究之中,並對演化演算法作了許多改進,使其更適合各種優化問題。目前,演化演算法已廣泛應用於求解無約束函數優化、約束函數優化、組合優化、多目標優化等多種優化問題中。

③ 英語高手進,數學論文摘要英文翻譯,在線翻譯免進

In recent years, has become a regional decomposition algorithm is effective algorithm of partial differential equation, the domain decomposition method of complex or large domain decomposition into or without overlap area in the area, using various algorithm subproblems, by domain decomposition, each area between parallel computation, this method can be e to allow one in different area on the different characteristics of model using discrete method, and is helpful to improve the accuracy, on the other hand, because each area in solving independently and computing speed and greatly increased. This paper focuses on the thermal equation of difference scheme introces the overlapped overlap and two regional decomposition method. The three chapters, the first chapter for quotation, briefly introces the situation and regional decomposition algorithm, this paper discussed the basic. Dawson, the first chapter of heat conction equations solving regional decomposition algorithm of decomposition error estimation algorithm, then will spread to thermal equation, this difference format tightly overlapping region decomposition algorithm is in this algorithm, the algorithm by introcing the inner boundary is divided into several regional at sub-domain, area within the boundaries between points with long strides in explicit calculation, the son of area calculation using implicit form small area, can also be different step length, once the inner boundary point value is calculated, and the calculated regional can completely parallel, and gives corresponding prior error estimation. The third chapter, the main difference equations of heat using a tight overlaps domain decomposition algorithm, which is a new type of calculating heat conction equations of the numerical solution differential algorithm based on parallel algorithm and regional correction in each area, the area on the resial correction, the area between parallel computing. The convergence of the algorithm is proved.

④ 英語翻譯 成對差分, 差分的 95% 置信 區間 均值 標准差 均值的標准誤 下限 上限

成對差分,coupled difference
差分的 95% 置信 95% confidence interval for difference
區間 interval
均值 mean
標准差 standard deviation
均值的標准誤 standard error of mean
下限 lower-bound
上限 upper-bound
前面兩個不確定

⑤ 進化演算法的差分演算法

差分進化演算法(Differential Evolution, DE)是一種新興的進化計算技術,或稱為差分演化演算法、微分進化演算法、微分演化演算法、差異演化演算法。它是由Storn等人於1995年提出的,最初的設想是用於解決切比雪夫多項式問題,後來發現DE也是解決復雜優化問題的有效技術。DE與人工生命,特別是進化演算法有著極為特殊的聯系。
差分進化演算法是基於群體智能理論的優化演算法,通過群體內個體間的合作與競爭產生的群體智能指導優化搜索。但相比於進化演算法,DE保留了基於種群的全局搜索策略,採用實數編碼基於差分的簡單變異操作和一對一的競爭生存策略,降低了遺傳操作的復雜性。同時,DE特有的記憶能力使其可以動態跟蹤當前的搜索情況,以調整其搜索策略,具有較強的全局收斂能力和魯棒性,且不需要藉助問題的特徵信息,適於求解一些利用常規的數學規劃方法所無法求解的復雜環境中的優化問題。
差分進化演算法是一種基於群體進化的演算法,具有記憶個體最優解和種群內信息共享的特點,即通過種群內個體間的合作與競爭來實現對優化問題的求解,其本質是一種基於實數編碼的具有保優思想的貪婪遺傳演算法。
DE是一種用於優化問題的啟發式演算法。本質上說,它是一種基於實數編碼的具有保優思想的貪婪遺傳演算法 。同遺傳演算法一樣,DE包含變異和交叉操作,但同時相較於遺傳演算法的選擇操作,DE採用一對一的淘汰機制來更新種群。由於DE在連續域優化問題的優勢已獲得廣泛應用,並引發進化演算法研究領域的熱潮。
DE由Storn 以及Price提出,演算法的原理採用對個體進行方向擾動,以達到對個體的函數值進行下降的目的,同其他進化演算法一樣,DE不利用目標函數的梯度信息,因此對目標的可導性甚至連續性沒有要求,適用性很強。同時,演算法與粒子群優化有相通之處 ,但因為DE在一定程度上考慮了多變數間的相關性,因此相較於粒子群優化在變數耦合問題上有很大的優勢。演算法的實現參考實現代碼部分。

⑥ 什麼叫差分,差分方程是啥

1、差分又名差分函數或差分運算,差分的結果反映了離散量之間的一種變化,是研究離散數學的一種工具。它將原函數f(x) 映射到f(x+a)-f(x+b) 。差分運算,相應於微分運算,是微積分中重要的一個概念。差分又分為前向差分、向後差分及中心差分三種。

2、差分方程(是一種遞推地定義一個序列的方程式:序列的每一項目是定義為前一項的函數。某些簡單定義的遞推關系式可能會表現出非常復雜的(混沌的)性質,他們屬於數學中的非線性分析領域。

(6)差分演算法英語擴展閱讀:

差分方程舉例:

dy+y*dx=0,y(0)=1 是一個微分方程, x取值[0,1] (註:解為y(x)=e^(-x));

要實現微分方程的離散化,可以把x的區間分割為許多小區間 [0,1/n],[1/n,2/n],...[(n-1)/n,1]

這樣上述微分方程可以離散化為:y((k+1)/n)-y(k/n)+y(k/n)*(1/n)=0, k=0,1,2,...,n-1 (n 個離散方程組)

利用y(0)=1的條件,以及上面的差分方程,可以計算出 y(k/n) 的近似值了。

差分方程的性質

1、Δk(xn+yn)=Δkxn+Δkyn。

2、Δk(cxn)=cΔkxn。

3、Δkxn=∑(-1)jCjkXn+k-j。

4、數列的通項為n的無限次可導函數,對任意k>=1,存在η,有 Δkxn=f(k)(η)。

⑦ 差分信號用英語怎麼說

差分信號
differential signal
網路釋義
Differential signaling
Differentiing Signing
contrast signal
Transition Minimized Differential Signaling
短語
差分信號設計 Differential Pair Design Exploration
低壓差分信號傳輸 Low Voltage Differential Signal ; LVDS
低壓差分信號輸出 LVA1P LVDS ; LVA0M LVDS

⑧ 有限差分法(Finite Difference)、有限體積法(Finite Volume)、有限元法(Finite element)怎樣辨析

有限差分方法(FDM)是計算機數值模擬最早採用的方法,至今仍被廣泛運用。該方法將 求解域劃分為差分網格,用有限個網格節點代替連續的求解域。有限差分法以Taylor級 數展開等方法,把控制方程中的導數用網格節點上的函數值的差商代替進行離散,從而 建立以網格節點上的值為未知數的代數方程組。該方法是一種直接將微分問題變為代數 問題的近似數值解法,數學概念直觀,表達簡單,是發展較早且比較成熟的數值方法。 對於有限差分格式,從格式的精度來劃分,有一階格式、二階格式和高階格式。從差分 的空間形式來考慮,可分為中心格式和逆風格式。考慮時間因子的影響,差分格式還可 以分為顯格式、隱格式、顯隱交替格式等。目前常見的差分格式,主要是上述幾種形式 的組合,不同的組合構成不同的差分格式。差分方法主要適用於有結構網格,網格的步 長一般根據實際地形的情況和柯朗穩定條件來決定。

構造差分的方法有多種形式,目前主要採用的是泰勒級數展開方法。其基本的差分表達 式主要有三種形式:一階向前差分、一階向後差分、一階中心差分和二階中心差分等, 其中前兩種格式為一階計算精度,後兩種格式為二階計算精度。通過對時間和空間這幾 種不同差分格式的組合,可以組合成不同的差分計算格式。

有限元方法的基礎是變分原理和加權餘量法,其基本求解思想是把計算域劃分為有限個互不重疊的單元,在每個單元內,選擇一些合適的節點作為求解函數的插值點,將微分 方程中的變數改寫成由各變數或其導數的節點值與所選用的插值函數組成的線性表達式 ,藉助於變分原理或加權餘量法,將微分方程離散求解。採用不同的權函數和插值函數形式,便構成不同的有限元方法。有限元方法最早應用於結構力學,後來隨著計算機的發展慢慢用於流體力學的數值模擬。在有限元方法中,把計算域離散剖分為有限個互不重疊且相互連接的單元,在每個單元內選擇基函數,用單元基函數的線形組合來逼近單元中的真解,整個計算域上總體的基函數可以看為由每個單元基函數組成的,則整個計算域內的解可以看作是由所有單元上的近似解構成。在河道數值模擬中,常見的有限元計算方法是由變分法和加權餘量法發展而來的里茲法和伽遼金法、最小二乘法等。根據所採用的權函數和插值函數的不同,有限元方法也分為多種計算格式。從權函數的選擇來說,有配置法、矩量法、最小二乘法和伽遼金法,從計算單元網格的形狀來劃分,有三角形網格、四邊形網格和多邊形 網格,從插值函數的精度來劃分,又分為線性插值函數和高次插值函數等。不同的組合 同樣構成不同的有限元計算格式。對於權函數,伽遼金(Galerkin)法是將權函數取為逼近函數中的基函數 ;最小二乘法是令權函數等於餘量本身,而內積的極小值則為對代求系數的平方誤差最小;在配置法中,先在計算域 內選取N個配置點 。令近似解在選定的N個配置點上嚴格滿足微分方程,即在配置點上令方程餘量為0。插值函數一般由不同次冪的多項式組成,但也有採用三角函數或指數函數組成的乘積表示,但最常用的多項式插值函數。有限元插值函數分為兩大類,一類只要求插值多項式本身在插值點取已知值,稱為拉格朗日(Lagrange)多項式插值;另一種不僅要求插值多項式本身,還要求它的導數值在插值點取已知值,稱為哈密特(Hermite)多項式插值。單元坐標有笛卡爾直角坐標系和無因次自然坐標,有對稱和不對稱等。常採用的無因次坐標是一種局部坐標系,它的定義取決於單元的幾何形狀,一維看作長度比,二維看作面積比,三維看作體積比。在二維有限元中,三角形單元應用的最早,近來四邊形等參元的應用也越來越廣。對於二維三角形和四邊形電源單元,常採用的插值函數為有Lagrange插值直角坐標系中的線性插值函數及二階或更高階插值函數、面積坐標系中的線性插值函數、二階或更高階插值函數等。

對於有限元方法,其基本思路和解題步驟可歸納為
(1)建立積分方程,根據變分原理或方程餘量與權函數正交化原理,建立與微分方程初邊值問題等價的積分表達式,這是有限元法的出發點。
(2)區域單元剖分,根據求解區域的形狀及實際問題的物理特點,將區域剖分為若干相互連接、不重疊的單元。區域單元劃分是採用有限元方法的前期准備工作,這部分工作量比較大,除了給計算單元和節點進行編號和確定相互之間的關系之外,還要表示節點的位置坐標,同時還需要列出自然邊界和本質邊界的節點序號和相應的邊界值。
(3)確定單元基函數,根據單元中節點數目及對近似解精度的要求,選擇滿足一定插值條 件的插值函數作為單元基函數。有限元方法中的基函數是在單元中選取的,由於各單元 具有規則的幾何形狀,在選取基函數時可遵循一定的法則。
(4)單元分析:將各個單元中的求解函數用單元基函數的線性組合表達式進行逼近;再將 近似函數代入積分方程,並對單元區域進行積分,可獲得含有待定系數(即單元中各節點 的參數值)的代數方程組,稱為單元有限元方程。
(5)總體合成:在得出單元有限元方程之後,將區域中所有單元有限元方程按一定法則進 行累加,形成總體有限元方程。
(6)邊界條件的處理:一般邊界條件有三種形式,分為本質邊界條件(狄里克雷邊界條件 )、自然邊界條件(黎曼邊界條件)、混合邊界條件(柯西邊界條件)。對於自然邊界條件, 一般在積分表達式中可自動得到滿足。對於本質邊界條件和混合邊界條件,需按一定法 則對總體有限元方程進行修正滿足。
(7)解有限元方程:根據邊界條件修正的總體有限元方程組,是含所有待定未知量的封閉 方程組,採用適當的數值計算方法求解,可求得各節點的函數值。

有限體積法(Finite Volume Method)又稱為控制體積法。其基本思路是:將計算區域劃分為一系列不重復的控制體積,並使每個網格點周圍有一個控制體積;將待解的微分方程對每一個控制體積積分,便得出一組離散方程。其中的未知數是網格點上的因變數的數值。為了求出控制體積的積分,必須假定值在網格點之間的變化規律,即假設值的分段的分布的分布剖面。從積分區域的選取方法看來,有限體積法屬於加權剩餘法中的子區域法;從未知解的近似方法看來,有限體積法屬於採用局部近似的離散方法。簡言之,子區域法屬於有限體積發的基本方法。

有限體積法的基本思路易於理解,並能得出直接的物理解釋。離散方程的物理意義,就 是因變數在有限大小的控制體積中的守恆原理,如同微分方程表示因變數在無限小的控 制體積中的守恆原理一樣。 限體積法得出的離散方程,要求因變數的積分守恆對任意一組控制體積都得到滿足,對整個計算區域,自然也得到滿足。這是有限體積法吸引人的優點。有一些離散方法,例如有限差分法,僅當網格極其細密時,離散方程才滿足積分守恆;而有限體積法即使在粗網格情況下,也顯示出准確的積分守恆。就離散方法而言,有限體積法可視作有限單元法和有限差分法的中間物。有限單元法必須假定值在網格點之間的變化規律(既插值函數),並將其作為近似解。有限差分法只考慮網格點上的數值而不考慮值在網格點之間如何變化。有限體積法只尋求的結點值,這與有限差分法相類似;但有限體積法在尋求控制體積的積分時,必須假定值在網格點之間的分布,這又與有限單元法相類似。在有限體積法中,插值函數只用於計算控制 體積的積分,得出離散方程之後,便可忘掉插值函數;如果需要的話,可以對微分方程 中不同的項採取不同的插值函數。

⑨ 差分演算法是什麼

在數值計算中,常用差分近似微分.
最簡單的差分格式有向前、向後和中心3種.
向前差分:f'(n)=f(n+1)-f(n)
向後差分:f'(n)=f(n)-f(n-1)
中心差分:f'(n)=[f(n+1)-f(n-1)]/2

閱讀全文

與差分演算法英語相關的資料

熱點內容
卡爾曼濾波演算法書籍 瀏覽:769
安卓手機怎麼用愛思助手傳文件進蘋果手機上 瀏覽:844
安卓怎麼下載60秒生存 瀏覽:803
外向式文件夾 瀏覽:240
dospdf 瀏覽:431
怎麼修改騰訊雲伺服器ip 瀏覽:392
pdftoeps 瀏覽:496
為什麼鴻蒙那麼像安卓 瀏覽:736
安卓手機怎麼拍自媒體視頻 瀏覽:186
單片機各個中斷的初始化 瀏覽:724
python怎麼集合元素 瀏覽:481
python逐條解讀 瀏覽:833
基於單片機的濕度控制 瀏覽:499
ios如何使用安卓的帳號 瀏覽:883
程序員公園采訪 瀏覽:812
程序員實戰教程要多長時間 瀏覽:979
企業數據加密技巧 瀏覽:135
租雲伺服器開發 瀏覽:814
程序員告白媽媽不同意 瀏覽:337
攻城掠地怎麼查看伺服器 瀏覽:601