導航:首頁 > 源碼編譯 > 復雜演算法到簡單演算法

復雜演算法到簡單演算法

發布時間:2022-09-06 03:18:27

❶ 為什麼大數據的簡單演算法要串列小數據 的復雜演算法

因為大數據需要簡單的和小數據進行一個復雜的演算法是因為要進行數據對比的

❷ 簡便演算法是什麼

簡便演算法...顧名思義就是:使演算法 變得簡單。

舉個例子:
25×24=?就可以用簡便演算法 即:25×24=25×(4×6)=25×4×6=100×6=600
這樣的演算法就是 簡便演算法了 。

相關內容:

1、演算法(Algorithm)是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。

2、如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。

3、演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。

4、隨機化演算法在內的一些演算法,包含了一些隨機輸入。形式化演算法的概念部分源自嘗試解決希爾伯特提出的判定問題,並在其後嘗試定義有效計算性或者有效方法中成形。

5、這些嘗試包括庫爾特·哥德爾、Jacques Herbrand和斯蒂芬·科爾·克萊尼分別於1930年、1934年和1935年提出的遞歸函數,阿隆佐·邱奇於1936年提出的λ演算,1936年Emil Leon Post的Formulation 1和艾倫·圖靈1937年提出的圖靈機。

6、即使在當前,依然常有知覺想法難以定義為形式化演算法的情況。

❸ 簡便演算法怎麼做

簡便運算
這是小學數學計算題中最常見的一種。從學生一開始接觸計算就從各個不同的角度滲透了簡便運算的思想,到了四年級在計算題中簡便運算則做為獨立的題型正式出現,它是計算題中最為靈活的一種,能使學生思維的靈活性得到充分鍛煉,對提高學生的計算能力將起到非常大的作用。 何謂簡便運算,這是一個非常簡單的問題,但要正確地理解它,決不能為了追求簡便的形式而進行簡便運算。對此,我的理解是:簡便運算應該是靈活、正確、合理地運用各種定義、定理、定律、性質、法則等等,改變原有的運算順序進行計算,通過簡便運算要大幅度地提高計算速度及正確率,使復雜的計算變得簡單[2] 。也就是說:最重要的是靈活、合理地運用各種定義、定理、定律、性質、法則。尤其要強調「靈活」、「合理」。下面就我在教學中遇到的情況,談談我的看法。
1、「4.9+0.1-4.9+0.1」這是小學數學第八冊練習二十七第二題中的一道非常簡單的常見簡便運算題。當我給學生布置了這道題後,我以為學生會毫不猶豫地使用加法交換率和結合率,順利完成此題,但是當我批改學生的作業時,卻發現了以下三種情況:
①、4.9+0.1-4.9+0.1=(4.9-4.9)+(0.1+0.1);
②、4.9+0.1-4.9+0.1=4.9-4.9+0.1+0.1;
③、4.9+0.1-4.9+0.1=(4.9+0.1)-(4.9+0.1)。
顯然第③種簡算是錯誤的,因為它違反了四則運算順序,其簡算結果絕對不等於原題的結果。問題就出在第①種和第②種解法上,第①種解法的簡算過程非常標准,無懈可擊;第②種解法看上去好象不太標准,但是也有道理。於是,我組織學生進行了討論,結果學生分成了截然相反的兩派。一方認為:第①種解法絕對正確,而第②種解法不規范,沒有明確標明簡便運算的過程,所以不能算對。另一方認為:第①種解法非常標准,肯定正確無疑,但是,第②種解法也是對的,因為按運算順序從左往右,先算4.9-4.9,實際上就得0,其實就不用算,直接計算0.1+0.1就行了,簡算過程其實也很明確。

❹ 簡便演算法怎麼算

簡便計算是一種特殊的計算,它運用了運算定律與數字的基本性質,從而使計算簡便,使一個很復雜的式子變得很容易計算出得數。簡便計算中最常用的方法是乘法分配律。

乘法結合律也是比較常用的方法,三個數相乘,先把前兩個數相乘,再和第三個數相乘;或先把後兩個數相乘,再和第一個數相乘,積不變。它可以改變乘法運算當中的運算順序,在日常生活中乘法結合律運用的不是很多,主要是在一些較復雜的運算中起到簡便的作用。在進行簡便運算時,應注意運算符號和大、中、小括弧之間的關連。不要越級運算,以免發生運算錯誤。

❺ 怎麼運用簡便演算法

簡便計算是採用特殊的計算方法,運用運算定律與數字的基本性質,從而使計算簡便,將一個很復雜的式子變得很容易計算出結果。
主要用三種方法:加減湊整、分組湊整、提公因數法。
他們使用的都是數學計算中的拆分湊整思想。
主要步驟:
①遇見復雜的計算式時,先觀察有沒有可能湊整;
②運用四則運算湊成整十整百之後再進行簡便計算。
加減湊整法
1、將計算式中的某一個數拆分,使其能與其他的數湊成整十,整百;
2、補上一個數,能夠與其他數湊整,最後再減去這個數。
分組湊整法

在只有加減法的計算題中,將算式中的各項重新分下組湊整,主要採用兩個公式:G老師講奧數(微)。
加法結合律:a+b+c=a+(b+c)=(a+b)+c;
減法的性質:a-b-c=a-(b+c)。
提公因數法

使用乘法分配律提取公因數,a x (b±c)=a x b±a x c;
如果沒有公因數,可以根據乘法結合律變化出公因數。
a×b=(a×10)×(b÷10),
a×b÷c=a÷c×b,
a×b×c=a×(b×c)。

❻ 復雜演算法一般用什麼語言實現

復雜演算法一般用c語言,或者c++語言實現。

復雜演算法的復雜性是對演算法效率的度量,是評價演算法優劣的重要依據。時間復雜性是指演算法中包含簡單操作次數的多少,是演算法運行時間的相對度量。要求用計算機解決的問題越復雜,規模越大,演算法分析的工作量也越大。

復雜演算法指針:

復雜演算法如果一個變數聲明時在前面使用*號,表明這是個指針型變數。換句話說,該變數存儲一個地址,而則是取內容操作符,意思是取這個內存地址里存儲的內容。指針是C語言區別於其他同時代高級語言的主要特徵之一。

復雜演算法指針不僅可以是變數的地址,還可以是數組、數組元素、函數的地址。通過指針作為形式參數可以在函數的調用過程得到一個以上的返回值,不同於return(z)這樣的僅能得到一個返回值。

復雜演算法指針是一把雙刃劍,許多操作可以通過指針自然的表達,但是不正確的或者過分的使用指針又會給程序帶來大量潛在的錯誤。

❼ 演算法復雜度:時間復雜度和空間復雜度

本文部分摘抄於此
演算法復雜度分為時間復雜度和空間復雜度。
時間復雜度是指執行演算法所需要的計算工作量;
而空間復雜度是指執行這個演算法所需要的內存空間。
(演算法的復雜性體現在運行該演算法時的計算機所需資源的多少上,計算機資源最重要的是時間和空間(即寄存器)資源,因此復雜度分為時間和空間復雜度)。

一個演算法執行所耗費的時間,從理論上是不能算出來的,必須上機運行測試才能知道。但我們不可能也沒有必要對每個演算法都上機測試,只需知道哪個演算法花費的時間多,哪個演算法花費的時間少就可以了。並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。

在剛才提到的時間頻度中,n稱為問題的規模,當n不斷變化時,時間頻度T(n)也會不斷變化。但有時我們想知道它變化時呈現什麼規律。為此,我們引入時間復雜度概念。 一般情況下,演算法中基本操作重復執行的次數是問題規模n的某個函數,用T(n)表示,若有某個輔助函數f(n),使得當n趨近於無窮大時, T(n)/f(n) 的極限值為不等於零的常數,則稱f(n)是T(n)的同數量級函數。記作 T(n)=O(f(n)), O(f(n)) 為演算法的漸進時間復雜度,簡稱時間復雜度。

並且一個演算法花費的時間與演算法中語句的執行次數成正比例,哪個演算法中語句執行次數多,它花費時間就多。一個演算法中的語句執行次數稱為語句頻度或時間頻度。記為T(n)。

演算法中執行次數最多的那條語句就是基本語句,通常是最內層循環的循環體。

只需計算基本語句執行次數的數量級,這就意味著只要保證基本語句執行次數的函數中的最高次冪正確即可,可以忽略所有低次冪和最高次冪的系數。這樣能夠簡化演算法分析,並且使注意力集中在最重要的一點上:增長率。

將基本語句執行次數的數量級放入大Ο記號中。

如果演算法中包含嵌套的循環,則基本語句通常是最內層的循環體,如果演算法中包含並列的循環,則將並列循環的時間復雜度相加。

第一個for循環的時間復雜度為Ο(n),第二個for循環的時間復雜度為Ο( n 2),則整個演算法的時間復雜度為Ο(n+ n 2)=Ο( n 2)。

Ο(1)表示基本語句的執行次數是一個常數,一般來說,只要演算法中不存在循環語句,其時間復雜度就是Ο(1)。其中 Ο(log2n)、Ο(n)、 Ο(nlog2n)、Ο(n2)和Ο(n3) 稱為多項式時間, 而Ο(2n)和Ο(n!)稱為指數時間 。計算機科學家普遍認為前者(即多項式時間復雜度的演算法)是有效演算法,把這類問題稱為 P(Polynomial,多項式)類問題 ,而把後者(即指數時間復雜度的演算法)稱為 NP(Non-Deterministic Polynomial, 非確定多項式)問題

(4)在計算演算法時間復雜度時有以下幾個簡單的程序分析法則:

(1).對於一些簡單的輸入輸出語句或賦值語句,近似認為需要O(1)時間

(2).對於順序結構,需要依次執行一系列語句所用的時間可採用大O下"求和法則"

求和法則:是指若演算法的2個部分時間復雜度分別為 T1(n)=O(f(n))和 T2(n)=O(g(n)),則 T1(n)+T2(n)=O(max(f(n), g(n)))

特別地, 若T1(m)=O(f(m)), T2(n)=O(g(n)),則 T1(m)+T2(n)=O(f(m) + g(n))

(3).對於選擇結構,如if語句,它的主要時間耗費是在執行then字句或else字句所用的時間,需注意的是檢驗條件也需要O(1)時間

(4).對於循環結構,循環語句的運行時間主要體現在多次迭代中執行循環體以及檢驗循環條件的時間耗費,一般可用大O下"乘法法則"

乘法法則 : 是指若演算法的2個部分時間復雜度分別為 T1(n)=O(f(n))和 T2(n)=O(g(n)),則T1 * T2=O(f(n) * g(n))

(5).對於復雜的演算法,可以將它分成幾個容易估算的部分,然後利用求和法則和乘法法則技術整個演算法的時間復雜度

另外還有以下2個運演算法則:(1) 若g(n)=O(f(n)),則O(f(n))+ O(g(n))= O(f(n));(2) O(Cf(n)) = O(f(n)),其中C是一個正常數

(5)下面分別對幾個常見的時間復雜度進行示例說明:

(1)、O(1)

​ Temp=i; i=j; j=temp;

以上三條單個語句的頻度均為1,該程序段的執行時間是一個與問題規模n無關的常數。演算法的時間復雜度為常數階,記作T(n)=O(1)。 注意:如果演算法的執行時間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是一個較大的常數。此類演算法的時間復雜度是O(1)。

(2)、O(n2)

2.1. 交換i和j的內容

解: 因為Θ(2n2+n+1)=n2(Θ即:去低階項,去掉常數項,去掉高階項的常參得到),所以T(n)= =O(n2);

2.2.

解: 語句1的頻度是n-1

一般情況下,對步進循環語句只需考慮循環體中語句的執行次數,忽略該語句中步長加1、終值判別、控制轉移等成分,當有若干個循環語句時,演算法的時間復雜度是由嵌套層數最多的循環語句中最內層語句的頻度f(n)決定的。

(3)、O(n)

解:

(4)、O(log2n)

解:

(5)、O(n3)

解:

(5)常用的演算法的時間復雜度和空間復雜度

一個經驗規則: 其中c是一個常量,如果一個演算法的復雜度為c 、 log2n 、n 、 n log2n ,那麼這個演算法時間效率比較高 ,如果是 2n * , 3n ,n!,那麼稍微大一些的n就會令這個演算法不能動了,居於中間的幾個則差強人意。

​ 演算法時間復雜度分析是一個很重要的問題,任何一個程序員都應該熟練掌握其概念和基本方法,而且要善於從數學層面上探尋其本質,才能准確理解其內涵。

2、演算法的空間復雜度

​ 類似於時間復雜度的討論,一個演算法的空間復雜度(Space Complexity)S(n)定義為該演算法所耗費的存儲空間,它也是問題規模n的函數。漸近空間復雜度也常常簡稱為空間復雜度。

空間復雜度(Space Complexity)是對一個演算法在運行過程中臨時佔用存儲空間大小的量度。一個演算法在計算機存儲器上所佔用的存儲空間,包括存儲演算法本身所佔用的存儲空間,演算法的輸入輸出數據所佔用的存儲空間和演算法在運行過程中臨時佔用的存儲空間這三個方面。

演算法的輸入輸出數據所佔用的存儲空間是由要解決的問題決定的,是通過參數表由調用函數傳遞而來的,它不隨本演算法的不同而改變。存儲演算法本身所佔用的存儲空間與演算法書寫的長短成正比,要壓縮這方面的存儲空間,就必須編寫出較短的演算法。

演算法在運行過程中臨時佔用的存儲空間隨演算法的不同而異,有的演算法只需要佔用少量的臨時工作單元,而且不隨問題規模的大小而改變,我們稱這種演算法是「就地"進行的,是節省存儲的演算法,如這一節介紹過的幾個演算法都是如此;

有的演算法需要佔用的臨時工作單元數與解決問題的規模n有關,它隨著n的增大而增大,當n較大時,將佔用較多的存儲單元,例如將在第九章介紹的快速排序和歸並排序演算法就屬於這種情況。

如當一個演算法的空間復雜度為一個常量,即不隨被處理數據量n的大小而改變時,可表示為O(1);當一個演算法的空間復雜度與以2為底的n的對數成正比時,可表示為O(log2n);當一個演算法的空I司復雜度與n成線性比例關系時,可表示為O(n).

【1】如果演算法的執行時間不隨著問題規模n的增加而增長,即使演算法中有上千條語句,其執行時間也不過是一個較大的常數。此類演算法的時間復雜度是O(1)。

解答:
T(n)=O(1),
這個程序看起來有點嚇人,總共循環運行了1100次,但是我們看到n沒有?
沒。這段程序的運行是和n無關的,
就算它再循環一萬年,我們也不管他,只是一個常數階的函數

【2】當有若干個循環語句時,演算法的時間復雜度是由嵌套層數最多的循環語句中最內層語句的頻度f(n)決定的。

該程序段中頻度最大的語句是(5),內循環的執行次數雖然與問題規模n沒有直接關系,但是卻與外層循環的變數取值有關,而最外層循環的次數直接與n有關,因此可以從內層循環向外層分析語句(5)的執行次數:
則該程序段的時間復雜度為T(n)=O(n3/6+低次項)=O(n3)

【3】演算法的時間復雜度不僅僅依賴於問題的規模,還與輸入實例的初始狀態有關。

在數值A[0..n-1]中查找給定值K的演算法大致如下:

此演算法中的語句(3)的頻度不僅與問題規模n有關,還與輸入實例中A的各元素取值及K的取值有關:

(5)時間復雜度評價性能

有兩個演算法A1和A2求解同一問題,時間復雜度分別是T1(n)=100n2,T2(n)=5n3。
(1)當輸入量n<20時,有T1(n)>T2(n),後者花費的時間較少。
(2)隨著問題規模n的增大,兩個演算法的時間開銷之比5n3/100n2=n/20亦隨著增大。
即當問題規模較大時,演算法A1比演算法A2要有效地多。它們的漸近時間復雜度O(n2)和O(n3)從宏觀上評價了這兩個演算法在時間方面的質量。

在演算法分析時,往往對演算法的時間復雜度和漸近時間復雜度不予區分,而經常是將漸近時間復雜度T(n)=O(f(n))簡稱為時間復雜度,其中的f(n)一般是演算法中頻度最大的語句頻度。

其實生活很美好,只是你想的太多了。沒有,不會,有差距很正常,因為我不會

❽ 有哪些理論復雜實現簡單的演算法 白如冰 知乎

題主你到底是什麼意思.....

知乎上有這個問題啊 而且你粘貼過來還帶個白如冰是想表達什麼啊....
題主直接去知乎上邀白如冰答就是了啊....

❾ 為什麼大數據的簡單演算法要優於小數據的復雜演算法

因為數據是基礎,小數據天然容易過擬合,解決過擬合的辦法最有用的就是依賴數據,越用復雜演算法,越容易過擬合。

計算機科學在大數據出現之前,非常依賴模型以及演算法。如果想要得到精準的結論,需要建立模型來描述問題,同時,需要理順邏輯,理解因果,設計精妙的演算法來得出接近現實的結論。

因此,一個問題,能否得到最好的解決,取決於建模是否合理,各種演算法的比拼成為決定成敗的關鍵。然而,大數據的出現徹底改變了人們對於建模和演算法的依賴。

(9)復雜演算法到簡單演算法擴展閱讀:

大數據分析的產生旨在於IT管理,企業可以將實時數據流分析和歷史相關數據相結合,然後大數據分析並發現它們所需的模型。反過來,幫助預測和預防未來運行中斷和性能問題。進一步來講,他們可以利用大數據了解使用模型以及地理趨勢,進而加深大數據對重要用戶的洞察力。

也可以追蹤和記錄網路行為,大數據輕松地識別業務影響;隨著對服務利用的深刻理解加快利潤增長;同時跨多系統收集數據發展IT服務目錄。

❿ 演算法的三種基本結構是

演算法有順序結構、條件分支結構、循環結構三種基本邏輯結構。

1、順序結構:順序結構是最簡單的演算法結構,語句與語句之間,框與框之間是按從上到下的順序進行的,它是由若干個依次執行的處理步驟組成的。

它是任何一個演算法都離不開的一種基本演算法結構。順序結構在程序框圖中的體現就是用流程線將程序框自上而下地連接起來,按順序執行演算法步驟。

2、條件結構:

條件結構是指在演算法中通過對條件的判斷,根據條件是否成立而選擇不同流向的演算法結構。

條件P是否成立而選擇執行A框或B框。無論P條件是否成立,只能執行A框或B框之一,不可能同時執行A框和B框,也不可能A框、B框都不執行。一個判斷結構可以有多個判斷框。

3、循環結構

在一些演算法中,經常會出現從某處開始,按照一定條件,反復執行某一處理步驟的情況,這就是循環結構,反復執行的處理步驟為循環體,顯然,循環結構中一定包含條件結構。循環結構又稱重復結構,循環結構可細分為兩類:

一類是當型循環結構,如下左圖所示,它的功能是當給定的條件P成立時,執行A框,A框執行完畢後,再判斷條件P是否成立,如果仍然成立,再執行A框,如此反復執行A框,直到某一次條件P不成立為止,此時不再執行A框,離開循環結構。

另一類是直到型循環結構,如下右圖所示,它的功能是先執行,然後判斷給定的條件P是否成立,如果P仍然不成立,則繼續執行A框,直到某一次給定的條件P成立為止,此時不再執行A框,離開循環結構。

(10)復雜演算法到簡單演算法擴展閱讀

共同特點

(1)只有一個入口和出口

(2)結構內的每一部分都有機會被執行到,也就是說對每一個框來說都應當有一條從入口到出口的路徑通過它,如圖中的A,沒有一條從入口到出口的路徑通過它,就是不符合要求的演算法結構。

(3)結構內不存在死循環,即無終止的循環。

閱讀全文

與復雜演算法到簡單演算法相關的資料

熱點內容
卡爾曼濾波演算法書籍 瀏覽:768
安卓手機怎麼用愛思助手傳文件進蘋果手機上 瀏覽:843
安卓怎麼下載60秒生存 瀏覽:802
外向式文件夾 瀏覽:239
dospdf 瀏覽:430
怎麼修改騰訊雲伺服器ip 瀏覽:391
pdftoeps 瀏覽:495
為什麼鴻蒙那麼像安卓 瀏覽:735
安卓手機怎麼拍自媒體視頻 瀏覽:185
單片機各個中斷的初始化 瀏覽:723
python怎麼集合元素 瀏覽:480
python逐條解讀 瀏覽:832
基於單片機的濕度控制 瀏覽:498
ios如何使用安卓的帳號 瀏覽:882
程序員公園采訪 瀏覽:811
程序員實戰教程要多長時間 瀏覽:976
企業數據加密技巧 瀏覽:134
租雲伺服器開發 瀏覽:813
程序員告白媽媽不同意 瀏覽:335
攻城掠地怎麼查看伺服器 瀏覽:600