Ⅰ 模糊c-均值聚類演算法的FCM 演算法簡介
假設樣本集合為X={x1 ,x2 ,…,xn },將其分成c 個模糊組,並求每組的聚類中心cj ( j=1,2,…,C) ,使目標函數達到最小。
Ⅱ 常用的聚類方法有哪幾種
聚類分析的演算法可以分為劃分法、層次法、基於密度的方法、基於網格的方法、基於模型的方法。
1、劃分法,給定一個有N個元組或者紀錄的數據集,分裂法將構造K個分組,每一個分組就代表一個聚類,K<N。
2、層次法,這種方法對給定的數據集進行層次似的分解,直到某種條件滿足為止。
3、基於密度的方法,基於密度的方法與其它方法的一個根本區別是:它不是基於各種各樣的距離的,而是基於密度的。這樣就能克服基於距離的演算法只能發現「類圓形」的聚類的缺點。
4、圖論聚類方法解決的第一步是建立與問題相適應的圖,圖的節點對應於被分析數據的最小單元,圖的邊(或弧)對應於最小處理單元數據之間的相似性度量。
5、基於網格的方法,這種方法首先將數據空間劃分成為有限個單元的網格結構,所有的處理都是以單個的單元為對象的。
6、基於模型的方法,基於模型的方法給每一個聚類假定一個模型,然後去尋找能夠很好的滿足這個模型的數據集。
(2)c語言聚類演算法擴展閱讀:
在商業上,聚類可以幫助市場分析人員從消費者資料庫中區分出不同的消費群體來,並且概括出每一類消費者的消費模式或者說習慣。
它作為數據挖掘中的一個模塊,可以作為一個單獨的工具以發現資料庫中分布的一些深層的信息,並且概括出每一類的特點,或者把注意力放在某一個特定的類上以作進一步的分析;並且,聚類分析也可以作為數據挖掘演算法中其他分析演算法的一個預處理步驟。
許多聚類演算法在小於 200 個數據對象的小數據集合上工作得很好;但是,一個大規模資料庫可能包含幾百萬個對象,在這樣的大數據集合樣本上進行聚類可能會導致有偏的結果。
許多聚類演算法在聚類分析中要求用戶輸入一定的參數,例如希望產生的簇的數目。聚類結果對於輸入參數十分敏感。參數通常很難確定,特別是對於包含高維對象的數據集來說。這樣不僅加重了用戶的負擔,也使得聚類的質量難以控制。
Ⅲ 用c或者c++編程實現k-means cluster和分層聚類演算法
郵箱
Ⅳ 誰有模糊c均值聚類演算法的代碼
模糊c均值聚類
函數: fcm
格式: [center,U,obj_fcn] = fcm(data,cluster_n)
舉例如下所示:
data = rand(100, 2);
[center,U,obj_fcn] = fcm(data, 2);
plot(data(:,1), data(:,2),'o');
maxU = max(U);
index1 = find(U(1,:) == maxU);
index2 = find(U(2, :) == maxU);
line(data(index1,1), data(index1, 2), 'linestyle', 'none', 'marker', '*', 'color', 'g');
line(data(index2,1), data(index2, 2), 'linestyle', 'none', 'marker', '*', 'color', 'r');
Ⅳ 高分求一個C語言編寫的聚類分析演算法!!!
用c語言寫?有點瘋狂了,現在都用python寫,你要的話我發給你,很多函數庫,在c語言下不知道能不能找到呢
Ⅵ 使用K-Means 演算法進行聚類分析程序
高維求距離唄。自己定義一個距離的概念,一般都用和2維一樣的2-norm.
Ⅶ 用C語言實現聚類分析演算法或者是FCM演算法源程序
為什麼總有人在這里問這么麻煩的問題呢,會有人有耐心給你寫程序嗎
Ⅷ K-Means聚類演算法原理是怎麼樣的
問題:
姓名 身高 體重 眼睛
A 180 X 1.2
A X 140 X
A 180 140 X
A 168 120 1.5
姓名一樣,用java演算法,判斷出是兩個人?
Ⅸ k均值聚類演算法、c均值聚類演算法、模糊的c均值聚類演算法的區別
k均值聚類:---------一種硬聚類演算法,隸屬度只有兩個取值0或1,提出的基本根據是「類內誤差平方和最小化」准則;
模糊的c均值聚類演算法:-------- 一種模糊聚類演算法,是k均值聚類演算法的推廣形式,隸屬度取值為[0 1]區間內的任何一個數,提出的基本根據是「類內加權誤差平方和最小化」准則;
這兩個方法都是迭代求取最終的聚類劃分,即聚類中心與隸屬度值。兩者都不能保證找到問題的最優解,都有可能收斂到局部極值,模糊c均值甚至可能是鞍點。
至於c均值似乎沒有這么叫的,至少從我看到文獻來看是沒有。不必糾結於名稱。如果你看的是某本模式識別的書,可能它想表達的意思就是k均值。
實際上k-means這個單詞最先是好像在1965年的一篇文獻提出來的,後來很多人把這種聚類叫做k均值。但是實際上十多年前就有了類似的演算法,但是名字不一樣,k均值的歷史相當的復雜,在若干不同的領域都被單獨提出。追尋演算法的名稱與歷史沒什麼意義,明白具體的實現方法就好了。
Ⅹ 什麼是聚類分析聚類演算法有哪幾種
聚類分析是分類演算法中的一種,是無監督的,不需要訓練。
聚類演算法分為:硬聚類演算法和軟聚類演算法,硬聚類中最經典的是K均值聚類演算法,就是大家所說的K-means演算法,軟聚類演算法中最經典的是模糊C均值聚類演算法,就是FCM。後續的一些聚類演算法都是在這兩種上改進的