導航:首頁 > 源碼編譯 > 關於遺傳演算法配送研究

關於遺傳演算法配送研究

發布時間:2022-09-07 21:38:31

Ⅰ 關於遺傳演算法的應用--物流中心選址問題

你想問什麼問題?能再具體點嗎?
我研究過遺傳演算法解決選址問題的。
msl1121說的不對,選址問題不是TSP問題。

編碼可以採用二進制編碼,即[0,1,1,0,0,0,1,1,1,0……],長度為n,其中1的個數為P。
具體可聯系:[email protected]

Ⅱ 請教選址研究問題!

物流配送中心選址方法研究綜述

內容摘要:物流配送中心的選址決策在物流運作中有著重要的地位。本文對近年來國內外有關配送中心選址方法的文獻進行梳理和研究。研究結果發現:各種選址方法有著各自的優缺點和一定的適用范圍,各種方法的組合是未來該領域研究的趨勢。
關鍵詞:物流配送中心 選址 文獻綜述

在物流系統的運作中,配送中心的選址決策發揮著重要的影響。配送中心是連接工廠與客戶的中間橋梁,其選址方式往往決定著物流的配送距離和配送模式,進而影響著物流系統的運作效率。因此,研究物流配送中心的選址具有重要的理論和現實應用意義。
本文對近年來國內外有關物流配送中心選址方法的文獻進行了梳理和研究,並對各種方法進行了比較。選址方法主要有定性和定量的兩種方法。定性方法有專家打分法、Delphi法等,定量方法有重心法、P中值法、數學規劃方法、多准則決策方法、解決NP hard問題(多項式復雜程度的非確定性問題)的各種啟發式演算法、模擬法以及這幾種方法相結合的方法等。由於定性研究方法及重心法、P中值法相對比較成熟,因此,本文將主要分析定量方法中的數學規劃、多准則決策、解決NP hard問題的各種啟發式演算法、模擬在配送中心選址中應用的研究狀況。
數學規劃方法
數學規劃演算法包括線性規劃、非線性規劃、整數規劃、混合整數規劃和動態規劃、網路規劃演算法等。在近年來的研究中,規劃論中常常引入了不確定性的概念,由此進一步產生了模糊規劃、隨機規劃、模糊隨機規劃、隨機模糊規劃等等。不確定性規劃主要是在規劃中的C(價值向量)、A(資源消耗向量)、b(資源約束向量)和決策變數中引入不確定性,從而使得不確定規劃更加貼近於實際情況,得到廣泛地實際應用。
國內外學者對於數學規劃方法應用於配送中心的選址問題進行了比較深入的研究。姜大元(2005)應用Baumol-wolf模型,對多物流節點的選址問題進行研究,並通過舉例對模型的應用進行了說明,該模型屬於整數規劃和非參數規劃結合的模型。各種規劃的方法在具體的現實使用中,常常出現NP hard問題。因此,目前的進一步研究趨勢是各種規劃方法和啟發式演算法的結合,對配送中心的選址進行一個綜合的規劃與計算。
多准則決策方法
在物流系統的研究中,人們常常會遇到大量多准則決策問題,如配送中心的選址、運輸方式及路線選擇、供應商選擇等等。這些問題的典型特徵是涉及到多個選擇方案(對象),每個方案都有若干個不同的准則,要通過多個准則對於方案(對象)做出綜合性的選擇。對於物流配送中心的選址問題,人們常常以運輸成本及配送中心建設、運作成本的總成本最小化,滿足顧客需求,以及滿足社會、環境要求等為准則進行決策。多准則決策的方法包括多指標決策方法與多屬性決策方法兩種,比較常用的有層次分析法(AHP)、模糊綜合評判、數據包絡分析(DEA),TOPSIS、優序法等等。
多准則決策提供了一套良好的決策方法體系,對於配送中心的選址不管在實務界還是理論方面的研究均有廣泛的應用與研究。關志民等(2005)提出了基於模糊多指標評價方法的配送中心選址優化決策。從供應鏈管理的實際需要分析了影響配送中心選址的主要因素,並建立相應的評價指標體系,由此給出了一種使定性和定量的方法有機結合的模糊多指標評價方法。Chen-Tung Chen(2001)運用了基於三角模糊數的模糊多准則決策對物流配送中心的選址問題進行了研究。文章以投資成本、擴展的可能性、獲取原材料的便利性、人力資源、顧客市場的接近性為決策准則,並對各個准則採用語義模糊判定的方式進行了權重上的集結。
有關多准則決策方法,特別是層次分析法和模糊綜合評判的方法,在配送中心的選址研究中有著廣泛的應用。但是,這兩種方法都是基於線性的決策思想,在當今復雜多變的環境下,線性的決策思想逐漸地暴露出其固有的局限性,非線性的決策方法是今後進一步的研究的重點和趨勢。
啟發式演算法
啟發式演算法是尋求解決問題的一種方法和策略,是建立在經驗和判斷的基礎上,體現人的主觀能動作用和創造力。啟發式演算法常常能夠比較有效地處理NP hard問題,因此,啟發式演算法經常與其它優化演算法結合在一起使用,使兩者的優點進一步得到發揮。目前,比較常用的啟發式演算法包括:遺傳演算法;神經網路演算法;模擬退火演算法。
(一)遺傳演算法
遺傳演算法(genetic algorithm, GA)是在 20 世紀 60 年代提出來的,是受遺傳學中自然選擇和遺傳機制啟發而發展起來的一種搜索演算法。它的基本思想是使用模擬生物和人類進化的方法求解復雜的優化問題,因而也稱為模擬進化優化演算法。遺傳演算法主要有三個運算元:選擇;交叉;變異。通過這三個運算元,問題得到了逐步的優化,最終達到滿意的優化解。
對於物流配送中心的選址研究,國內外有不少學者將遺傳演算法同一般的規劃方法結合起來對其進行了研究。蔣忠中等(2005)在考慮各種成本(包括運輸成本等)的基礎上,結合具體的應用背景,建立的數學規劃模型(混合整數規劃或是一般的線性規劃)。由於該模型是一個組合優化問題,具有NP hard問題,因此,結合了遺傳演算法對模型進行求解。通過選擇恰當的編碼方法和遺傳運算元,求得了模型的最優解。
遺傳演算法作為一種隨機搜索的、啟發式的演算法,具有較強的全局搜索能力,但是,往往比較容易陷入局部最優情況。因此,在研究和應用中,為避免這一缺點,遺傳演算法常常和其它演算法結合應用,使得這一演算法更具有應用價值。
(二)人工神經網路
人工神經網路(artificial neural- network, ANN)是由大量處理單元(神經元)廣泛互連而成的網路,是對人腦的抽象、簡化和模擬,反應人腦的基本特徵。可以通過對樣本訓練數據的學習,形成一定的網路參數結構,從而可以對復雜的系統進行有效的模型識別。經過大量樣本學習和訓練的神經網路在分類和評價中,往往要比一般的分類評價方法有效。
對於神經網路如何應用於物流配送中心的選址,國內外不少學者進行了各種有益的嘗試。韓慶蘭等(2004)用BP網路對物流配送中心的選址問題進行了嘗試性地研究,顯示出神經網路對於解決配送中心選址問題具有一定的可行性和可操作性。
這一研究的不足是神經網路的訓練需要大量的數據,在對數據的獲取有一定的困難的情況下,用神經網路來研究是不恰當的。在應用ANN時,我們應當注意網路的學習速度、是否陷入局部最優解、數據的前期准備、網路的結構解釋等問題,這樣才能有效及可靠地應用ANN解決實際存在的問題。
(三)模擬退火演算法
模擬退火演算法(Simulated Annealing, SA)又稱模擬冷卻法、概率爬山法等,於1982年由Kirpatrick提出的另一種啟發式的、隨機優化演算法。模擬退火演算法的基本思想由一個初始的解出發,不斷重復產生迭代解,逐步判定、舍棄,最終取得滿意解的過程。模擬退火演算法不但可以往好的方向發展,也可以往差的方向發展,從而使演算法跳出局部最優解,達到全局最優解。
對於模擬退火演算法應用於物流配送中心選址的研究,大量的文獻結合其它方法(如多准則決策、數學規劃等)進行了研究。任春玉(2006)提出了定量化的模擬退火遺傳演算法與層次分析法相結合來確定配送中心地址的方法。該方法確保總體中個體多樣性以及防止遺傳演算法的提前收斂,運用層次分析法確定 物流配送中心選址評價指標權重,並與專家評分相結合進行了綜合評價。該演算法對於解決物流配送中心的選址具有較好的有效性和可靠性。
除以上三種比較常用的方法之外,啟發式演算法還包括蟻群演算法、禁忌搜索演算法、進化演算法等。各種演算法在全局搜索能力、優缺點、參數、解情況存在著一定的差異。各種啟發式演算法基本上帶有隨機搜索的特點,已廣泛地應用於解決NP hard問題,同時也為物流配送中心選址的智能化處理提供了可能。用解析的方法(包括線性規劃等)建立數學模型,然後運用啟發式演算法進行求解是目前以及未來研究物流配送中心選址的一種較為可行和可操作的研究方法。
模擬方法
模擬是利用計算機來運行模擬模型,模擬時間系統的運行狀態及其隨時間變化的過程,並通過對模擬運行過程的觀察和統計,得到被模擬系統的模擬輸出參數和基本特徵,以此來估計和推斷實際系統的真實參數和真實性能。國內外已經不少文獻將模擬的方法運用於物流配送中心選址或是一般的設施選址的研究,研究結果相對解析方法更接近於實際的情況。
張雲鳳等(2005)對汽車集團企業的配送中心選址運用了模擬的方法進行了研究。先確定了配送中心選址的幾種方案,應用了Flexim軟體對各方案建立了模擬模型,根據模擬結果進行了分析和方案的選擇。該方法為集團企業配送中心選址問題提供了一種較為理想的解決方法。薛永吉等(2005)通過建立數學模型對物流中心的最優站台數問題進行研究,在一定假設和一系列限制條件下,求解最優站台數量,並針對數學模型的復雜性和求解的種種不足,以ARENA模擬軟體為平台,建立模擬模型確定了最優化方案。Kazuyoshi Hidaka等(97)運用模擬對大規模的倉庫選址進行了研究。該研究對倉庫的固定成本、運輸成本,和同時滿足6800名顧客進行了模擬,以求得臨近的最優解(near-optimal solution)。在求解的過程中,結合了貪婪-互換啟發式演算法(Greedy-Interchange heuristics)和氣球搜索演算法(Balloon Search)兩種啟發式演算法進行求解。該演算法能比較有效地避免陷入局部最優解和得到比較滿意的選址方案。但是,研究的結果容易受到運輸車輛的平均速度變化的影響。
模擬方法相對解析的方法在實際應用中具有一定的優點,但是,也存在一定的局限性。如模擬需要進行相對比較嚴格的模型的可信性和有效性的檢驗。有些模擬系統對初始偏差比較敏感,往往使得模擬結果與實際結果有較大的偏差。同時,模擬對人和機器要求往往比較高,要求設計人員必須具備豐富的經驗和較高的分析能力,而相對復雜的模擬系統,對計算機硬體的相應要求是比較高的。關於未來的研究,各種解析方法、啟發式演算法、多准則決策方法與模擬方法的結合,是一種必然的趨勢。各種方法的結合可以彌補各自的不足,而充分發揮各自的優點,從而提高選址的准確性和可靠性。
物流配送中心的選址決策對於整個物流系統運作和客戶滿意情況有著重要的影響。本文在對國內外有關物流配送中心選址方法文獻研究的基礎上,對比分析了數學規劃方法、多准則決策、啟發式演算法、模擬方法在配送中心選址中的應用。研究發現數學規劃方法、多屬性決策方法、啟發式演算法、模擬方法各自有自己的優缺點和一定的適用范圍,各種方法的組合研究是未來研究的一種趨勢。同時,由於選址問題本身具有的動態性、復雜性、不確定性等特性,因此,開發和研究新的模型與方法也是進一步解決配送中心選址問題的必需途徑。

參考文獻:
1.蔣忠中,汪定偉.B2C電子商務中配送中心選址優化的模型與演算法(J).控制與決策,2005
2.韓慶蘭,梅運先.基於BP人工神經網路的物流配送中心選址決策(J).中國軟科學,2004

Ⅲ 用遺傳演算法求解配送路線優化問題時,交叉率和變異率怎麼設定

以下是問題的詳細回答,文字有些長,請你耐心看希望對你有幫助。
傳演算法可以很好的解決物流配送路徑優化問題。但是由於遺傳演算法交配運算元操作可能會使最好解遺失,所以將遺傳演算法和模擬退火演算法結合來解決這一問題。實驗結果表明:用這種有記憶功能的遺傳模擬退火演算法求解物流配送路徑優化問題,可以在一定程度上解決上述問題,從而得到較高質量的解。
一 物流系統簡介
物流系統是以客戶滿意為目標,根據顧客的要求條件,從生產地到銷售地,在倉儲、包裝、配送、運輸、裝卸等環節有機整合所形成的實物、服務以及信息的流通過程所組成的一個復雜的系統。
物流配送是現代化物流管理中的一個重要環節。它是指按用戶的定貨要求,在配送中心進行分貨、配貨,並將配好的貨物及時送交收貨人的活動。本文討論物流配送中的路徑優化問題,並且通過結合模擬退火演算法來解決遺傳演算法在解決此類問題時的不足。
二 系統模型設計
物流配送路徑優化問題可以按這樣的情況進行描述:從某物流配送中心用多輛配送車輛向多個客戶送貨。每個客戶的位置和貨物需求量一定,每輛車的載重量一定,配送時間一定,其一次配送的最大行駛距離一定。要求合理安排車輛配送路線,使目標函數得到最優。並滿足以下條件:(1)每條配送路徑上各客戶需求量之和不超過配送車輛的載重量;(2)每條配送路徑的長度不超過配送車輛一次配送的最大行駛距離;(3)每次配送的貨物不能超過客 戶要求的時間; (4)每個客戶的需求必須滿足,且只能由一輛配送車送貨。設配送中心需要向k個客戶送貨,每個客戶的貨物需求量是g (i=1,2,…..k),每輛配送車的載重量是q,且g 下面建立此問題的數學模型:c 表示點i到點j的運輸成本,t 表示從i到s所允許的最大時間。配送中心編號為0,各客戶編號為i(i=1,2,….,k),定義變數如下:
x = 1 或 0(其中,當x 等於1時表示車s由i駛向j;0表示沒有該路徑。)。
y = 1 或 0(其中,當y 等於1時表示點i的貨運任務由s車完成;0表示沒有。)。
根據上述變數定義可得到的數學模型如下所示:
min Z = ; (1) ;(2)
= 1或 m(其中,當 i = 1,2,……,k時為1,否則為0。);(3)
= y ,j = 1,2,……,k;s = 1,2,……,m; (4)
= y ,i = 0,1,……,k;s = 1,2,……,m; (5)
t > 0;且t t , j = 1,2……,s-1; (6)
上述模型中,式(2)為汽車容量約束;式(3)保證了每個客戶的運輸任務僅由一輛車完成,而所有運輸任務則由m輛車協同完成;式(4)和式(5)限制了到達和離開某一客戶的汽車有且僅有一輛。式(6)對配送時間做了約束,即物品到達指定地點的時間不能大於其最大允許時間。
上述模型中還要考慮時間問題,即每個客戶對所送物品的時間要求各不相同,故需加入一個時間參數t 。對每個運輸路徑都加上時間參數t (t 的值可由客戶需求中得知,並記錄到資料庫。),在每個規定的時間內(如一個月),優先配送t 值小的物品,每次在用遺傳演算法求解前,遍歷規定時間內的所有t ,按照t 值由小到大排列染色體,然後再求出最優解,根據最優解制定配送方案。
三 引入退火演算法改進求解過程
針對遺傳演算法的一些不足,將模擬退火演算法與之結合,並加入記憶裝置,從而構造了物流配送路徑優化問題的一種有記憶功能的遺傳模擬退火演算法。該演算法的特點是擴大了原有遺傳演算法的搜索鄰域,在一定概率控制下暫時接受一些惡化解。同時利用記憶裝置保證了在一定終止條件下所得的最終解至少是搜索過程中曾得到所有解中的最優解。該演算法通過在常規的遺傳演算法基礎上加入模擬退火運算元和記憶裝置而得到。下面首先介紹此有記憶功能的遺傳模擬演算法的步驟。根據參考文獻[3],給出下面的演算法實現步驟:
STEP1 給定群體規模maxpop,將初始群體按照t 所指定的值進行分塊, k=0;初始溫度t =t ,產生初始群體pop(k),並且初始群體的每個分塊中都具有t 滿足某一屬性的特徵值;對初始群體計算目標值f(i), 找出使函數f (t )最小的染色體i和這個函數值f,記i =i,f =f;其中,f (t )為狀態i在溫度為t 時的目標值。i∈ pop( k),即當代群體中的一個染色體;
STEP2 若滿足結束條件則停止計算,輸出最優染色體i 和最優解f ;否則,在群體pop(k)的每一個染色體i∈ pop(k)的鄰域中隨機選一狀態j∈N( i ),且t 滿足條件要求, 按模擬退火中的接受概率
接受或拒絕j,其中f (t ), f (t )分別為狀態i,j的目標值。這一階段共需maxpop次迭代以選出新群體newpop1;
STEP3 在newpop1(k+1)中計算適應度函數
其中,f 是newpop1(k+1)中的最小值。由適應度函數決定的概率分布從newpop1中隨機選maxpop個染色體形成種群newpop2;
STEP4 按遺傳演算法的常規方法對newpop2進行交叉得到crosspop,再變異得到mutpop;
STEP5 染色體中的每個元素在滿足t 的情況下,且具有較大t 值的元素完成時沒有破壞具有較小t 值進行計算所需條件的情況下,不必按照由小到大的順序進行排列,
STEP6 令pop(k+1)=mutpop,對pop(k+1)計算f (t ),找出使函數f (t )最小的染色體i和這個函數值f,如果f < f ,則令i = i, f =f, t = d(t ),k = k+1, 返回 STEP2。
出於表示簡單,計算機處理方便的目的,對於VRP問題的遺傳演算法編碼通常都採用自然數編碼。上述數學模型的解向量可編成一條長度為k+m+1的染色體(0,i ,i ,…,i ,0,i ,…i ,0,…0,i ,…,i ,0)。在整條染色體中,自然數 i 表示第 j 個客戶。0的數目為m+1個,代表配送中心,並把自然數編碼分為m段,形成m個子路徑,表示由m輛車完成所有運輸任務。這樣的染色體編碼可以解釋為:第一輛車從配送中心出發,經過i ,i ,…,i 客戶後回到配送中心,形成了子路徑1;第2輛車也從配送中心出發,途徑i ,…i 客戶後回到配送中心,形成子路徑2。m輛車依次出發,完成所有運輸任務,構成m條子路徑。
如染色體0123045067890表示由三輛車完成9個客戶的運輸任務的路徑安排:
子路徑1:配送中心→客戶1→客戶2→客戶3→配送中心
子路徑2:配送中心→客戶4→客戶5→配送中心
子路徑3:配送中心→客戶6→客戶7→客戶8→客戶9→配送中心。
為了使演算法收斂到全局最優,遺傳群體應具有一定的規模。但為了保證計算效率,群體規模也不能太大。一般取群體規模取值在10到100之間。
在初始化染色體時,先生成 k 個客戶的一個全排列,再將 m+1 個 0 隨機插入排列中,其中所選的 k 個客戶所要求的時間必須在某一個特定的時間段內,且完成任何一個客戶配送任務時不能破壞完成其他客戶配送任務的條件。需要注意的是必須有兩個 0 被安排在排列的頭和尾,並且在排列中不能有連續的兩個0。這樣構成一條滿足問題需要的染色體。針對此染色體,隨機選擇兩個位置上的元素進行交換,並用演算法對其調整,使其成為新的滿足要求的染色體。交換若干次,直至生成滿足群體規模數的染色體。
在這里,將容量約束式(2)轉為運輸成本的一部分,運輸成本變為:
其中M為一很大的正數,表示當一輛車的貨運量超過其最大載重量時的懲罰系數。M應趨向於無窮大。考慮到計算機處理的問題,參考文獻[6],取M為1000000為宜。將此運輸成本函數作為我們的目標函數。適應度函數採用一種加速適應度函數:
這種適應度函數加速性能比較好,可以迅速改進適應度的值,縮短演算法運行時間。
將每代種群的染色體中適應度最大的染色體直接復制,進入下一代。種群中其他染色體按其適應度的概率分布,採用輪盤賭的方法,產生子代。這樣既保證了最優者可生存至下一代,又保證了其餘染色體可按生存競爭的方法生成子代,使得演算法可收斂到全局最優。選中的染色體按一定的概率—交叉率,產生子代。交叉率在0.6~0.8之間,演算法進化效果較好。
四 試驗數據與比較
實驗數據取自參考文獻[6]。
實驗1,隨機生成1個有8個門店的VRP問題,初始數據如下:
圖1八個門店的需求量及其位置
根據各倉庫的需求量,計算出需要的汽車數:m=[17.82/(0.85*8)]+1=3。採用傳統的遺傳演算法的各運算元,並對其中的交叉運算元進行了改造,取群體規模為20,進化代數為50,應用此程序他費時3s得到的結果為:
而我們的演算法在上面的演算法中加入了一個模擬退火運算元,取初始退火溫度為10,衰減系數取0.85使用第三節所述演算法步驟,在奔騰四的計算機上計算,耗時2s,得結果如下:
實驗2,隨機生成1個有20個門店的VRP問題,初始數據如下:
圖2 20個門店的需求量及其位置
計算得:需6輛車。用參考文獻[6]中的演算法取群體規模100,進化代數分別設為20,50,100,得到的結果不同:
圖3 普通遺傳演算法的實驗結果
而採用本文的演算法,初始退火溫度取10,衰減系數取0.85,在奔騰四的計算機上計算,則結果如下:
圖4 新型演算法的實驗結果
從以上兩個實驗可以看出:採用本文中所述的演算法,要得到相同的結果可以縮短進化代數,從而節約運算時間。而要增加進化代數必然得到更好的結果。
五 結論
用模擬退火演算法與傳統的遺傳演算法相結合來求解物流系統中車輛路徑問題,可以使演算法所需的進化代數明顯減少,問題解可在最短時間內求出。因此在時間特性上有了比較好的改善,耗時較短,獲得了較好的結果。根據參考資料所記載的數據表明,此演算法在解決諸如車輛路徑問題問題確實可行,並有較好的性能。而且隨著問題規模的增大,這種對時間性能的改善效果將更加明顯。這就非常有助於物流企業根據自己的實際情況科學、有效的指定物流決策,降低風險,降低成本,提高經濟效益和自身的競爭力。
參考文獻
[1] 郭耀煌 李軍著,車輛優化調度,成都:成都科技大學,1994
[2] 邢文訓 謝金星編著,現代優化計算方法,北京:清華大學出版社,1999
[3] 郎茂祥,物流配送車輛調度問題的模型和演算法研究,北京:北方交通大學,2002
[4] 郎茂祥 胡思繼,用混和遺傳演算法求解物流配送路徑優化問題的研究,中國管理科學,2002
[5] 李軍 謝秉磊 郭耀煌,非滿載車輛調度問題的遺傳演算法,系統工程理論與實踐,2000
[6] 唐坤,車輛路徑問題中的遺傳演算法設計,東北大學學報(自然科學版),2002
[7] 姜大立 楊西龍 杜文等,車輛路徑問題的遺傳演算法研究,系統工程理論與實踐,1999
[8] 閻慶 鮑遠律,新型遺傳模擬退火演算法求解物流配送路徑問題,計算機科學與發展,2002

Ⅳ 遺傳演算法在配送問題中為什麼要設K-1個虛擬的配送中心

因為將問題等價於求一個哈密頓圈所致。

哈密頓圈:一條閉合的路徑,經過所有,並且每個點只經過一次。

如圖,所示:配送問題就是找出K條往返路徑,使得這K條路徑經過所有點。而哈密頓圈問題是只有一個往返路徑的。兩個問題間的等價轉換就是增設K-1個虛擬的配送中心。

雖然點增加了,但是只有一條路徑了,即哈密頓圈。

Lz可查閱「多旅行商問題」。

Ⅳ 2021物流方向經典論文題目參考

論文題目是全文給讀者和編輯和第一印象,文題的好壞對論文能否利用具有舉足輕重的作用。下面我給大家帶來2021物流方向經典論文題目參考,希望能幫助到大家!

物流配送論文題目

1、 京東自建物流配送模式研究

2、 民用無人機在物流配送行業中的分析與設計

3、 基於Spark的並行遺傳演算法在物流配送問題中的應用

4、 「大數據」思維下的煙草物流配送中心設備管理系統開發與應用

5、 互聯網+視角下農村電商物流配送運作模式分析

6、 O2O模式下電商物流配送策略探析

7、 基於共享經濟背景的農村物流配送體系構建——以新型城鎮化背景下的長株潭農村地區為例

8、 基於無人機物流配送的戰時快速衛勤保障體系探討

9、 RFID技術應用於農超對接物流配送系統的經濟效應

10、 基於蟻群演算法的物流配送路徑的研究

11、 城市物流配送車輛調度模型及優化

12、 基於電商環境的農產品物流配送體系構建

13、 物流配送的績效評價體系的構建——以蘇寧易購為例

14、 我國零售業連鎖經營的物流配送模式優化研究

15、 大型物流配送中心的主動式倉儲調度策略及其性能分析

16、 農村電子商務物流配送改革策略分析

17、 淺談京東物流配送模式的優化

18、 國內連鎖超市物流配送優化方案研究

19、 大數據背景下電子商務物流配送模式研究

20、 B2C電子商務企業物流配送模式比較研究

21、 基於組合拍賣的B2C電商物流配送研究

22、 國內連鎖經營企業物流配送模式對庫存水平影響的實證研究

23、 物聯網技術下的農產品冷鏈物流配送優化研究

24、 基於改進自適應遺傳演算法的物流配送路徑優化研究

25、 基於城市道路擁堵的物流配送車輛停車收費定價研究

26、 鑫威超市基於顧客滿意度的物流配送管理研究

27、 淺析生鮮農產品電商物流配送模式的優化

28、 借鑒歐美城市物流配送的 經驗 做法解決好我國城市物流「最後一公里」問題

29、 改進人工人群搜索演算法在基於LBS物流配送中的應用

30、 基於層次化網路優化的煙草物流配送網路的開發與設計

31、 基於模擬退火演算法最優物流配送問題的應用

32、 改進差分進化演算法在物流配送中的多目標優化研究

33、 一種面向智慧城市的自動物流配送系統初探

34、 農產品電商綜合物流配送模式研究——以廣西海吉星電商綜合配送模式為例

35、 茶產業發展中物流配送模式研究

36、 TSP模型在蔬菜基地物流配送中的應用

37、 O2O模式下物流配送研究綜述

38、 基於Fle_sim的山區生鮮農產品冷鏈物流配送網路模擬分析

39、 O2O模式下零售企業物流配送網路節點的優化布局

40、 電子商務環境下物流配送網路協同性研究

41、 共享經濟視角下我國鄉村地區最後一公里物流配送模式優化研究

42、 7-11物流配送模式分析

43、 基於RFID&GPS/GPRS技術下的電商生鮮物流配送

44、 柳州融水電子商務物流配送路徑優化

45、 基於直覺模糊集的中小型企業第三方物流配送服務商選擇研究

46、 城市冷鏈物流配送車輛路徑問題研究

47、 基於容器標准化的智能物流配送

48、 基於城鄉雙向互動的物流配送網路創新研究

49、 農村連鎖超市物流配送問題及解決途徑探究

50、 O2O模式連鎖企業農產品物流配送路徑優化

最全物流管理論文題目

1、第三方物流信息技術應用研究

2、B2B電子商務對交易成本的影響的分析

3、電子商務的發展對第三產業結構的影響

4、電子商務時代的企業價值創新

5、電子商務時代網路營銷的變遷

6、電子商務的發展創新與環境構築

7、電子商務環境下的敏捷製造研究

8、電子商務環境下物流企業經營戰略分析

9、電子商務時代和信息時代的供應鏈管理與物流配送

10、電子商務環境下物流業發展對策探討

11、電子商務時代的物流配送思考

12、電子商務對企業的影響與對策

13、試論企業電子商務的風險控制

14、試論電子商務與高新技術產業發展戰略

15、網路經濟時代下的傳統企業電子商務化

16、電子商務發展的現狀、難題及對策分析

17、論包裝在運輸過程中的作用

18、淺談運輸成本控制

19、論智能運輸系統在我國的發展

20、中國公路貨物運輸發展研究

21、公路危險品運輸管理探討

22、淺談超載運輸的危害及其對策

23、淺談超限運輸的危害及其對策

24、道路危險貨物運輸中的若干問題研究

25、淺談運輸工具的選擇對成本的影響

26、道路運輸責任劃分的研究與分析

27、淺談運輸線路的選擇和優化

28、道路貨運裝卸搬運合理化的研究與探討

29、淺談運輸合理化

30、關於__市快速公交系統的調查與分析

31、關於__市__集裝箱運輸公司的調查與研究

32、關於公路集裝箱運輸經濟學初步理論研究

33、基於集裝箱的離散型、分布式運輸生產與運作初步研究

34、關於公路集裝箱運輸企業IT戰略研究

35、淺議公路集裝箱運輸系統及關鍵系統需求

36、公路與鐵路集裝箱運輸相關法規調查與分析

37、公路集裝箱運輸管理信息系統初步研究

38、供應鏈管理環境下第三方物流企業發展策略研究

39、第三方物流企業經營戰略研究

40、__物流信息系統規劃設計

41、物流企業核心竟爭力研究

42、__物流通道系統規劃設計

43、物流中心規劃與設計 方法 研究

44、物流配送路線優化的研究

45、試論區域經濟中的現代物流發展戰略

46、試析供應鏈管理對中國企業發展的影響與作用

47、關於現代物流園區建設的思考與建議

48、關於建立區域物流規劃的的戰略思考

49、區域現代物流產業發展規劃

50、__企業物流系統整體規劃

51、基於供應鏈設計和規劃的方法應用

52、基於中部崛起的河南物流業發展對策分析

53、「牛鞭效應」產生的機理與對策研究

54、關於我國內陸地區現代物流系統規劃的幾點思考

55、論貨物 運輸合同 的法律適用

56、如何構建我國的物流法律法規體系

57、論海上貨物運輸合同的違約責任

58、倉單制度研究

59、倉儲法律制度研究

60、校園規劃設計招投標若干問題的研究

物流管理 畢業 論文題目

1、集成化智能物流管理實驗室建設研究

2、現代物流管理中的信息網路化及其實施對策

3、高職物流管理專業人才培養模式實踐研究

4、基於現代學徒制的物流管理專業實踐教學體系的思考

5、以學生就業為導向的中職物流管理教學探討

6、關於物流管理人才隊伍建設的思考

7、連鎖零售企業物流管理與業務流程再造

8、高職院校物流管理專業實踐教學模式的思考與探索

9、物流技術發展對物流管理的影響分析

10、物流管理專業人才培養國際化路徑探索

11、物流管理專業人才培育對接區域經濟崗位問題研究

12、高職物流管理專業建設存在的問題及對策

13、互聯網時代電子商務與物流管理模式的優化

14、大數據背景下企業物流管理分析

15、提升高職物流管理專業畢業設計質量對策研究

16、成品油物流管理對銷售企業實力提升的分析

17、淺析高職物流管理專業實踐教學

18、現代學徒制物流管理的研究

19、板式傢具生產物流管理研究

20、河南民辦高校物流管理人才培養模式改革研究

21、研究海外冶金項目采購與物流管理

22、淺析基於區域經濟發展的交通運輸物流管理途徑

23、低碳經濟背景下的綠色物流管理策略

24、電子商務環境下的物流管理創新研究

25、企業采購與物流管理關系探討

26、電子商務環境下的物流管理創新探討

27、基於"互聯網+"的中小企業物流管理模式研究

28、基於SSM框架的物流管理系統的設計實現

29、基於SSH技術的物流管理系統的設計與實現

30、試析物聯網在物流管理中的應用

31、電子商務環境下物流管理的優化對策簡析

32、地方本科高校應用型物流管理人才培養模式創新研究

33、VR技術在物流管理專業實踐教學中的應用研究

34、新時代高職物流管理專業教師培養探索研究

35、汽車零部件物流管理及相關技術分析

36、帶領物流管理專業學生學習差分方程的一點經驗

37、物流管理專業轉段教學銜接實踐探索

38、普通高校物流管理本科教學問題對策分析

39、電子廢物拆解企業物流管理探究

40、技能大賽背景下物流管理專業課程教學研究

41、企業物流管理信息化存在的問題及對策分析

42、信息化背景下的物流管理課程教學模式研究

43、基於GIS的武漢市物流管理系統

44、職業院校物流管理職業技能競賽方案開發與設計研究

45、基於電子商務背景下物流管理的創新分析

46、電子商務環境下的物流管理創新研究

47、基於工學結合的高職物流管理專業課程體系研究

48、物聯網技術在可視化與智能化物流管理中的應用

49、翻轉課堂模式在物流管理課程教學中的應用研究

50、基於物流技能大賽的創新創業物流管理人才培養方案研究

51、高職院校物流管理專業實訓教學分析

52、電子商務環境下的物流管理創新研究

53、高職物流管理專業課程教學存在的問題之我見

54、智慧物流背景下高職物流管理人才培養模式改革探究

55、基於信息技術的高職物流管理專業教學模式創新的研究

56、基於B/S的第三方物流管理系統設計與實現

57、小微企業物流管理優化

58、項目教學法在中職物流管理專業教學中的運用探討

59、基於創新創業能力培養的物流管理專業實踐教學改革研究

60、高職物流管理專業教學資源庫建設現狀與對策研究


2021物流方向經典論文題目參考相關 文章 :

★ 2021交通運輸方向的論文題目及選題

★ 物流管理方向專業論文題目與選題

★ 優秀論文題目大全2021

★ 物流管理論文題目

★ 2021會計學論文題目參考

★ 優秀論文題目2021

★ 2021畢業論文題目怎麼定

★ 大學生論文題目大全2021

★ 大學生論文題目參考2021

★ 2021通信學專業論文題目與選題

Ⅵ 遺傳演算法的現狀

進入90年代,遺傳演算法迎來了興盛發展時期,無論是理論研究還是應用研究都成了十分熱門的課題。尤其是遺傳演算法的應用研究顯得格外活躍,不但它的應用領域擴大,而且利用遺傳演算法進行優化和規則學習的能力也顯著提高,同時產業應用方面的研究也在摸索之中。此外一些新的理論和方法在應用研究中亦得到了迅速的發展,這些無疑均給遺傳演算法增添了新的活力。遺傳演算法的應用研究已從初期的組合優化求解擴展到了許多更新、更工程化的應用方面。
隨著應用領域的擴展,遺傳演算法的研究出現了幾個引人注目的新動向:一是基於遺傳演算法的機器學習,這一新的研究課題把遺傳演算法從歷來離散的搜索空間的優化搜索演算法擴展到具有獨特的規則生成功能的嶄新的機器學習演算法。這一新的學習機制對於解決人工智慧中知識獲取和知識優化精煉的瓶頸難題帶來了希望。二是遺傳演算法正日益和神經網路、模糊推理以及混沌理論等其它智能計算方法相互滲透和結合,這對開拓21世紀中新的智能計算技術將具有重要的意義。三是並行處理的遺傳演算法的研究十分活躍。這一研究不僅對遺傳演算法本身的發展,而且對於新一代智能計算機體系結構的研究都是十分重要的。四是遺傳演算法和另一個稱為人工生命的嶄新研究領域正不斷滲透。所謂人工生命即是用計算機模擬自然界豐富多彩的生命現象,其中生物的自適應、進化和免疫等現象是人工生命的重要研究對象,而遺傳演算法在這方面將會發揮一定的作用,五是遺傳演算法和進化規劃(Evolution Programming,EP)以及進化策略(Evolution Strategy,ES)等進化計算理論日益結合。EP和ES幾乎是和遺傳演算法同時獨立發展起來的,同遺傳演算法一樣,它們也是模擬自然界生物進化機制的智能計算方法,即同遺傳演算法具有相同之處,也有各自的特點。目前,這三者之間的比較研究和彼此結合的探討正形成熱點。
1991年D.Whitey在他的論文中提出了基於領域交叉的交叉運算元(Adjacency based crossover),這個運算元是特別針對用序號表示基因的個體的交叉,並將其應用到了TSP問題中,通過實驗對其進行了驗證。D.H.Ackley等提出了隨機迭代遺傳爬山法(Stochastic Iterated Genetic Hill-climbing,SIGH)採用了一種復雜的概率選舉機制,此機制中由m個「投票者」來共同決定新個體的值(m表示群體的大小)。實驗結果表明,SIGH與單點交叉、均勻交叉的神經遺傳演算法相比,所測試的六個函數中有四個表現出更好的性能,而且總體來講,SIGH比現存的許多演算法在求解速度方面更有競爭力。H.Bersini和G.Seront將遺傳演算法與單一方法(simplex method)結合起來,形成了一種叫單一操作的多親交叉運算元(simplex crossover),該運算元在根據兩個母體以及一個額外的個體產生新個體,事實上他的交叉結果與對三個個體用選舉交叉產生的結果一致。同時,文獻還將三者交叉運算元與點交叉、均勻交叉做了比較,結果表明,三者交叉運算元比其餘兩個有更好的性能。
1992年,英國格拉斯哥大學的李耘(Yun Li)指導博士生將基於二進制基因的遺傳演算法擴展到七進制、十進制、整數、浮點等的基因,以便將遺傳演算法更有效地應用於模糊參量,系統結構等的直接優化,於1997年開發了可能是世界上最受歡迎的、也是最早之一的遺傳/進化演算法的網上程序 EA_demo,以幫助新手在線互動式了解進化計算的編碼和工作原理 ,並在格拉斯哥召開第二屆IEE/IEEE遺傳演算法應用國際會議,於2000年組織了由遺傳編程(Genetic Programming)發明人斯坦福的 John Koza 等參加的 EvoNet 研討會,探索融合GA與GP結構尋優,超越固定結構和數值優化的局限性。
國內也有不少的專家和學者對遺傳演算法的交叉運算元進行改進。2002年,戴曉明等應用多種群遺傳並行進化的思想,對不同種群基於不同的遺傳策略,如變異概率,不同的變異運算元等來搜索變數空間,並利用種群間遷移運算元來進行遺傳信息交流,以解決經典遺傳演算法的收斂到局部最優值問題
2004年,趙宏立等針對簡單遺傳演算法在較大規模組合優化問題上搜索效率不高的現象,提出了一種用基因塊編碼的並行遺傳演算法(Building-block Coded Parallel GA,BCPGA)。該方法以粗粒度並行遺傳演算法為基本框架,在染色體群體中識別出可能的基因塊,然後用基因塊作為新的基因單位對染色體重新編碼,產生長度較短的染色體,在用重新編碼的染色體群體作為下一輪以相同方式演化的初始群體。
2005年,江雷等針對並行遺傳演算法求解TSP問題,探討了使用彈性策略來維持群體的多樣性,使得演算法跨過局部收斂的障礙,向全局最優解方向進化。

Ⅶ 遺傳演算法研究進展

遺傳演算法[56,53]研究的興起是在20世紀80年代末和90年代初期,但它的歷史起源可追溯到20世紀60年代初期。早期的研究大多以對自然遺傳系統的計算機模擬為主。早期遺傳演算法的研究特點是側重於對一些復雜的操作的研究。雖然其中像自動博弈、生物系統模擬、模式識別和函數優化等給人以深刻的印象,但總的來說這是一個無明確目標的發展時期,缺乏帶有指導性的理論和計算工具的開拓。這種現象直到20世紀70年代中期由於Holland和De Jong的創造性研究成果的發表才得到改觀。當然,早期的研究成果對於遺傳演算法的發展仍然有一定的影響,尤其是其中一些有代表性的技術和方法已為當前的遺傳演算法所吸收和發展。

在遺傳演算法作為搜索方法用於人工智慧系統中之前,已有不少生物學家用計算機來模擬自然遺傳系統。尤其是Fraser的模擬研究,他於1962年提出了和現在的遺傳演算法十分相似的概念和思想。但是,Fraser和其他一些學者並未認識到自然遺傳演算法可以轉化為人工遺傳演算法。Holland教授及其學生不久就認識到這一轉化的重要性,Holland認為比起尋找這種或那種具體的求解問題的方法來說,開拓一種能模擬自然選擇遺傳機制的帶有一般性的理論和方法更有意義。在這一時期,Holland不但發現了基於適應度的人工遺傳選擇的基本作用,而且還對群體操作等進行了認真的研究。1965年,他首次提出了人工遺傳操作的重要性,並把這些應用於自然系統和人工系統中。

1967年,Bagley在他的論文中首次提出了遺傳演算法(genetic algorithm)這一術語,並討論了遺傳演算法在自動博弈中的應用。他所提出的包括選擇、交叉和變異的操作已與目前遺傳演算法中的相應操作十分接近。尤其是他對選擇操作做了十分有意義的研究。他認識到,在遺傳進化過程的前期和後期,選擇概率應合適地變動。為此,他引入了適應度定標(scaling)概念,這是目前遺傳演算法中常用的技術。同時,他也首次提出了遺傳演算法自我調整概念,即把交叉和變異的概率融於染色體本身的編碼中,從而可實現演算法自我調整優化。盡管Bagley沒有對此進行計算機模擬實驗,但這些思想對於後來遺傳演算法的發展所起的作用是十分明顯的。

在同一時期,Rosenberg也對遺傳演算法進行了研究,他的研究依然是以模擬生物進化為主,但他在遺傳操作方面提出了不少獨特的設想。1970年Cavicchio把遺傳演算法應用於模式識別中。實際上他並未直接涉及到模式識別,而僅用遺傳演算法設計一組用於識別的檢測器。Cavicchio對於遺傳操作以及遺傳演算法的自我調整也做了不少有特色的研究。

Weinberg於1971年發表了題為《活細胞的計算機模擬》的論文。由於他和Rosenberg一樣注意於生物遺傳的模擬,所以他對遺傳演算法的貢獻有時被忽略。實際上,他提出的多層次或多級遺傳演算法至今仍給人以深刻的印象。

第一個把遺傳演算法用於函數優化的是Hollstien。1971年他在論文《計算機控制系統中的人工遺傳自適應方法》中闡述了遺傳演算法用於數字反饋控制的方法。實際上,他主要是討論了對於二變數函數的優化問題。其中,對於優勢基因控制、交叉和變異以及各種編碼技術進行了深入的研究。

1975年在遺傳演算法研究的歷史上是十分重要的一年。這一年,Holland出版了他的著名專著《自然系統和人工系統的適配》。該書系統地闡述了遺傳演算法的基本理論和方法,並提出了對遺傳演算法的理論研究和發展極為重要的模式理論(schemata theory)。該理論首次確認了結構重組遺傳操作對於獲得隱並行性的重要性。直到這時才知道遺傳操作到底在干什麼,為什麼又幹得那麼出色,這對於以後陸續開發出來的遺傳操作具有不可估量的指導作用。

同年,De Jong完成了他的重要論文《遺傳自適應系統的行為分析》。他在該論文中所做的研究工作可看作是遺傳演算法發展進程中的一個里程碑,這是因為他把Holland的模式理論與他的計算實驗結合起來。盡管De Jong和Hollstien一樣主要側重於函數優化的應用研究,但他將選擇、交叉和變異操作進一步完善和系統化,同時又提出了諸如代溝(generation gap)等新的遺傳操作技術。可以認為,De Jong的研究工作為遺傳演算法及其應用打下了堅實的基礎,他所得出的許多結論迄今仍具有普遍的指導意義。

進入20世紀80年代,遺傳演算法迎來了興盛發展時期,無論是理論研究還是應用研究都成了十分熱門的課題。尤其是遺傳演算法的應用研究顯得格外活躍,不但它的應用領域擴大,而且利用遺傳演算法進行優化和規則學習的能力也顯著提高,同時產業應用方面的研究也在摸索之中。此外一些新的理論和方法在應用研究中亦得到了迅速的發展,這些無疑均給遺傳演算法增添了新的活力。

隨著應用領域的擴展,遺傳演算法的研究出現了幾個引人注目的新動向:一是基於遺傳演算法的機器學習(Genetic Base Machine Learning),這一新的研究課題把遺傳演算法從歷來離散的搜索空間的優化搜索演算法擴展到具有獨特的規則生成功能的嶄新的機器學習演算法。這一新的學習機制對於解決人工智慧中知識獲取和知識優化精煉的瓶頸難題帶來了希望。二是遺傳演算法正日益和神經網路、模糊推理以及混沌理論等其他智能計算方法相互滲透和結合,這對開拓21世紀中新的智能計算技術將具有重要的意義。三是並行處理的遺傳演算法的研究十分活躍。這一研究不僅對遺傳演算法本身的發展,而且對於新一代智能計算機體系結構的研究都是十分重要的。四是遺傳演算法和另一個稱為人工生命的嶄新研究領域正不斷滲透。所謂人工生命即是用計算機模擬自然界豐富多彩的生命現象,其中生物的自適應、進化和免疫等現象是人工生命的重要研究對象,而遺傳演算法在這方面將會發揮一定的作用。五是遺傳演算法和進化規劃(Evolution Programming,EP)以及進化策略(Evolution Strategy,ES)等進化計算理論日益結合。EP和ES幾乎是和遺傳演算法同時獨立發展起來的,同遺傳演算法一樣,它們也是模擬自然界生物進化機制的智能計算方法,既同遺傳演算法具有相同之處,也有各自的特點。

隨著遺傳演算法研究和應用的不斷深入和發展,一系列以遺傳演算法為主題的國際會議十分活躍。從1985年開始,國際遺傳演算法會議,即ICGA(International Conference on Genetic Algorithm)每兩年舉行一次。在歐洲,從1990年開始也每隔一年舉辦一次類似的會議,即 PPSN(Parallel Problem Solving from Nature)會議。除了遺傳演算法外,大部分有關ES和EP的學術論文也出現在PPSN中。另外,以遺傳演算法的理論基礎為中心的學術會議有FOGA(Foundation of Genetic Algorithm)。它也是從1990年開始,隔年召開一次。這些國際學術會議論文集中反映了遺傳演算法近些年來的最新發展和動向。

Ⅷ 遺傳演算法求解配送中心選址問題

這個就是利用GA解決TSP問題,解決耗費最小的優化問題。
以上回答你滿意么?

閱讀全文

與關於遺傳演算法配送研究相關的資料

熱點內容
卡爾曼濾波演算法書籍 瀏覽:768
安卓手機怎麼用愛思助手傳文件進蘋果手機上 瀏覽:843
安卓怎麼下載60秒生存 瀏覽:802
外向式文件夾 瀏覽:235
dospdf 瀏覽:430
怎麼修改騰訊雲伺服器ip 瀏覽:387
pdftoeps 瀏覽:492
為什麼鴻蒙那麼像安卓 瀏覽:735
安卓手機怎麼拍自媒體視頻 瀏覽:185
單片機各個中斷的初始化 瀏覽:723
python怎麼集合元素 瀏覽:480
python逐條解讀 瀏覽:832
基於單片機的濕度控制 瀏覽:498
ios如何使用安卓的帳號 瀏覽:882
程序員公園采訪 瀏覽:811
程序員實戰教程要多長時間 瀏覽:974
企業數據加密技巧 瀏覽:134
租雲伺服器開發 瀏覽:813
程序員告白媽媽不同意 瀏覽:335
攻城掠地怎麼查看伺服器 瀏覽:600