導航:首頁 > 源碼編譯 > 八種閾值分割演算法

八種閾值分割演算法

發布時間:2022-09-09 09:35:46

㈠ 幾種圖像閾值分割演算法的實現與比較

摘要:圖像分割是進行圖像分析的關鍵步驟,也是進一步理解圖像的基礎。該文主要論述了常用的幾種圖像閾值分割的演算法及原理,並以研究瀝青混合料的集料特徵為背景,從實驗角度對圖像閾值分割的直方圖閾值法、迭代法和大津法進行了分析比較,得出了結論。關鍵詞:圖像分割;直方圖閾值法;迭代法;大津法中圖分類號:TP391 文獻標識碼:A文章編號:1009-3044(2011)13-3109-03Achieve and Comparison of Image Segmentation Thresholding MethodCHEN Ning-ning(Department of Technology, Xi'an International University, Xi'an 710077, China)Abstract: Image segmentation is a key step for image analysis, Is also the basis for further understanding of the image. In this paper, discusses several commonly used image segmentation algorithms and theory, and to study the aggregate asphalt mixture characteristics of the background, experimental results are shown to compare histogram threshold, Iteration method and the Otsu.Key words: image segmentation; histogram threshold; iteration method; Otsu1 概述圖像分割是進行圖像分析的關鍵步驟,也是進一步理解圖像的基礎。

㈡ 傳統的圖像分割方法有哪些

1.基於閾值的分割方法

灰度閾值分割法是一種最常用的並行區域技術,它是圖像分割中應用數量最多的一類。閾值分割方法實際上是輸入圖像f到輸出圖像g的變化
其中,T為閾值;對於物體的圖像元素,g(i,j)=1,對於背景的圖像元素,g(i,j)=0。

由此可見,閾值分割演算法的關鍵是確定閾值,如果能確定一個適合的閾值就可准確地將圖像分割開來。閾值確定後,閾值與像素點的灰度值比較和像素分割可對各像素並行地進行,分割的結果直接給出圖像區域。

閾值分割的優點是計算簡單、運算效率較高、速度快。在重視運算效率的應用場合(如用於軟體實現),它得到了廣泛應用。

2.基於區域的分割方法

區域生長和分裂合並法是兩種典型的串列區域技術,其分割過程後續步驟的處理要根據前面步驟的結果進行判斷而確定。

(1)區域生長

區域生長的基本思想是將具有相似性質的像素集合起來構成區域。具體先對每個需要分割的區域找一個種子像素作為生長的起點,然後將種子像素周圍鄰域中與種子像素有相同或相似性質的像素(根據某種事先確定的生長或相似准則來判定)合並到種子像素所在的區域中。將這些新像素當作新的種子像素繼續進行上面的過程,直到再沒有滿足條件的像素可被包括進來。這樣一個區域就長成了。

(2)區域分裂合並

區域生長是從某個或者某些像素點出發,最後得到整個區域,進而實現目標提取。分裂合並差不多是區域生長的逆過程:從整個圖像出發,不斷分裂得到各個子區域,然後再把前景區域合並,實現目標提取。分裂合並的假設是對於一幅圖像,前景區域是由一些相互連通的像素組成的,因此,如果把一幅圖像分裂到像素級,那麼就可以判定該像素是否為前景像素。當所有像素點或者子區域完成判斷以後,把前景區域或者像素合並就可得到前景目標。

3.基於邊緣的分割方法

基於邊緣的分割方法是指通過邊緣檢測,即檢測灰度級或者結構具有突變的地方,確定一個區域的終結,即另一個區域開始的地方。不同的圖像灰度不同,邊界處一般有明顯的邊緣,利用此特徵可以分割圖像。

4.基於特定理論的分割方法

圖像分割至今尚無通用的自身理論。隨著各學科新理論和新方法的提出,出現了與一些特定理論、方法相結合的圖像分割方法,主要有:基於聚類分析的圖像分割方法、基於模糊集理論的分割方法等。

5.基於基因編碼的分割方法

基於基因編碼的分割方法是指把圖像背景和目標像素用不同的基因編碼表示,通過區域性的劃分,把圖像背景和目標分離出來的方法。該方法具有處理速度快的優點,但演算法實現起來比較難。

6.基於小波變換的分割方法

小波變換是近年來得到廣泛應用的數學工具,它在時域和頻域都具有良好的局部化性質,並且小波變換具有多尺度特性,能夠在不同尺度上對信號進行分析,因此在圖像處理和分析等許多方面得到應用。

基於小波變換的閾值圖像分割方法的基本思想是首先由二進小波變換將圖像的直方圖分解為不同層次的小波系數,然後依據給定的分割准則和小波系數選擇閾值門限,最後利用閾值標出圖像分割的區域。整個分割過程是從粗到細,由尺度變化來控制,即起始分割由粗略的L2(R)子空間上投影的直方圖來實現,如果分割不理想,則利用直方圖在精細的子空間上的小波系數逐步細化圖像分割。分割演算法的計算會與圖像尺寸大小呈線性變化。

7.基於神經網路的分割方法

近年來,人工神經網路識別技術已經引起了廣泛的關注,並應用於圖像分割。基於神經網路的分割方法的基本思想是通過訓練多層感知機來得到線性決策函數,然後用決策函數對像素進行分類來達到分割的目的。這種方法需要大量的訓練數據。神經網路存在巨量的連接,容易引入空間信息,能較好地解決圖像中的雜訊和不均勻問題。選擇何種網路結構是這種方法要解決的主要問題。

㈢ 圖像分割

圖像閾值化分割是一種傳統的最常用的圖像分割方法,因其實現簡單、計算量小、性能較穩定而成為圖像分割中最基本和應用最廣泛的分割技術。它特別適用於目標和背景占據不同灰度級范圍的圖像。它不僅可以極大的壓縮數據量,而且也大大簡化了分析和處理步驟,因此在很多情況下,是進行圖像分析、特徵提取與模式識別之前的必要的圖像預處理過程。

圖像閾值化的目的是要按照灰度級,對像素集合進行一個劃分,得到的每個子集形成一個與現實景物相對應的區域,各個區域內部具有一致的屬性,而相鄰區域不具有這種一致屬性。這樣的劃分可以通過從灰度級出發選取一個或多個閾值來實現。

基本原理是:通過設定不同的特徵閾值,把圖像象素點分為若干類。
常用的特徵包括:直接來自原始圖像的灰度或彩色特徵;由原始灰度或彩色值變換得到的特徵。
設原始圖像為f(x,y),按照一定的准則f(x,y)中找到特徵值T,將圖像分割為兩個部分,分割後的圖像為:
若取:b0=0(黑),b1=1(白),即為我們通常所說的圖像二值化。

閾值分割方法實際上是輸入圖像f到輸出圖像g的如下變換:

其中,T為閾值,對於物體的圖像元素g(i,j)=1,對於背景的圖像元素g(i,j)=0。

由此可見,閾值分割演算法的關鍵是確定閾值,如果能確定一個合適的閾值就可准確地將圖像分割開來。閾值確定後,將閾值與像素點的灰度值逐個進行比較,而且像素分割可對各像素並行地進行,分割的結果直接給出圖像區域。
閾值分割的優點是計算簡單、運算效率較高、速度快。有著各種各樣的閾值處理技術,包括全局閾值、自適應閾值、最佳閾值等等。

閾值處理技術參看:

區域分割是講圖像按照相似性准則分成不同的區域,主要包括區域增長,區域分裂合並和分水嶺等幾種類型。

區域生長是一種串列區域分割的圖像分割方法。區域生長是指從某個像素出發,按照一定的准則,逐步加入鄰近像素,當滿足一定的條件時,區域生長終止。區域生長的好壞決定於1. 初始點(種子點)的選取。 2. 生長准則。 3. 終止條件 。區域生長是從某個或者某些像素點出發,最後得到整個區域,進而實現目標的提取。

區域生長的基本思想是將具有相似性質的像素集合起來構成區域。具體先對每個需要分割的區域找一個種子像素作為生長的起點,然後將種子像素周圍鄰域中與種子像素有相同或相似性質的像素(根據某種事先確定的生長或相似准則來判定)合並到種子像素所在的區域中。將這些新像素當作新的種子像素繼續進行上面的過程,直到再沒有滿足條件的像素可被包括進來。這樣一個區域就長成了。

區域生長需要選擇一組能正確代表所需區域的種子像素,確定在生長過程中的相似性准則,制定讓生長停止的條件或准則。相似性准則可以是灰度級、彩色、紋理、梯度等特性。選取的種子像素可以是單個像素,也可以是包含若干個像素的小區域。大部分區域生長准則使用圖像的局部性質。生長准則可根據不同原則制定,而使用不同的生長准則會影響區域生長的過程。

圖1是區域增長的示例。

區域生長是一種古老的圖像分割方法,最早的區域生長圖像分割方法是由Levine等人提出的。該方法一般有兩種方式,一種是先給定圖像中要分割的目標物體內的一個小塊或者說種子區域(seed point),再在種子區域基礎上不斷將其周圍的像素點以一定的規則加入其中,達到最終將代表該物體的所有像素點結合成一個區域的目的;另一種是先將圖像分割成很多的一致性較強,如區域內像素灰度值相同的小區域,再按一定的規則將小區域融合成大區域,達到分割圖像的目的,典型的區域生長法如T. C. Pong等人提出的基於小面(facet)模型的區域生長法,區域生長法固有的缺點是往往會造成過度分割,即將圖像分割成過多的區域

區域生長實現的步驟如下:

區域分裂合並演算法的基本思想是先確定一個分裂合並的准則,即區域特徵一致性的測度,當圖像中某個區域的特徵不一致時就將該區域分裂成4個相等的子區域,當相鄰的子區域滿足一致性特徵時則將它們合成一個大區域,直至所有區域不再滿足分裂合並的條件為止。當分裂到不能再分的情況時,分裂結束,然後它將查找相鄰區域有沒有相似的特徵,如果有就將相似區域進行合並,最後達到分割的作用。在一定程度上區域生長和區域分裂合並演算法有異曲同工之妙,互相促進相輔相成的,區域分裂到極致就是分割成單一像素點,然後按照一定的測量准則進行合並,在一定程度上可以認為是單一像素點的區域生長方法。區域生長比區域分裂合並的方法節省了分裂的過程,而區域分裂合並的方法可以在較大的一個相似區域基礎上再進行相似合並,而區域生長只能從單一像素點出發進行生長(合並)。

反復進行拆分和聚合以滿足限制條件的演算法。

令R表示整幅圖像區域並選擇一個謂詞P。對R進行分割的一種方法是反復將分割得到的結果圖像再次分為四個區域,直到對任何區域Ri,有P(Ri)=TRUE。這里是從整幅圖像開始。如果P(R)=FALSE,就將圖像分割為4個區域。對任何區域如果P的值是FALSE.就將這4個區域的每個區域再次分別分為4個區域,如此不斷繼續下去。這種特殊的分割技術用所謂的四叉樹形式表示最為方便(就是說,每個非葉子節點正好有4個子樹),這正如圖10.42中說明的樹那樣。注意,樹的根對應於整幅圖像,每個節點對應於劃分的子部分。此時,只有R4進行了進一步的再細分。

如果只使用拆分,最後的分區可能會包含具有相同性質的相鄰區域。這種缺陷可以通過進行拆分的同時也允許進行區域聚合來得到矯正。就是說,只有在P(Rj∪Rk)=TRUE時,兩個相鄰的區域Rj和Rk才能聚合。
前面的討論可以總結為如下過程。在反復操作的每一步,我們需要做:

可以對前面講述的基本思想進行幾種變化。例如,一種可能的變化是開始時將圖像拆分為一組圖象塊。然後對每個塊進一步進行上述拆分,但聚合操作開始時受只能將4個塊並為一組的限制。這4個塊是四叉樹表示法中節點的後代且都滿足謂詞P。當不能再進行此類聚合時,這個過程終止於滿足步驟2的最後的區域聚合。在這種情況下,聚合的區域可能會大小不同。這種方法的主要優點是對於拆分和聚合都使用同樣的四叉樹,直到聚合的最後一步。

分水嶺分割方法,是一種基於拓撲理論的數學形態學的分割方法,其基本思想是把圖像看作是測地學上的拓撲地貌,圖像中每一點像素的灰度值表示該點的海拔高度,每一個局部極小值及其影響區域稱為集水盆,而集水盆的邊界則形成分水嶺。分水嶺的概念和形成可以通過模擬浸入過程來說明。在每一個局部極小值表面,刺穿一個小孔,然後把整個模型慢慢浸入水中,隨著浸入的加深,每一個局部極小值的影響域慢慢向外擴展,在兩個集水盆匯合處構築大壩,即形成分水嶺。

分水嶺的計算過程是一個迭代標注過程。分水嶺比較經典的計算方法是L. Vincent提出的。在該演算法中,分水嶺計算分兩個步驟,一個是排序過程,一個是淹沒過程。首先對每個像素的灰度級進行從低到高排序,然後在從低到高實現淹沒過程中,對每一個局部極小值在h階高度的影響域採用先進先出(FIFO)結構進行判斷及標注。

分水嶺變換得到的是輸入圖像的集水盆圖像,集水盆之間的邊界點,即為分水嶺。顯然,分水嶺表示的是輸入圖像極大值點。因此,為得到圖像的邊緣信息,通常把梯度圖像作為輸入圖像,即

分水嶺演算法對微弱邊緣具有良好的響應,圖像中的雜訊、物體表面細微的灰度變化,都會產生過度分割的現象。但同時應當看出,分水嶺演算法對微弱邊緣具有良好的響應,是得到封閉連續邊緣的保證的。另外,分水嶺演算法所得到的封閉的集水盆,為分析圖像的區域特徵提供了可能。
為消除分水嶺演算法產生的過度分割,通常可以採用兩種處理方法,一是利用先驗知識去除無關邊緣信息。二是修改梯度函數使得集水盆只響應想要探測的目標。

為降低分水嶺演算法產生的過度分割,通常要對梯度函數進行修改,一個簡單的方法是對梯度圖像進行閾值處理,以消除灰度的微小變化產生的過度分割。即

程序可採用方法:用閾值限制梯度圖像以達到消除灰度值的微小變化產生的過度分割,獲得適量的區域,再對這些區域的邊緣點的灰度級進行從低到高排序,然後在從低到高實現淹沒的過程,梯度圖像用Sobel運算元計算獲得。對梯度圖像進行閾值處理時,選取合適的閾值對最終分割的圖像有很大影響,因此閾值的選取是圖像分割效果好壞的一個關鍵。缺點:實際圖像中可能含有微弱的邊緣,灰度變化的數值差別不是特別明顯,選取閾值過大可能會消去這些微弱邊緣。

參考文章:

圖像分割的一種重要途徑是通過邊緣檢測,即檢測灰度級或者結構具有突變的地方,表明一個區域的終結,也是另一個區域開始的地方。這種不連續性稱為邊緣。不同的圖像灰度不同,邊界處一般有明顯的邊緣,利用此特徵可以分割圖像。

圖像中邊緣處像素的灰度值不連續,這種不連續性可通過求導數來檢測到。對於階躍狀邊緣,其位置對應一階導數的極值點,對應二階導數的過零點(零交叉點)。因此常用微分運算元進行邊緣檢測。常用的一階微分運算元有Roberts運算元、Prewitt運算元和Sobel運算元,二階微分運算元有Laplace運算元和Kirsh運算元等。在實際中各種微分運算元常用小區域模板來表示,微分運算是利用模板和圖像卷積來實現。這些運算元對雜訊敏感,只適合於雜訊較小不太復雜的圖像。

由於邊緣和雜訊都是灰度不連續點,在頻域均為高頻分量,直接採用微分運算難以克服雜訊的影響。因此用微分運算元檢測邊緣前要對圖像進行平滑濾波。LoG運算元和Canny運算元是具有平滑功能的二階和一階微分運算元,邊緣檢測效果較好,

在邊緣檢測演算法中,前三個步驟用得十分普遍。這是因為大多數場合下,僅僅需要邊緣檢測器指出邊緣出現在圖像某一像素點的附近,而沒有必要指出邊緣的精確位置或方向.邊緣檢測誤差通常是指邊緣誤分類誤差,即把假邊緣判別成邊緣而保留,而把真邊緣判別成假邊緣而去掉.邊緣估計誤差是用概率統計模型來描述邊緣的位置和方向誤差的.我們將邊緣檢測誤差和邊緣估計誤差區分開,是因為它們的計算方法完全不同,其誤差模型也完全不同.

Roberts運算元 :邊緣定位準,但是對雜訊敏感。適用於邊緣明顯且雜訊較少的圖像分割。Roberts邊緣檢測運算元是一種利用局部差分運算元尋找邊緣的運算元,Robert運算元圖像處理後結果邊緣不是很平滑。經分析,由於Robert運算元通常會在圖像邊緣附近的區域內產生較寬的響應,故採用上述運算元檢測的邊緣圖像常需做細化處理,邊緣定位的精度不是很高。

Prewitt運算元 :對雜訊有抑製作用,抑制雜訊的原理是通過像素平均,但是像素平均相當於對圖像的低通濾波,所以Prewitt運算元對邊緣的定位不如Roberts運算元。

Sobel運算元 :Sobel運算元和Prewitt運算元都是加權平均,但是Sobel運算元認為,鄰域的像素對當前像素產生的影響不是等價的,所以距離不同的像素具有不同的權值,對運算元結果產生的影響也不同。一般來說,距離越遠,產生的影響越小。

Isotropic Sobel運算元 :加權平均運算元,權值反比於鄰點與中心點的距離,當沿不同方向檢測邊緣時梯度幅度一致,就是通常所說的各向同性。
在邊沿檢測中,常用的一種模板是Sobel 運算元。Sobel 運算元有兩個,一個是檢測水平邊沿的;另一個是檢測垂直平邊沿的 。Sobel運算元另一種形式是各向同性Sobel(Isotropic Sobel)運算元,也有兩個,一個是檢測水平邊沿的,另一個是檢測垂直平邊沿的 。各向同性Sobel運算元和普通Sobel運算元相比,它的位置加權系數更為准確,在檢測不同方向的邊沿時梯度的幅度一致。由於建築物圖像的特殊性,我們可以發現,處理該類型圖像輪廓時,並不需要對梯度方向進行運算,所以程序並沒有給出各向同性Sobel運算元的處理方法。

1971年,R.Kirsch[34]提出了一種能檢測邊緣方向的Kirsch運算元新方法:它使用了8個模板來確定梯度幅度值和梯度的方向。

圖像中的每個點都用8個掩模進行卷積,每個掩模對某個特定邊緣方向作出最大響應。所有8個方向中的最大值作為邊緣幅度圖像的輸出。最大響應掩模的序號構成了對邊緣方向的編碼。
Kirsch運算元的梯度幅度值用如下公式:

不同檢測運算元的對比:

參考文章:

文章引用於 木夜溯
編輯 Lornatang
校準 Lornatang

㈣ 閾值的判定方法有哪些,圖像處理方面的

閾值選擇 的恰當與否對分割的效果起著決定性的作用。圖像的分割方法主要包括幅度分割方法、最小錯誤分割法、迭代法求圖像最佳分割閾值法、最大類間方差 法(大津演算法)等一系列方法。
具體演算法你可以再詳細查

㈤ 求解閾值分割T的閾值演算法或者方法是什麼

這個有好多種
迭代,峰谷,半峰谷,最小誤差,最大熵,等等,在了解這個前你要了解點陣圖概念,了解閾值分割的基本理論,可以q我:676229549

㈥ 一幅圖像通過閾值分割演算法得到最佳閾值,怎麼通過閾值得到分割後的兩幅圖像比如說:分割舌苔舌質

根據灰度、梯度、形態等來設定自適應閾值。
設定過程:設置→參數→選擇(灰度、梯度、形態)→輸入數值→計算閾值→搞定。

閾值又叫臨界值,是指一個效應能夠產生的最低值或最高值。
閾值又稱閾強度,是指釋放一個行為反應所需要的最小刺激強度。低於閾值的刺激不能導致行為釋放。在反射活動中,閾值的大小是固定不變的,在復雜行為中,閾值則受各種環境條件和動物生理狀況的影響。當一種行為更難於釋放時,就是閾值提高了;當一種行為更容易釋放時,就是閾值下降了。一般說來,剛剛完成某一行為後,動物對這一行為的要求就會大大下降。例如剛交過尾的動物,對於性刺激或是沒有反應或是反應很弱,這就意味著釋放性行為的閾值增加了。類似情況在覓食行為和其他行為中也很常見。另一方面,長時間未發生的行為非常容易被釋放,釋放這種行為的刺激強度會變得非常小。在極端情況下,閾值的降低可以導致行為的自發產生,這就是空放行為(vacuum behavior)。空放行為是一種無刺激行為釋放,是達不到該種行為目的的一種行為。最令人信服的實例是織巢鳥的築巢行為。飼養在鳥籠中的織巢鳥,在得不到任何築巢材料和代用物的情況下,也完全可以表現出築巢動作,雖然這種動作達不到它本來的目的。
閾值又叫臨界值,是指一個效應能夠產生的最低值或最高值。

㈦ 遺傳演算法作圖像分割時的最佳閾值為什麼總在變化

在此提供兩種方法,一,最大閾值分割(大律法):I=imread('test.jpg');subplot(1,3,1);imshow(I);title('原圖');I1=rgb2gray(I);subplot(1,3,2);imhist(I1);title('直方圖');level=graythresh(I);g=im2bw(I,level);%最佳閾值levelsubplot(1,3,3);imshow(g);title('閾值分割');%在Command窗口輸出灰度閾值disp(strcat('graythresh計算灰度閾值:',num2str(uint8(level*255))))第二種:迭代求閾值I=imread('C:test.jpg');Zmax=max(max(I));Zmin=min(min(I));TK=(Zmax+Zmin)/2;%初始閾值flag=1;[m,n]=size(I);while(flag)fg=0;bg=0;fgsum=0;bgsum=0;fori=1:mforj=1:ntmp=I(i,j);if(tmp>=TK)fg=fg+1;fgsum=fgsum+double(tmp);elsebg=bg+1;bgsum=bgsum+double(tmp);endenden1=fgsum/fg;u2=bgsum/bg;TKTmp=uint8((u1+u2)/2);if(TKTmp==TK)flag=0;elseTK=TKTmp;endenddisp(strcat('迭代後的閾值:',num2str(TK)));newI=im2bw(I,double(TK)/255);subplot(1,2,1);imshow(I);title('原圖')subplot(1,2,2);imshow(newI);tltle('閾值分割圖');

㈧ otsu閾值分割演算法是什麼

Otsu演算法:最大類間方差法(大津演算法),是一種確定閾值的演算法。

之所以稱為最大類間方差法是因為,用該閾值進行的圖像固定閾值二值化,類間方差最大,它是按圖像的灰度特性,將圖像分成背景和前景兩部分,使類間方差最大的分割意味著錯分概率最小。

演算法評價:

優點:演算法簡單,當目標與背景的面積相差不大時,能夠有效地對圖像進行分割。

缺點:當圖像中的目標與背景的面積相差很大時,表現為直方圖沒有明顯的雙峰,或者兩個峰的大小相差很大,分割效果不佳,或者目標與背景的灰度有較大的重疊時也不能准確的將目標與背景分開。

㈨ 目前應用最廣的圖像分割演算法是什麼

典型的圖像分割方法有閥值法,邊緣檢測法,區域法,很多演算法是在其上進行改進,目前沒有一個演算法適用所有圖像.
目前常用的閾值分割方法有:雙峰曲線擬合法,最大熵值分割法,類間方
差閾值分割法,模糊閾值分割法等;
邊緣檢測是最為普遍的對於灰度間斷的檢測方一般常用一階和二階導數來檢測邊,二階導數:有梯度運算元、Roberts、Prewitt和Sobel運算元、拉普拉斯運算元、Canny運算元 。

㈩ 閾值分割的概述

圖像閾值化分割是一種傳統的最常用的圖像分割方法,因其實現簡單、計算量小、性能較穩定而成為圖像分割中最基本和應用最廣泛的分割技術。它特別適用於目標和背景占據不同灰度級范圍的圖像。它不僅可以極大的壓縮數據量,而且也大大簡化了分析和處理步驟,因此在很多情況下,是進行圖像分析、特徵提取與模式識別之前的必要的圖像預處理過程。圖像閾值化的目的是要按照灰度級,對像素集合進行一個劃分,得到的每個子集形成一個與現實景物相對應的區域,各個區域內部具有一致的屬性,而相鄰區域不具有這種一致屬性。這樣的劃分可以通過從灰度級出發選取一個或多個閾值來實現。
基本原理是:通過設定不同的特徵閾值,把圖像象素點分為若干類。
常用的特徵包括:直接來自原始圖像的灰度或彩色特徵;由原始灰度或彩色值變換得到的特徵。
設原始圖像為f(x,y),按照一定的准則f(x,y)中找到特徵值T,將圖像分割為兩個部分,分割後的圖像為:
若取:b0=0(黑),b1=1(白),即為我們通常所說的圖像二值化。

閱讀全文

與八種閾值分割演算法相關的資料

熱點內容
卡爾曼濾波演算法書籍 瀏覽:768
安卓手機怎麼用愛思助手傳文件進蘋果手機上 瀏覽:843
安卓怎麼下載60秒生存 瀏覽:802
外向式文件夾 瀏覽:235
dospdf 瀏覽:430
怎麼修改騰訊雲伺服器ip 瀏覽:387
pdftoeps 瀏覽:492
為什麼鴻蒙那麼像安卓 瀏覽:735
安卓手機怎麼拍自媒體視頻 瀏覽:185
單片機各個中斷的初始化 瀏覽:723
python怎麼集合元素 瀏覽:480
python逐條解讀 瀏覽:832
基於單片機的濕度控制 瀏覽:498
ios如何使用安卓的帳號 瀏覽:882
程序員公園采訪 瀏覽:811
程序員實戰教程要多長時間 瀏覽:974
企業數據加密技巧 瀏覽:134
租雲伺服器開發 瀏覽:813
程序員告白媽媽不同意 瀏覽:335
攻城掠地怎麼查看伺服器 瀏覽:600