㈠ 如何判斷一個數值計算方法的優劣
演算法代表著用系統的方法描述解決問題的策略機制。也就是說,能夠對一定規范的輸入,在有限時間內獲得所要求的輸出。如果一個演算法有缺陷,或不適合於某個問題,執行這個演算法將不會解決這個問題。不同的演算法可能用不同的時間、空間或效率來完成同樣的任務。一個演算法的優劣可以用空間復雜度與時間復雜度來衡量。
㈡ 演算法具有什麼特徵
一個演算法應該具有以下五個重要的特徵:
1,有窮性(Finiteness):演算法的有窮性是指演算法必須能在執行有限個步驟之後終止;
2,確切性(Definiteness):演算法的每一步驟必須有確切的定義;
3,輸入項(Input):一個演算法有0個或多個輸入,以刻畫運算對象的初始情況,所謂0個輸入是指演算法本身定出了初始條件;
4,輸出項(Output):一個演算法有一個或多個輸出,以反映對輸入數據加工後的結果。沒有輸出的演算法是毫無意義的;
5,可行性(Effectiveness):演算法中執行的任何計算步驟都是可以被分解為基本的可執行的操作步,即每個計算步都可以在有限時間內完成(也稱之為有效性)。
(2)好的數值演算法的特點擴展閱讀:
演算法要素:
一,數據對象的運算和操作:計算機可以執行的基本操作是以指令的形式描述的。一個計算機系統能執行的所有指令的集合,成為該計算機系統的指令系統。一個計算機的基本運算和操作有如下四類:
1,算術運算:加減乘除等運算
2,邏輯運算:或、且、非等運算
3,關系運算:大於、小於、等於、不等於等運算
4,數據傳輸:輸入、輸出、賦值等運算
二,演算法的控制結構:一個演算法的功能結構不僅取決於所選用的操作,而且還與各操作之間的執行順序有關。
㈢ 遺傳演算法、數值演算法、爬山演算法、模擬退火 各自的優缺點
遺傳演算法:優點是能很好的處理約束,能很好的跳出局部最優,最終得到全局最優解,全局搜索能力強;缺點是收斂較慢,局部搜索能力較弱,運行時間長,且容易受參數的影響。
模擬退火:優點是局部搜索能力強,運行時間較短;缺點是全局搜索能力差,容易受參數的影響。
爬山演算法:顯然爬山演算法較簡單,效率高,但是處理多約束大規模問題時力不從心,往往不能得到較好的解。
數值演算法:這個數值演算法的含義太廣,你說的是哪一種數值演算法?多數數組演算法與爬山演算法的有優缺點類似。
PS:望採納!
㈣ 舉例說明何謂演算法,特點是什麼評價一個演算法的優劣,主要從哪些因素分析
評價演算法優劣的四個分析因素:
1.正確性
能正確地實現預定的功能,滿足具體問題的需要。處理數據使用的演算法是否得當,能不能得到預想的結果。
2.易讀性
易於閱讀、理解和交流,便於調試、修改和擴充。寫出的演算法,能不能讓別人看明白,能不能讓別人明白演算法的邏輯?如果通俗易懂,在系統調試和修改或者功能擴充的時候,使系統維護更為便捷。
3.健壯性
輸入非法數據,演算法也能適當地做出反應後進行處理,不會產生預料不到的運行結果。數據的形式多種多樣,演算法可能面臨著接受各種各樣的數據,當演算法接收到不適合演算法處理的數據,演算法本身該如何處理呢?如果演算法能夠處理異常數據,處理能力越強,健壯性越好。
4.時空性
演算法的時空性是該演算法的時間性能和空間性能。主要是說演算法在執行過程中的時間長短和空間佔用多少問題。
演算法處理數據過程中,不同的演算法耗費的時間和內存空間是不同的。
(4)好的數值演算法的特點擴展閱讀:
演算法是對特定問題求解步驟的一種描述,它是指令的有限序列,其中每一條指令表示一個或多個操作。此外,一個演算法還具有下列5個重要的特性。
(1)、有窮性
一個演算法必須總是(對任何合法的輸入值)在執行有窮步之後結束,且每一步都可在有窮時間內完成。
(2)、確定性
演算法中每一條指令必須有明確的含義,讀者理解時不會產生二義性。即對於相同的輸入只能得到相同的輸出。
(3)、可行性
一個演算法是可行的,即演算法中描述的操作都是可以通過已經實現的基本運算執行有限次來實現的。
(4)、輸入
一個演算法有零個或多個的輸入,這些輸入取自於某個特定的對象的集合。
(5)、輸出
一個演算法有一個或多個的輸出,這些輸出是同輸入有著某種特定關系的量。
㈤ 計算機進行數值計算時的高精度主要決定於什麼
主要決定於基本字長。
基本字長影響計算精度、指令功能。基本字長越長,計算精度越高。比如,基本字長是8位,那麼它可以表示最小的正數是0.0000001;而如果基本字長是16位,則可以表示0.000000000000001。顯然,後者的精度更高。
(5)好的數值演算法的特點擴展閱讀:
數值計算具有以下5個重要特徵:
1、數值計算的結果是離散的,並且一定有誤差,這是數值計算方法區別與解析法的主要特徵。
2、注重計算的穩定性。控制誤差的增長勢頭,保證計算過程穩定是數值計算方法的核心任務之一。
3、注重快捷的計算速度和高計算精度是數值計算的重要特徵。
4、注重構造性證明。
5、數值計算主要是運用有限逼近的的思想來進行誤差運算。
㈥ 設計一個好的演算法通常要考慮哪些要求
數據結構中評價一個好的演算法,應該從四個方面來考慮,分別是:
一、演算法的正確性。
二、演算法的易讀性。
三、是演算法的健壯性。
四、是演算法的時空效率(運行)。
演算法的設計取決於數據(邏輯)結構,演算法的實現取決於所採用的存儲結構。數據的存儲結構本質上是其邏輯結構在計算機存儲器中的實現。為了全面反映一個數據的邏輯結構,它在內存中的影像包括兩個方面,即數據元素之間的信息和數據元素之間的關系。
不同的數據結構有相應的操作。數據的操作是在數據的邏輯結構上定義的操作演算法,如檢索、插入、刪除、更新和排序。
(6)好的數值演算法的特點擴展閱讀
該演算法的一般性質包括:
1.通用性對於任何符合輸入類型的輸入數據,都可以根據演算法解決問題,並且包保證了計算結構的正確性。
2.演算法的每一條指令都必須能夠被人或機器執行。
3.確定性演算法應該在每一步之後都有明確的下一步指示。也就是說,確保每個步驟都有下一步行動的指示,不缺少或只包含含糊的下一步行動指示。
4.有限演算法的執行必須在有限步結束。
㈦ 數學常識中數值分析法有哪些特點
數值分析法的特點包括准確性(數值應該盡量近似准確)、穩健性(演算法應該能夠解決很多問題,並且當結果不準確時應該是與使用者有關)和速度(計算的速度越快,方法就越好)。計算方法本身所介紹的是一些適合於計算機上使用的數值分析方法,這些方法的基礎是數學分析,代數,微分方程等數學理論,根據我校學生比較注重基礎理論這一特點,——《數值分析方法》在介紹方法的同時,盡可能地闡述清楚方法的數學理論根據,並對方法的有關緒論做出嚴格而簡潔的證明。數值分析中的各種方法具有相對的獨立性,但作為一門課程,我們盡力把它編寫成具有較好連貫性及較為完整的教材。
矩陣的奇異值是一個數學意義上的概念,一般是由奇異值分解(Singular Value Decomposition,簡稱SVD分解)得到。如果要問奇異值表示什麼物理意義,那麼就必須考慮在不同的實際工程應用中奇異值所對應的含義。下面先盡量避開嚴格的數學符號推導,直觀的從一張圖片出發,讓我們來看看奇異值代表什麼意義。
數值分析(numerical analysis)是研究分析用計算機求解數學計算問題的數值計算方法及其理論的學科,是數學的一個分支,它以數字計算機求解數學問題的理論和方法為研究對象,為計算數學的主體部分。計算太空船的軌跡需要求出常微分方程的數值解。數值天氣預報中會用到許多先進的數值分析方法。
㈧ 演算法的基本特徵是
演算法
3分鍾了解今日頭條演算法原理(科普版)
02:43
什麼是演算法
04:28
概述
歷史發展
演算法分類
演算法特徵
演算法要素
演算法評定
目錄
1摘要
2基本信息
3概述
4歷史發展
5演算法分類
6演算法特徵
7演算法要素
數據的運算和操作
演算法的控制結構
8演算法評定
9描述方式
10史料記載
11基本方法
12參考資料
演算法是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制;它是求解問題類的、機械的、統一的方法,常用於計算、數據處理(英語:Data processing)和自動推理。可以理解為有基本運算及規定的運算順序所構成的完整的解題步驟。或者看成按照要求設計好的有限的確切的計算序列,並且這樣的步驟和序列可以解決一類問題。
演算法中的指令描述的是一個計算,當其運行時能從一個初始狀態和(可能為空的)初始輸入開始,經過一系列有限而清晰定義的狀態,最終產生輸出並停止於一個終態。一個狀態到另一個狀態的轉移不一定是確定的。隨機化演算法在內的一些演算法,包含了一些隨機輸入。
基本信息
中文名
演算法
外文名
Algorithm
拼音
suanfa
出處
數學 計算機
定義
是指解題方案的准確而完整的描述,是一系列解決問題的清晰指令,演算法代表著用系統的方法描述解決問題的策略機制
展開全部
概述
求解問題類的、機械的、統一的方法,它由有限多個步驟組成,對於問題類中的每個給定的具體問題,機械地執行這些步驟就可以得到問題的解答。演算法的這種特性,使得計算不僅可以由人,而且可以由計算機來完成。用計算機解決問題的過程可以分成三個階段:分析問題、設計演算法和實現演算法。[1]
歷史發展
中國古代的籌算口決與珠算口決及其執行規則就是演算法的雛形,這里,所解決的問題類是算術運算。古希臘數學家歐幾里得在公元前3世紀就提出了一個演算法,來尋求兩個正整數的最大公約數,這就是有名的歐幾里得演算法,亦稱輾轉相除法。中國早已有「算術「、「演算法」等詞彙,但是它們的含義是指當時的全部數學知識和計算技能,與現代演算法的含義不盡相同。英文algorithm(演算法)一詞也經歷了一個演變過程,最初的拼法為algorism或algoritmi,原意為用阿拉伯數字進行計算的過程。這個詞源於公元 9世紀波斯數字家阿爾·花拉子米的名字的最後一部分。[1]
在古代,計算通常是指數值計算。現代計算已經遠遠地突破了數值計算的范圍,包括大量的非數值計算,例如檢索、表格處理、判斷、決策、形式邏輯演繹等。
在20世紀以前,人們普遍地認為,所有的問題類都是有演算法的。20世紀初,數字家們發現有的問題類是不存在演算法的,遂開始進行能行性研究。在這一研究中,現代演算法的概念逐步明確起來。30年代,數字家們提出了遞歸函數、圖靈機等計算模型,並提出了丘奇-圖靈論題(見可計算性理論),這才有可能把演算法概念形式化。按照丘奇-圖靈論題,任意一個演算法都可以用一個圖靈機來實現,反之,任意一個圖靈機都表示一個演算法。
按照上述理解,演算法是由有限多個步驟組成的,它有下述兩個基本特徵:每個步驟都明確地規定要執行何種操作;每個步驟都可以被人或機器在有限的時間內完成。人們對於演算法還有另一種不同的理解,它要求演算法除了上述兩個基本特徵外,還要具有第三個基本特徵:雖然有些步驟可能被反復執行多次,但是在執行有限多次之後,就一定能夠得到問題的解答。也就是說,一個處處停機(即對任意輸入都停機)的圖靈機才表示一個演算法,而每個演算法都可以被一個處處停機的圖靈機來實現[1]
演算法分類
演算法可大致分為基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法。[1]
演算法可以宏泛的分為三類:
有限的,確定性演算法 這類演算法在有限的一段時間內終止。他們可能要花很長時間來執行指定的任務,但仍將在一定的時間內終止。這類演算法得出的結果常取決於輸入值。
有限的,非確定演算法 這類演算法在有限的時間內終止。然而,對於一個(或一些)給定的數值,演算法的結果並不是唯一的或確定的。
無限的演算法 是那些由於沒有定義終止定義條件,或定義的條件無法由輸入的數據滿足而不終止運行的演算法。通常,無限演算法的產生是由於未能確定的定義終止條件。[1]
演算法特徵
1、輸入項:一個演算法有零個或多個輸入,以刻畫運算對象的初始情況。例如,在歐幾里得演算法中,有兩個輸入,即m和n。[1]
2、確定性:演算法的每一個步驟必須要確切地定義。即演算法中所有有待執行的動作必須嚴格而不含混地進行規定,不能有歧義性。例如,歐幾里得演算法中,步驟1中明確規定「以m除以n,而不能有類似以m除n以或n除以m這類有兩種可能做法的規定。
3、有窮性:一個演算法在執行有窮步滯後必須結束。也就是說,一個演算法,它所包含的計算步驟是有限的。例如,在歐幾里得演算法中,m和n均為正整數,在步驟1之後,r必小於n,若r不等於0,下一次進行步驟1時,n的值已經減小,而正整數的遞降序列最後必然要終止。因此,無論給定m和n的原始值有多大,步驟1的執行都是有窮次。
4、輸出:演算法有一個或多個的輸出,即與輸入有某個特定關系的量,簡單地說就是演算法的最終結果。例如,在歐幾里得演算法中只有一個輸出,即步驟2中的n。
5、能行性:演算法中有待執行的運算和操作必須是相當基本的,換言之,他們都是能夠精確地進行的,演算法執行者甚至不需要掌握演算法的含義即可根據該演算法的每一步驟要求進行操作,並最終得出正確的結果。[1]
㈨ 演算法的要素是什麼演算法的特徵是什麼
一、演算法的要素包括:
1、數據對象的操作和操作:計算機可以執行的基本操作以指令的形式描述。
2、演算法的控制結構:演算法的功能結構不僅取決於所選的操作,還取決於操作之間的執行順序。
二、演算法的特徵如下:
1、有窮性:演算法的有窮性意味著演算法在執行有限的步驟之後必須能夠終止。
2、確切性:演算法的每一步都必須確切定義。
3、輸入項:一個演算法有0個或多個輸入來描述操作對象的初始條件。所謂的零輸入是指由演算法本身決定的初始條件。
4、輸出項:一個演算法有一個或多個輸出來反映處理輸入數據的結果。沒有輸出的演算法毫無意義。
5、可行性:演算法中執行的任何計算步驟都可以分解為基本的可執行操作步驟,即每個計算步驟都可以在有限的時間內完成。
演算法可大致分為基本演算法、數據結構的演算法、數論與代數演算法、計算幾何的演算法、圖論的演算法、動態規劃以及數值分析、加密演算法、排序演算法、檢索演算法、隨機化演算法、並行演算法,厄米變形模型,隨機森林演算法。
描述演算法的方法有多種,常用的有自然語言、結構化流程圖、偽代碼和PAD圖等,其中最普遍的是流程圖。
隨著計算機的發展,演算法在計算機方面已有廣泛的發展及應用,如用隨機森林演算法,來進行頭部姿勢的估計,用遺傳演算法來解決彈葯裝載問題,信息加密演算法在網路傳輸中的應用,並行演算法在數據挖掘中的應用等。