① 簡單閾值法和Otsu演算法的根本區別是什麼
區別如下:
Niblack演算法是通過某一像素點及其鄰域內像素點灰度值的均值和標准差計算得到二值化閾值的。在計算圖像點(x,y)二值化閾值時,首先計算以(x,y)為中心的n*n大小的區域內像素點的灰度均值m和標准差s。灰度均值m和標准差s的計算公式如下:
然後根據灰度均值和標准差計算得到點(x,y)的二值化閾值T,計算公式為T(x,y)=k*s(x,y)+m(x,y),其中k為修正系數。最後根據計算得到的閾值T對該點進行二值化處理。將圖像中所有的像素點按照此方法處理即可得到二值化圖像。
雖然能夠實現圖像的二值化,但是如果選取的區域均為背景點時,該演算法會將灰度值較高的點當做是目標點,導致偽雜訊的引入(針對偽雜訊引入的問題,產生了Sauvola演算法)。此處說明一下Sauvola演算法。Sauvola演算法可以說是一種改進的Niblack演算法。首先也是按照上文所述方式求取灰度均值和標准差,但是採用了不同的閾值選取方法。
② canny 演算法的閾值,有兩個,到底是做什麼用的
第一個是低閾值,第二個高閾值
高閾值比較嚴格,求的邊緣很少,認為高閾值的邊緣都是有效。低閾值寬松,求的邊緣很多(一般包括了高閾值求到的邊緣),其中不少是無效的邊緣(反正不想要的)。
先用高閾值求邊緣。canny求得的邊緣希望是連在一起的(通常是封閉的),但高閾值求的邊緣一般斷斷續續。斷開的地方如果低閾值求的邊緣存在,就用低閾值的邊緣接上去,目的讓邊緣盡量都連在一起。其它情況下低閾值的邊緣是不用的。
兩個閾值是有區別的,高的那個閾值是將要提取輪廓的物體與背景區分開來,就像閾值分割的那個參數一樣,是決定目標與背景對比度的,低的那個閾值是用來平滑邊緣的輪廓,有時高的閾值設置太大了,可能邊緣輪廓不連續或者不夠平滑,通過低閾值來平滑輪廓線,或者使不連續的部分連接起來
③ 閾值的判定方法有哪些,圖像處理方面的
閾值選擇 的恰當與否對分割的效果起著決定性的作用。圖像的分割方法主要包括幅度分割方法、最小錯誤分割法、迭代法求圖像最佳分割閾值法、最大類間方差 法(大津演算法)等一系列方法。
具體演算法你可以再詳細查
④ BP神經網路中初始權值和閾值的設定
1、首先需要了解BP神經網路是一種多層前饋網路。
⑤ Heursure閾值演算法是什麼
rigrsure閾值,是一種基於Stein的無偏似然估計原理的自適應閾值選擇;
sqtwolog閾值,採用的是一種固定的閾值形式,它所產生的閾值為2log(length(x))
heursure閾值,是前兩種閾值法的綜合,所選擇的是最優預測變數閾值,當信噪比很小,閾值估計有很大雜訊時就需要採用這種固定的閾值形式
剛在寫論文,隨手粘貼過來。
⑥ 動態閾值一般有什麼演算法謝謝啦,沒錢。。。
%本程序是利用最大類間方差演算法求解自適應閾值,對圖像進行分割
clear;
warning off;
web -browser
SE = strel('diamond',4);
BW1 = imread('img1.bmp');
BW2 = imerode(BW1,SE);
BW3 = imdilate(BW2,SE);
BW4 = BW1-BW3;
%rgb轉灰度
if isrgb(BW4)==1
I_gray=rgb2gray(BW4);
else
I_gray=BW4;
end
figure,imshow(I_gray);
I_double=double(I_gray);%轉化為雙精度
[wid,len]=size(I_gray);
colorlevel=256; %灰度級
hist=zeros(colorlevel,1);%直方圖
%threshold=128; %初始閾值
%計算直方圖
for i=1:wid
for j=1:len
m=I_gray(i,j)+1;
hist(m)=hist(m)+1;
end
end
hist=hist/(wid*len);%直方圖歸一化
miuT=0;
for m=1:colorlevel
miuT=miuT+(m-1)*hist(m);
end
xigmaB2=0;
for mindex=1:colorlevel
threshold=mindex-1;
omega1=0;
omega2=0;
for m=1:threshold-1
omega1=omega1+hist(m);
end
omega2=1-omega1;
miu1=0;
miu2=0;
for m=1:colorlevel
if m<threshold
miu1=miu1+(m-1)*hist(m);
else
miu2=miu2+(m-1)*hist(m);
end
end
miu1=miu1/omega1;
miu2=miu2/omega2;
xigmaB21=omega1*(miu1-miuT)^2+omega2*(miu2-miuT)^2;
xigma(mindex)=xigmaB21;
if xigmaB21>xigmaB2
finalT=threshold;
xigmaB2=xigmaB21;
end
end
fT=finalT/255 %閾值歸一化
T=graythresh(I_gray)%matlab函數求閾值
for i=1:wid
for j=1:len
if I_double(i,j)>finalT
bin(i,j)=1;
else
bin(i,j)=0;
end
end
end
figure,imshow(bin);
figure,plot(1:colorlevel,xigma);
已發送,請查收,發送郵箱[email protected] ,你的郵箱名是錯的,彈回來了。反正這里也有,不發了。
⑦ BP神經網路初始權值和閾值
請理解程序中的變數含義:
inputnum:輸入層節點數
hiddennum:隱層節點數
outputnum:輸出層節點數
因此,當輸入為3時,如果前面有inputnum=size(P,1);語句,將會自適應確定輸入節點數;如果沒有使用該語句,直接將inputnum賦值為3即可,即加上inputnum=3;
你這段代碼是GA-BP神經網路最後的染色體解碼階段的代碼,注意染色體編碼結構為:輸入層與隱層間權值矩陣、隱層閾值、隱層與輸出層間權值矩陣、輸出層閾值。
⑧ matlab中圖像怎麼找到閾值
給你提供2種方法,一種是直方圖閾值法;一種是最大類間方差
1、直方圖閾值法
用 MATLAB實現直方圖閾值法:
I=imread(' c4.jpg ');
I1=rgb2gray(I);
figure;
subplot(2,2,1);
imshow(I1);
title(' 灰度圖像')
axis([50,250,50,200]);
grid on; %顯示網格線
axis on; %顯示坐標系
[m,n]=size(I1); %測量圖像尺寸參數
GP=zeros(1,256); %預創建存放灰度出現概率的向量
for k=0:255
GP(k+1)=length(find(I1==k))/(m*n); %計算每級灰度出現的概率,將其存入GP中相應位置
end
subplot(2,2,2),bar(0:255,GP,'g') %繪制直方圖
title('灰度直方圖')
xlabel('灰度值')
ylabel(' 出現概率')
I2=im2bw(I,150/255);
subplot(2,2,3),imshow(I2);
title('閾值150的分割圖像')
axis([50,250,50,200]);
grid on; %顯示網格線
axis on; %顯示坐標系
I3=im2bw(I,200/255); %
subplot(2,2,4),imshow(I3);
title('閾值200的分割圖像')
axis([50,250,50,200]);
grid on; %顯示網格線
axis on; %顯示坐標系
2、自動閾值法:Otsu法
用MATLAB實現Otsu演算法:
clc
clear all
I=imread(' c4.jpg ');
subplot(1,2,1),imshow(I);
title('原始圖像')
axis([50,250,50,200]);
grid on; %顯示網格線
axis on; %顯示坐標系
level=graythresh(I); %確定灰度閾值
BW=im2bw(I,level);
subplot(1,2,2),imshow(BW);
title('Otsu 法閾值分割圖像')
axis([50,250,50,200]);
grid on; %顯示網格線
axis on; %顯示坐標系
⑨ 什麼是差分閾值法
差分閾值法是一種適合於對實時性較高的心電信號QRS波檢測的快速演算法,其基本原理是:由於QRS波是心電信號波形變化最劇烈的地方,其波形的上升斜率或是下降斜率與其他波形相比有顯著不同,所以可以同過檢測心電信號序列對時間的導數即斜率的變化情況來檢測R波的位置。通常在R波的上升沿和下降沿是是心電波形斜率變化最大的區域,在這范圍內出現的一階導數過零點,二階導數極值點即我們所要檢測的R波位置。通過多濾波後的心電信號進行一階差分或二階差分並結合確定的閾值,檢測出R波。
⑩ 什麼是神經網路演算法的閾值
神經元是一個多輸入單輸出的非線性單元,輸入之和需要超過一定數值時,輸出才會有反應,這個數值一般稱為閾值