導航:首頁 > 源碼編譯 > apriori演算法時間復雜度

apriori演算法時間復雜度

發布時間:2022-09-10 09:48:28

⑴ 數據挖掘中的apriori演算法的具體步驟是什麼

演算法:Apriori
輸入:D - 事務資料庫;min_sup - 最小支持度計數閾值
輸出:L - D中的頻繁項集
方法:
L1=find_frequent_1-itemsets(D); // 找出所有頻繁1項集
For(k=2;Lk-1!=null;k++){
Ck=apriori_gen(Lk-1); // 產生候選,並剪枝
For each 事務t in D{ // 掃描D進行候選計數
Ct =subset(Ck,t); // 得到t的子集
For each 候選c 屬於 Ct
c.count++;
}
Lk={c屬於Ck | c.count>=min_sup}
}
Return L=所有的頻繁集;

Procere apriori_gen(Lk-1:frequent(k-1)-itemsets)
For each項集l1屬於Lk-1
For each項集 l2屬於Lk-1
If((l1[1]=l2[1])&&( l1[2]=l2[2])&&……..
&& (l1[k-2]=l2[k-2])&&(l1[k-1]<l2[k-1])) then{
c=l1連接l2 //連接步:產生候選
if has_infrequent_subset(c,Lk-1) then
delete c; //剪枝步:刪除非頻繁候選
else add c to Ck;
}
Return Ck;

Procere has_infrequent_sub(c:candidate k-itemset; Lk-1:frequent(k-1)-itemsets)
For each(k-1)-subset s of c
If s不屬於Lk-1 then
Return true;
Return false;

⑵ apriori演算法的時空復雜度是多少

遺傳演算法其實就是二重迭代,時間復雜度不超過n平方
空間復雜度自己計算吧

⑶ 用於數據挖掘的聚類演算法有哪些,各有何優勢

聚類方法的分類,主要分為層次化聚類演算法,劃分式聚類演算法,基於密度的聚類演算法,基於網格的聚類演算法,基於模型的聚類演算法等。

而衡量聚類演算法優劣的標准主要是這幾個方面:處理大的數據集的能力;處理任意形狀,包括有間隙的嵌套的數據的能力;演算法處理的結果與數據輸入的順序是否相關,也就是說演算法是否獨立於數據輸入順序;處理數據雜訊的能力;是否需要預先知道聚類個數,是否需要用戶給出領域知識;演算法處理有很多屬性數據的能力,也就是對數據維數是否敏感。

.聚類演算法主要有兩種演算法,一種是自下而上法(bottom-up),一種是自上而下法(top-down)。這兩種路徑本質上各有優勢,主要看實際應用的時候要根據數據適用於哪一種,Hierarchical methods中比較新的演算法有BIRCH主要是在數據體量很大的時候使用;ROCK優勢在於異常數據抗干擾性強……

關於數據挖掘的相關學習,推薦CDA數據師的相關課程,課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。這種教學方式能夠引發學員的獨立思考及主觀能動性,學員掌握的技能知識可以快速轉化為自身能夠靈活應用的技能,在面對不同場景時能夠自由發揮。點擊預約免費試聽課。

⑷ apriori演算法的計算復雜度受什麼影響

一個演算法的時間復雜度和其空間復雜度的關系可這樣理解
一個演算法要做高效率低存儲是很困難的,也就是說,演算法的時間復雜度小,可能需要較大的空間復雜度。反之亦然。也可以說,通過空間換得時間
希望我的回答可以幫到您哦

⑸ apriori里python調用了哪些庫有哪些關鍵函數

第一,apriori只是一種挖掘演算法,沒有特定的只能用pyton或者某一種語言;

apriori演算法的邏輯流程

首先找出所有的頻集,這些項集出現的頻繁性至少和預定義的最小支持度一樣。然後由頻集產生強關聯規則,這些規則必須滿足最小支持度和最小可信度。然後使用第1步找到的頻集產生期望的規則,產生只包含集合的項的所有規則,其中每一條規則的右部只有一項,這里採用的是中規則的定義。一旦這些規則被生成,那麼只有那些大於用戶給定的最小可信度的規則才被留下來。為了生成所有頻集,使用了遞歸的方法。

(1) L1 = find_frequent_1-itemsets(D);

(2) for (k=2;Lk-1 ≠Φ ;k++) {

(3) Ck = apriori_gen(Lk-1 ,min_sup);

(4) for each transaction t ∈D{//scan D for counts

(5) Ct = subset(Ck,t);//get the subsets of t that are candidates

(6) for each candidate c ∈ Ct

(7) c.count++;

(8)}

(9) Lk ={c ∈ Ck|c.count≥min_sup}

(10)}

(11) return L= ∪ k Lk;

可能產生大量的候選集,以及可能需要重復掃描資料庫,是Apriori演算法的兩大缺點。

從邏輯上看,會用到的庫:

  1. 字元處理的庫

  2. 資料庫處理的庫

  3. 集合運算的庫

  4. 概率期望運算的庫(入numpy)

⑹ apriori演算法是什麼

Apriori演算法是第一個關聯規則挖掘演算法,也是最經典的演算法。它利用逐層搜索的迭代方法找出資料庫中項集的關系,以形成規則,其過程由連接(類矩陣運算)與剪枝(去掉那些沒必要的中間結果)組成。該演算法中項集的概念即為項的集合。包含K個項的集合為k項集。項集出現的頻率是包含項集的事務數,稱為項集的頻率。如果某項集滿足最小支持度,則稱它為頻繁項集。

演算法應用

隨著高校貧困生人數的不斷增加,學校管理部門資助工作難度也越加增大。針對這一現象,提出一種基於數據挖掘演算法的解決方法。將關聯規則的Apriori演算法應用到貧困助學體系中,並且針對經典Apriori挖掘演算法存在的不足進行改進,先將事務資料庫映射為一個布爾矩陣,用一種逐層遞增的思想來動態的分配內存進行存儲,再利用向量求"與"運算,尋找頻繁項集。

⑺ 如何提高apriori演算法的效率

Apriori演算法是關聯規則挖掘中的經典演算法。在Apriori演算法中,使用頻繁項集的先驗知識,逐層搜索的迭代方法,通過掃描資料庫,累積每個項的計數,並收集滿足最小支持度的項,找每個Lk都需要掃描一次資料庫。演算法的效率隨著數據量的增大,頻繁項集的增多,演算法的效率就非常的低,本文通過對Apriori演算法分析,應用散列、事務壓縮、劃分、抽樣等方法,最大可能的減少資料庫掃描的次數,快速發現頻繁項集,提高Apriori演算法的效率。

⑻ apriori演算法使用了什麼性質

Apriori性質:一個頻繁項集的任一子集也應該是頻繁項集。證明根據定義,若一個項集I不滿足最小支持度閾值min_sup,則I不是頻繁的,即P(I)<min_sup。若增加一個項A到項集I中,則結果新項集(I∪A)也不是頻繁的,在整個事務資料庫中所出現的次數也不可能多於原項集I出現的次數,因此P(I∪A)<min_sup,即(I∪A)也不是頻繁的。這樣就可以根據逆反公理很容易地確定Apriori性質成立。
http://ke..com/link?url=8F29ZS1ufQ4gtAsaXsyZr__Eut632ia

閱讀全文

與apriori演算法時間復雜度相關的資料

熱點內容
卡爾曼濾波演算法書籍 瀏覽:766
安卓手機怎麼用愛思助手傳文件進蘋果手機上 瀏覽:841
安卓怎麼下載60秒生存 瀏覽:800
外向式文件夾 瀏覽:233
dospdf 瀏覽:428
怎麼修改騰訊雲伺服器ip 瀏覽:385
pdftoeps 瀏覽:490
為什麼鴻蒙那麼像安卓 瀏覽:733
安卓手機怎麼拍自媒體視頻 瀏覽:183
單片機各個中斷的初始化 瀏覽:721
python怎麼集合元素 瀏覽:478
python逐條解讀 瀏覽:830
基於單片機的濕度控制 瀏覽:496
ios如何使用安卓的帳號 瀏覽:880
程序員公園采訪 瀏覽:809
程序員實戰教程要多長時間 瀏覽:972
企業數據加密技巧 瀏覽:132
租雲伺服器開發 瀏覽:811
程序員告白媽媽不同意 瀏覽:333
攻城掠地怎麼查看伺服器 瀏覽:600