A. 數據結構查找演算法這么多有什麼用
程序本身就是這兩者構成,什麼框架都是建立在這兩者之上,
現在的人大多是直接學C#,JAVA,特別是C#,一上來什麼東西都給你封裝,
很多細節程序員是不會知道,什麼東西簡單一拖OK。
不過這些語言的什麼LIST啊,ARRAYLIST等等這些就是一種數據結構,
定義好這形形色色的數據你用起來不覺得更方便了嗎?
我的水平比較低,目前的理解是學習數據結構主要是學習演算法,演算法就是提高你
解決問題的能力,還有就是組織數據的思維方式方法。
我剛完成數據結構學習的第一階段,感覺還是挺有趣的,學到不少知識,最起碼
比WINFORM的拖拖拉拉有趣多了。
B. 搜索演算法的應用案例
(1)題目:黑白棋游戲
黑白棋游戲的棋盤由4×4方格陣列構成。棋盤的每一方格中放有1枚棋子,共有8枚白棋子和8枚黑棋子。這16枚棋子的每一種放置方案都構成一個游戲狀態。在棋盤上擁有1條公共邊的2個方格稱為相鄰方格。一個方格最多可有4個相鄰方格。在玩黑白棋游戲時,每一步可將任何2個相鄰方格中棋子互換位置。對於給定的初始游戲狀態和目標游戲狀態,編程計算從初始游戲狀態變化到目標游戲狀態的最短著棋序列。
(2)分析
這題我們可以想到用深度優先搜索來做,但是如果下一步出現了以前的狀態怎麼辦?直接判斷時間復雜度的可能會有點大,這題的最優解法是用廣度優先搜索來做。我們就可以有初始狀態按照廣度優先搜索遍歷來擴展每一個點,這樣到達目標狀態的步數一定是最優的(步數的增加時單調的)。但問題是如果出現了重復的情況我們就必須要判重,但是樸素的判重是可以達到狀態數級別的,其實我們可以考慮用hash表來判重。
Hash表:思路是根據關鍵碼值進行直接訪問。也就是說把一個關鍵碼值映射到表中的一個位置來訪問記錄的過程。在Hash表中,一般插入,查找的時間復雜度可以在O(1)的時間復雜度內搞定。對於這一題我們可以用二進制值表示其hash值,最多2^16次方,所以我們開個2^16次方的表記錄這個狀態出現沒有,這樣可以在O(1)的時間復雜度內解決判重問題。
進一步考慮:從初始狀態到目標狀態,必定會產生很多無用的狀態,那還有什麼優化可以減少這時間復雜度?我們可以考慮把初始狀態和目標狀態一起擴展,這樣如果初始狀態的某個被擴展的點與目標狀態所擴展的點相同時,那這兩個點不用擴展下去,而兩個擴展的步數和也就是答案。
上面的想法是雙向廣度優先搜索:
就像圖二一樣,多擴展了很多不必要的狀態。
從上面一題可以看到我們用到了兩種優化方法,即Hash表優化和雙向廣搜優化。一般的廣度優先搜索用這兩個優化就足以解決。
C. 數據結構:重要的查找演算法有哪些
折半查找也就是二分查找,它必須滿足排序關系。
查找也可以用二叉查找樹,一般復雜度為O(logn),最壞為O(n)。
也可用平衡樹進行查找,如AVL,Treap,Splay等,可以做到保持O(logn)。
比二分查找性能更優的:大概只有Hash了吧。如果Hash函數設計的好,基本可以認為是O(1)
堆排序比較有意思,值得研究一下,理解了後,很有用~,也很重要。
D. 程序員開發用到的十大基本演算法
演算法一:快速排序演算法
快速排序是由東尼·霍爾所發展的一種排序演算法。在平均狀況下,排序 n 個項目要Ο(n log n)次比較。在最壞狀況下則需要Ο(n2)次比較,但這種狀況並不常見。事實上,快速排序通常明顯比其他Ο(n log n) 演算法更快,因為它的內部循環(inner loop)可以在大部分的架構上很有效率地被實現出來。
快速排序使用分治法(Divide and conquer)策略來把一個串列(list)分為兩個子串列(sub-lists)。
演算法步驟:
1 從數列中挑出一個元素,稱為 「基準」(pivot),
2 重新排序數列,所有元素比基準值小的擺放在基準前面,所有元素比基準值大的擺在基準的後面(相同的數可以到任一邊)。在這個分區退出之後,該基準就處於數列的中間位置。這個稱為分區(partition)操作。
3 遞歸地(recursive)把小於基準值元素的子數列和大於基準值元素的子數列排序。
遞歸的最底部情形,是數列的大小是零或一,也就是永遠都已經被排序好了。雖然一直遞歸下去,但是這個演算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最後的位置去。
演算法二:堆排序演算法
堆排序(Heapsort)是指利用堆這種數據結構所設計的一種排序演算法。堆積是一個近似完全二叉樹的結構,並同時滿足堆積的性質:即子結點的鍵值或索引總是小於(或者大於)它的父節點。堆排序的平均時間復雜度為Ο(nlogn) 。
演算法步驟:
1.創建一個堆H[0..n-1]
2.把堆首(最大值)和堆尾互換
3.把堆的尺寸縮小1,並調用shift_down(0),目的是把新的數組頂端數據調整到相應位置
4.重復步驟2,直到堆的尺寸為1
演算法三:歸並排序
歸並排序(Merge sort,台灣譯作:合並排序)是建立在歸並操作上的一種有效的排序演算法。該演算法是採用分治法(Divide and Conquer)的一個非常典型的應用。
演算法步驟:
演算法四:二分查找演算法
二分查找演算法是一種在有序數組中查找某一特定元素的搜索演算法。搜素過程從數組的中間元素開始,如果中間元素正好是要查找的元素,則搜 素過程結束;如果某一特定元素大於或者小於中間元素,則在數組大於或小於中間元素的那一半中查找,而且跟開始一樣從中間元素開始比較。如果在某一步驟數組 為空,則代表找不到。這種搜索演算法每一次比較都使搜索范圍縮小一半。折半搜索每次把搜索區域減少一半,時間復雜度為Ο(logn) 。
演算法五:BFPRT(線性查找演算法)
BFPRT演算法解決的問題十分經典,即從某n個元素的序列中選出第k大(第k小)的元素,通過巧妙的分 析,BFPRT可以保證在最壞情況下仍為線性時間復雜度。該演算法的思想與快速排序思想相似,當然,為使得演算法在最壞情況下,依然能達到o(n)的時間復雜 度,五位演算法作者做了精妙的處理。
演算法步驟:
終止條件:n=1時,返回的即是i小元素。
演算法六:DFS(深度優先搜索)
深度優先搜索演算法(Depth-First-Search),是搜索演算法的一種。它沿著樹的深度遍歷樹的節點,盡可能深的搜索樹的分 支。當節點v的所有邊都己被探尋過,搜索將回溯到發現節點v的那條邊的起始節點。這一過程一直進行到已發現從源節點可達的所有節點為止。如果還存在未被發 現的節點,則選擇其中一個作為源節點並重復以上過程,整個進程反復進行直到所有節點都被訪問為止。DFS屬於盲目搜索。
深度優先搜索是圖論中的經典演算法,利用深度優先搜索演算法可以產生目標圖的相應拓撲排序表,利用拓撲排序表可以方便的解決很多相關的圖論問題,如最大路徑問題等等。一般用堆數據結構來輔助實現DFS演算法。
演算法步驟:
上述描述可能比較抽象,舉個實例:
DFS 在訪問圖中某一起始頂點 v 後,由 v 出發,訪問它的任一鄰接頂點 w1;再從 w1 出發,訪問與 w1鄰 接但還沒有訪問過的頂點 w2;然後再從 w2 出發,進行類似的訪問,… 如此進行下去,直至到達所有的鄰接頂點都被訪問過的頂點 u 為止。
接著,退回一步,退到前一次剛訪問過的頂點,看是否還有其它沒有被訪問的鄰接頂點。如果有,則訪問此頂點,之後再從此頂點出發,進行與前述類似的訪問;如果沒有,就再退回一步進行搜索。重復上述過程,直到連通圖中所有頂點都被訪問過為止。
演算法七:BFS(廣度優先搜索)
廣度優先搜索演算法(Breadth-First-Search),是一種圖形搜索演算法。簡單的說,BFS是從根節點開始,沿著樹(圖)的寬度遍歷樹(圖)的節點。如果所有節點均被訪問,則演算法中止。BFS同樣屬於盲目搜索。一般用隊列數據結構來輔助實現BFS演算法。
演算法步驟:
演算法八:Dijkstra演算法
戴克斯特拉演算法(Dijkstra』s algorithm)是由荷蘭計算機科學家艾茲赫爾·戴克斯特拉提出。迪科斯徹演算法使用了廣度優先搜索解決非負權有向圖的單源最短路徑問題,演算法最終得到一個最短路徑樹。該演算法常用於路由演算法或者作為其他圖演算法的一個子模塊。
該演算法的輸入包含了一個有權重的有向圖 G,以及G中的一個來源頂點 S。我們以 V 表示 G 中所有頂點的集合。每一個圖中的邊,都是兩個頂點所形成的有序元素對。(u, v) 表示從頂點 u 到 v 有路徑相連。我們以 E 表示G中所有邊的集合,而邊的權重則由權重函數 w: E → [0, ∞] 定義。因此,w(u, v) 就是從頂點 u 到頂點 v 的非負權重(weight)。邊的權重可以想像成兩個頂點之間的距離。任兩點間路徑的權重,就是該路徑上所有邊的權重總和。已知有 V 中有頂點 s 及 t,Dijkstra 演算法可以找到 s 到 t的最低權重路徑(例如,最短路徑)。這個演算法也可以在一個圖中,找到從一個頂點 s 到任何其他頂點的最短路徑。對於不含負權的有向圖,Dijkstra演算法是目前已知的最快的單源最短路徑演算法。
演算法步驟:
重復上述步驟2、3,直到S中包含所有頂點,即W=Vi為止
演算法九:動態規劃演算法
動態規劃(Dynamic programming)是一種在數學、計算機科學和經濟學中使用的,通過把原問題分解為相對簡單的子問題的方式求解復雜問題的方法。 動態規劃常常適用於有重疊子問題和最優子結構性質的問題,動態規劃方法所耗時間往往遠少於樸素解法。
動態規劃背後的基本思想非常簡單。大致上,若要解一個給定問題,我們需要解其不同部分(即子問題),再合並子問題的解以得出原問題的解。 通常許多 子問題非常相似,為此動態規劃法試圖僅僅解決每個子問題一次,從而減少計算量: 一旦某個給定子問題的解已經算出,則將其記憶化存儲,以便下次需要同一個 子問題解之時直接查表。 這種做法在重復子問題的數目關於輸入的規模呈指數增長時特別有用。
關於動態規劃最經典的問題當屬背包問題。
演算法步驟:
演算法十:樸素貝葉斯分類演算法
樸素貝葉斯分類演算法是一種基於貝葉斯定理的簡單概率分類演算法。貝葉斯分類的基礎是概率推理,就是在各種條件的存在不確定,僅知其出現概率的情況下, 如何完成推理和決策任務。概率推理是與確定性推理相對應的。而樸素貝葉斯分類器是基於獨立假設的,即假設樣本每個特徵與其他特徵都不相關。
樸素貝葉斯分類器依靠精確的自然概率模型,在有監督學習的樣本集中能獲取得非常好的分類效果。在許多實際應用中,樸素貝葉斯模型參數估計使用最大似然估計方法,換言之樸素貝葉斯模型能工作並沒有用到貝葉斯概率或者任何貝葉斯模型。
盡管是帶著這些樸素思想和過於簡單化的假設,但樸素貝葉斯分類器在很多復雜的現實情形中仍能夠取得相當好的效果。
E. 幾種查找演算法的比較
文章摘要: 查找是在大量的信息中尋找一個特定的信息元素,在計算機應用中,查找是常用的基本運算,文中介紹四種查找演算法,分別是順序查找、二分查找、二叉排序樹查找和哈希查找。並用JAVA語言編寫了相應程序代碼,比較了查找同一個數據的時間復雜度和空間復雜度。
F. 常用的數據查找演算法有哪些,各有什麼特點編寫一查找程序應用於數組的數據查找。
想問下,我的聯想是WIN8系統的,打開IE的時候,幹嘛顯示不出來視頻之類的呢,去fllash官網想安裝,卻說已經安裝了,郁悶啊!!!@!
G. 查找演算法的作用
查找就是在一個數據集合里查找到你需要的數據,查找演算法就是在查找過程中使用的演算法。查找演算法有好多,最基礎的就是線性表查找。
因為提到了演算法,所以需要注意的是時間復雜度跟空間復雜度,進而涉及到數據的存儲方式,比如數組,鏈表,矩陣,樹,圖等等數據結構,這些數據結構可以幫助你降低演算法的復雜度。
如果有興趣,隨便找本數據結構書翻翻,裡面或多或少都會有講解。用關鍵字標識一個數據元素,查找時根據給定的某個值,在表中確定一個關鍵字的值等於給定值的記錄或數據元素。在計算機中進行查找的方法是根據表中的記錄的組織結構確定的。順序查找也稱為線形查找,從數據結構線形表的一端開始,順序掃描,依次將掃描到的結點關鍵字與給定值k相比較,若相等則表示查找成功;若掃描結束仍沒有找到關鍵字等於k的結點,表示查找失敗。二分查找要求線形表中的結點按關鍵字值升序或降序排列,用給定值k先與中間結點的關鍵字比較,中間結點把線形表分成兩個子表,若相等則查找成功;若不相等,再根據k與該中間結點關鍵字的比較結果確定下一步查找哪個子表,這樣遞歸進行,直到查找到或查找結束發現表中沒有這樣的結點。分塊查找也稱為索引查找,把線形分成若干塊,在每一塊中的數據元素的存儲順序是任意的,但要求塊與塊之間須按關鍵字值的大小有序排列,還要建立一個按關鍵字值遞增順序排列的索引表,索引表中的一項對應線形表中的一塊,
H. 學數據結構裡面的「查找」等演算法有什麼用
額,這個確實沒什麼大用
打個比方吧
就說你用一個軟體
會拿滑鼠鍵盤到處塗塗染染就行了,任務也可以完成
但那些軟體都不是萬能的,總有它不擅長的
但是如果你學一下他是怎麼寫出來的
你就可以自己寫一些小插件,或者再牛點
你就可以自己把代碼改一下做一個自己的軟體
用著上手還賺錢
這個就是大牛和小菜的區別